林仁振
摘要:傳統的復習課教學,學生往往只是通過機械重復的練習,達到熟練掌握技能、技巧的目的。但這種僅以獲取知識、技能為目的的教學,忽略了學生學習的主體性,忽視了學生能力的培養和思維的發展。復習課并非只是對舊知識的簡單重復,而是學生認知的深化和提高。本文從初中數學復習課例題的篩選及教學策略出發,嘗試提出了幾點策略,以期促進復習課教學走向高效。
關鍵詞:核心素養;初中數學;復習課;例題優化設計
引言
為了學習數學知識,必須充分鍛煉抽象思維能力,但初中生在思考問題時仍會很好地運用具體思維,這使得學習數學知識變得困難,同時也讓課程缺乏組織和邏輯。復習課是一種重新創建教學內容,整合并完善認知結構并加強基礎教育的課。加強對核心素養下復習課的重視,可使初中生在數學課上獲得更多扎實的知識。
1.數學復習課概述
1.1 單元復習課。單元復習課程基于建立單元知識網絡并整合現有知識的基礎。它不僅是單元學習中知識點的簡單重復,而且著重于單元知識的分類和重組,整合以及學生的系統建設。在此基礎上,知識框架獨立地建立了知識網絡,形成了知識體系,并培養了學生的歸納能力。
1.2 階段復習課。級別復習班是對單元復習班的擴展和改進。學生完成學習階段(例如,學期中期和學期末)后,應該對階段知識進行結構,總結和改進。審查的重點是實施基礎并返回教科書。它闡明了沿著單元知識線的每一章中知識之間的縱向和橫向聯系,總結了解決問題的方法,并滲透了數學思維。它為加強基礎,改善時間,進行思維訓練和發展技能樹立了典型的例子和練習。通過將這些基本知識,基本技能,基本思想和生活經驗轉化為他們自己的數學素養,同時在生活中建立全面的應用教育,學生可以發展解決現實問題的能力。
1.3 專題復習課。這是基于單元復習課和階段復習課。側重于通過問題診斷和檢測反饋對學生的認知缺陷進行深入審查和缺陷識別。復習主題時,有必要綜合考慮主題設置,內容選擇,難易程度和能力提高等多種因素,橫向和縱向擴展,并通過建立自主學習,溝通探索,總結和改進環節來復習主題。文本知識高于文本知識,重點是總結和改進數學知識和思維方法,推斷其他事物并將其內在化為自己的學習能力。
1.4 總復習課。根據課程標準全面復習并系統地安排所學的數學知識和思維方法。通過合并部分和問題圖,消除了知識盲點,拓寬了思路,引入了舊的思想。一般復習課基本上是在完成本節中的學習內容之后基于全面復習進行的,例如,初中三年級的一般復習課屬于這種類型的復習課。初中級別的普通復習課將作為承上啟下的鏈接,并將在未來的高中學習中發揮積極作用。
2.核心素養下初中數學復習課例題優化設計要點與課堂構建措施
2.1 制作微課視頻闡述重點核心理念。教師在帶領學生進行數學知識復習的時候,可以嘗試利用微課視頻來強調每節數學知識的核心內涵。微課視頻涵蓋的內容是較為精煉的,會將每一單元數學知識中最精華的部分進行展示,學生能夠在較短的時間內了解到知識的核心內容。不僅如此,由于是以視頻的形式進行數學知識的展示,學生的注意力將會更為集中,學生將會把自己的全部精力集中于視頻的觀看上。這在無形之中便提升了教師的教學效率。比如,教師在講授一元一次方程知識的時候便可以積極使用這種教學方式。一元一次方程能夠幫助學生解答各種類型的數學問題,教師需要制作微課視頻,將一元一次方程合并同類項的解題技巧以及移項解題技巧中的核心內涵都制作成為視頻資料。或者將工程問題的解題方式,以及球賽積分問題的解答方式通過制作微課視頻的方式進行具體解答。
2.2 利用多媒體創建良好復習氛圍。教師在帶領學生進行此項課程復習的時候,必須要利用先進的多媒體設備,盡可能地為學生展示更多的立體圖形模型。同時,教師還需要利用電腦制作相關的flash動畫為學生展示立體圖形展開圖變為立體圖形的整個過程。以正方體為例,及時需要運用flash動畫制作技術先將正方體分為六個面,并以一維動畫的形式加以展示,隨后教師需要通過電腦操作將這六個面折疊起來,并且組合為三維的正方體結構。隨后進行畫面的優化,讓整個動畫播放過程進展得更為流暢。通過反復對這個動畫的觀察,學生對不同次元的圖像表現形式擁有了更為深刻的認知,學生的空間思維能力也得到了迅猛的提升,學生也能夠深刻領悟到此項數學知識的核心內容。
2.3 重視數學建模能力的培養。在復習課中,可以建立起提高學生數學建模技能的數學模型,以提高復習效率。例如,在反比例函數的復習中,可以設計這樣的例題,讓學生從中找出解題規律:1.已知P(-3,2)在反比例函數的圖象上,求反比例函數的解析式。2.已知 A(-3,a),B(-2,b)是反比例函數 y=kx(k>0)的圖象上的兩點,請添加一個條件,求出反比例函數解析式。3.若S△OAB=5,求出反比例函數解析式。所有這三個問題都是用于評估學生尋找反比例函數的分析公式,但是切入點從淺到深各不相同。通常的規則是通過不確定系數法找到不確定系數k。通過類比練習,學生總結了不確定系數法的基本思想。
2.4 培養探究精神例如,在函數復習課中,有這樣一道例題:函數y=(k-1)x2+2x+1的圖象與x軸有交點,求k的取值范圍?S1回答:因為二次函數的圖象與x軸有交點,即令y=0得到的一元二次方程有實數根,所以判別式大于等于0,于是得:△=4-4(k-1)≥0,解得 k≤2。S2提出疑問:當 k=1時,原式為y=2x+1,所以k≠1。否則這就不是二次函數,因此正確答案應該是k≤2且k≠1。S3舉手大聲說:k=l時,y=0,則 x=-1/2此時同學們討論開了:題目沒有說這是二次函數,如果不是二次函數,判別式怎么用呢?大家圍繞k=1時展開討論,并形成了共識。
結束語
總之,在核心素養下,初中數學需要重視復習課的打造。針對例題教學,需要做好優化設計,以便培養學生的數學素養,使其在學習中培養探究精神和創新能力,為今后發展奠定基礎。
參考文獻:
[1]隨紅俠.核心素養下的初中數學計算教學思考[J].科學咨詢(科技·管理),2019(09):169.
[2]楊丹.基于案例分析的初中數學復習課問題研究[J].科學咨詢(教育科研),2019(03):74.
[3]李萍.淺析探究性教學在初中數學例題教學中的應用[J].才智,2017(12):125.