李莉
摘 要:本文首先分析了物理模型在物理學(xué)及其發(fā)展中的重要性,然后結(jié)合初中物理教育和教學(xué)的特點(diǎn)分析了物理模型在初中物理教育教學(xué)中的重要意義,接下來本文又把初中物理模型按不同類型逐一分析,最后給出了方法論意義。
關(guān)鍵詞:物理模型;初中物理教育;初中物理教學(xué);簡(jiǎn)單性原理
模型在我們?nèi)粘I睢⒐こ碳夹g(shù)和科學(xué)研究中經(jīng)常見到,對(duì)我們的生產(chǎn)生活有很大幫助。物理學(xué)研究具有復(fù)雜性。怎樣發(fā)現(xiàn)復(fù)雜多變的客觀現(xiàn)象背后的基本規(guī)律呢?又如何簡(jiǎn)單的表達(dá)它們呢?人們有幸在漫長(zhǎng)地實(shí)踐活動(dòng)中找到一些有效的方法,其中一個(gè)就是:在具體情況下忽略研究對(duì)象或過程的次要因素,抓住其本質(zhì)特征,把復(fù)雜的研究對(duì)象或現(xiàn)象簡(jiǎn)化為較為理想化的模型,從而發(fā)現(xiàn)和表達(dá)物理規(guī)律。
既然物理模型是物理學(xué)研究的重要方法和手段,物理教育和教學(xué)中對(duì)物理模型的講述和講授就必不可少。建立物理模型就要忽略次要因素以簡(jiǎn)化客觀對(duì)象,合理簡(jiǎn)化客觀對(duì)象的過程就是建立物理模型的過程。根據(jù)簡(jiǎn)化過程和角度的不同,將物理模型分為以下五類:物理對(duì)象模型、物理?xiàng)l件模型、物理過程模型、理想化實(shí)驗(yàn)和數(shù)學(xué)模型。下面我們逐個(gè)加以說明。
1. 物理對(duì)象模型——直接將具體研究對(duì)象的某些次要因素忽略掉而建立的物理模型 這種模型應(yīng)用最為廣泛,在初中物理教材中有許多很好的例子。例如:透鏡、光線、彈簧振子、理想電流表、理想電壓表、理想電源和分子模型。
2. 物理?xiàng)l件模型——忽略研究對(duì)象所處條件的某些次要因素而形成的物理模型 在初中物理中有:光滑面、輕質(zhì)桿、輕質(zhì)滑輪、輕繩、輕質(zhì)球等。我們以輕質(zhì)桿為例加以分析。比如簡(jiǎn)單機(jī)械里的杠桿,在初中階段問題往往歸結(jié)到力矩的平衡上來。即:動(dòng)力×動(dòng)力臂=阻力×阻力臂。動(dòng)力和阻力都包括桿以外的物體對(duì)杠桿的作用力,還包括桿本身的重力。而桿重力的力臂在桿上的每一點(diǎn)都不同,這樣除了桿的形狀是幾何規(guī)則的少數(shù)例子以外的絕大部分杠桿問題在初中階段就沒法解決。而輕質(zhì)桿的引入正好解決了這一問題。輕質(zhì)桿是忽略了自身重力的彈性桿。當(dāng)外界物體對(duì)杠桿的力矩遠(yuǎn)遠(yuǎn)大于桿自身重力的力矩或者桿自身重力的力矩相互抵消時(shí),就可以把桿當(dāng)成輕質(zhì)桿,杠桿受到的力矩只有外力矩,這樣所有杠桿平衡問題都可以迎刃而解。
3. 物理過程模型——忽略物理過程中的某些次要因素建立的物理模型 在初中物理中有:勻速直線運(yùn)動(dòng)、恒定電流等。這些物理模型都是把物理過程中的某個(gè)物理量的微小變化忽略掉,把這個(gè)物理量看成是恒定的。因?yàn)檫@些量的變化量與物理量本身相比太小了,以至于可以略去不計(jì)。這樣不用考慮過程中物理量的復(fù)雜變化情況而只考慮恒定過程,分析問題就容易多了。
4. 理想化實(shí)驗(yàn)——在大量實(shí)驗(yàn)研究的基礎(chǔ)上,經(jīng)過邏輯推理,忽略次要因素,抓住主要特征,得到在理想條件下的物理現(xiàn)象和規(guī)律的科學(xué)研究方法就是理想實(shí)驗(yàn) 理想化方法是物理科學(xué)研究和物理學(xué)習(xí)中最基本、應(yīng)用最廣泛的方法。初中物理中就有一個(gè)非常著名的理想化實(shí)驗(yàn):伽利略斜面實(shí)驗(yàn)。伽利略的斜面實(shí)驗(yàn)有許多,現(xiàn)在舉其中的一個(gè)例子,同樣的小球從同種材料同樣高度的斜面上滑下來,在摩擦力依次減小的水平面上沿直線運(yùn)動(dòng)的路程依次增大。伽利略由此推知:小球在沒有摩擦的水平面上永遠(yuǎn)做勻速直線運(yùn)動(dòng)(在理想條件下的物理現(xiàn)象)。牛頓又在此基礎(chǔ)上建立了牛頓第一定律。無需多論,也足以見得理想實(shí)驗(yàn)的強(qiáng)大力量。
5. 數(shù)學(xué)模型——由數(shù)字、字母或其它數(shù)學(xué)符號(hào)組成的、描述現(xiàn)實(shí)對(duì)象數(shù)量規(guī)律的數(shù)學(xué)公式、圖形或算法 初中物理中的數(shù)學(xué)模型主要有磁感線和光線。磁感線是形象的描述磁感應(yīng)強(qiáng)度空間分布的幾何線,是一種數(shù)學(xué)符號(hào)。而磁場(chǎng)本身的性質(zhì)對(duì)這些幾何線做了一些規(guī)定,這樣就使它們成為形象、簡(jiǎn)練而準(zhǔn)確的描述磁場(chǎng)的數(shù)學(xué)符號(hào)。
物理模型在初中物理教育與教學(xué)中起到舉足輕重的作用,因此,在教學(xué)中我們就要重視對(duì)物理模型概念和具體模型(例如上文分析的模型)的講述,重視對(duì)建立物理模型方法的講授,重視對(duì)學(xué)生建立和應(yīng)用物理模型意識(shí)的增強(qiáng),重視對(duì)學(xué)生建立和應(yīng)用物理模型能力的培養(yǎng),讓學(xué)生體驗(yàn)到成功建立和應(yīng)用物理模型解決實(shí)際問題的快樂。
參考文獻(xiàn)
[1] 陳保軍. 淺析初中物理中的物理模型及其重要性[J]. 軟件:教育現(xiàn)代化, 2015.
[2] 張澤美. 淺析初中物理中的物理模型及其重要性[J]. 網(wǎng)絡(luò)導(dǎo)報(bào)·在線教育, 2012, 000(020):145-145.
[3] 張倩. 初中物理教學(xué)中建模思維的有效培養(yǎng)[J]. 讀與寫:教育教學(xué)刊, 2016, 13(5).