

摘 要:在開展高中數學教學過程中,教師將一系列前后聯系緊密的問題串聯在一起形成“問題鏈”開展教學,不僅能很好地降低學生的學習難度,還能有效的提升學生自主學習意識,對培養學生的創新能力能夠起到一定的促進作用。與單一的問題相比,“問題鏈”本身具有綜合性、遞進性、邏輯性等特點。教學過程中,教師應將準備好的“問題鏈”與教學內容有效地結合在一起,充分發揮學生的主體地位展開教學實踐活動,讓學生在解決“問題鏈”的過程中逐步掌握所學知識,最終實現核心素養提升的目標。
關鍵詞:問題鏈、高中數學、運用策略
問題式教學是高中數學教學過程中常見的一種教學方法。傳統教學模式下時常會采用提問方式和學生展開課堂交流與互動,幫助學生掌握更多數學知識。[1]然而,傳統教學模式下的問題式教學有一個很大的特點——問題本身具有一定的松散性。一方面,教師提出的問題與其他問題之間的聯系不緊密。另一方面,教師提出的問題,不足以引導學生,致使很多學生無法準確地回答。長此以往,就會導致學生學習信心的下降,一定程度上影響學生學習成績。“問題鏈”就是在這樣的背景下逐步產生的。
一、問題鏈的概念及特點
(一)概念
問題鏈即將多個問題進行結合后形成的一個鏈條。與單個問題相比,問題鏈是由多個不同的問題組成的。問題與問題之間具有一定的連續性和邏輯性。設計一個完整的問題鏈需要教師根據既定的教學目標,結合自身教學經驗和對知識點的整體把握才能最終完成。[2]問題鏈中的各個問題之間聯系較為緊密,且類型較為豐富。學生需要根據自身學習情況通過多種不同的方式探尋問題的解決方法,才能找到解決問題鏈中所有問題的方法。而一旦當學生完成問題鏈中的所有問題,自身對于某一知識點的掌握會變得更加深入,且能在一定程度上強化自身綜合實踐和創新能力。
(二)特點
與單個問題相比,問題鏈的特點主要表現在綜合性、遞進性、創新性三個方面。第一,綜合性。盡管問題鏈是由一道道單獨的題目組成的,但問題與問題之間的聯系較為緊密,且不同題目對學生考查的方向也有所差異。學生必須通過有效的合作并展開深度學習才能完成問題鏈中的每一個問題。同時,問題鏈對學生考查的內容也具有一定的綜合性,學生需要運用所學的各種知識解決某一問題,而不是局限于某一知識點,這也是其與單一問題之間的不同之處。第二,遞進性。問題鏈中的每一個問題之間的關系是具有一定遞進性的。一般情況下是由簡單到復雜的方式進行排列的。這樣便于學生逐步找到解題思路。第三,創新性。問題鏈中的問題具有一定的創新性,很多題目所呈現出的方式都與傳統題目存在較大差異,如開放式題目、實踐性題目、情境性題目等。
二、高中數學問題鏈的設計技巧
在進行高中數學教學過程中,盡管借助問題鏈能在一定程度上提升學生的學習效果,但具體教學過程中教師需要對問題鏈進行優化與設計,通過精心植入問題鏈元素的方式提升問題鏈的有效性和合理性。
(一)從整體到局部
在進行問題鏈設計過程中教師可以按照從整體到局部的設計思路展開設計,將一道完整的題目拆分為若干小題,幫助學生逐步找到解決問題的答案。整體到局部的設計思路可以用于對一些大題的講解上,通過降低難度的方式提升學生自主學習能力。比如,在講授“設向量滿足=,= ,則=”這一題目時,教師可以先從這一問題的整體角度出發設計題目。
1.如何才能把根號去掉;
2.去掉根號時應如何考慮絕對值的問題;
3.去掉根號后能想到什么公式;
4.的關系是否能從這個公式中找到。
這些題目的設計就是從題目的角度出發,按照解題思路進行由整體到局部的思路進行設計的。通過將題目拆分為若干小題,便于學生后期更好地進行解答。
(二)從簡單到復雜
對于高中數學來講,其本身所包含的知識點是非常多的,且需要學生綜合小學、初中數學的知識才能解答出來,因此對于很多學生來講解題過程中會遇到很大的困難。為了更好地降低學習難度,教師可以按照從簡單到復雜的思路設計問題鏈,讓學生逐一解決問題,最終找到問題的答案。與上一技巧不同的是,這一技巧適合于基礎知識的講授,教師可以將即將講授的知識點進行細化,通過將小學知識、初中知識、高中知識混合在一起構建一個從簡單到復雜的問題鏈,達到既定教學目標。
比如,在向學生介紹“向量”相關知識時,教師可以先將“小學數學”中有關平行四邊形周長的計算方法與“初中物理”中有關“位移”的知識點植入問題鏈中,讓學生通過復習所學知識點提升對所學知識的把握。隨后再引導學生接觸有關“向量”的知識,逐步掌握所學知識。
(三)從理論到實踐
問題鏈中的問題類型應具有豐富性,教師可以根據實際情況對教學問題進行優化,按照“理論性、解題性、實踐性”的思路展開設計,讓問題鏈達到“由理論到實踐”的過渡,提升學生綜合素養。教學過程中教師可以在設計問題過程中考慮某一數學知識點的實際用處,引導學生在實踐過程中更好地掌握這一知識點的實際用途。[3]
比如,在講授“向量概念”這一知識點時,教師可以先組織學生展開向量概念的學習,并通過設計問題鏈的方式讓學生逐步掌握向量的基本概念。最后教師可以在問題鏈中植入如下問題:“生活中我們常用向量解決一些路線的問題,下面請大家繪制回家的路線,再根據向量知識找到回家的最佳路線。”這一問題本身要求學生能夠運用前面的知識解決實際生活中的常見問題,對更好地優化學生學習動手能力,幫助學生實現學以致用能夠起到一定的促進作用。
(四)從客觀到主觀
問題鏈本身具有客觀和主觀之分,其中客觀是指一些需要通過計算后得到精確答案的問題,這一點是目前大部分數學問題中常見的一個類型。學生需要運用所學知識展開推斷、計算,掌握所學知識。這類問題盡管可以幫助學生更好地掌握所學知識,但卻不利于培養學生形成良好的創新意識和實踐能力。鑒于此,教師可以在問題鏈中植入一些“主觀題”,幫助學生根據自己的實際情況去思考、反思一些問題,提升自身學習能力。通常情況下,“主觀題”可以出現在問題鏈的前面或后面。在前面更多是一些啟發式的問題,如“生活中你是否遇到什么棘手的問題”,在后面則是對自己學習情況的判斷,如“學完這一問題你收獲了什么”,更好地幫助學生提升自身對所學知識的把握度,便于學生更好地了解自己。
三、問題鏈在高中數學教學過程中的運用策略
課堂教學過程中,教師應將設計好的問題鏈傳遞給學生,圍繞不同的教學策略使用問題鏈開展教學,充分發揮學生的主體性提升學生學習質量。在實際開展教學過程中,教師應注意問題鏈的融入與學生完成問題鏈過程中所面臨的各種問題,幫助學生在學習和實踐過程中實現自身數學素養的有效提升。
(一)圍繞教學目標分發預習問題鏈
“凡事預則性”,預習對于學生學習數學來講是十分重要的,有效的預習能幫助學生對即將學習的知識點有更加清楚的把握,并能讓學生提升對自己能力的判斷。傳統預習時教師通常讓學生閱讀課本或指導性書籍,這種預習方式缺乏一定的針對性。[4]為此,教師可以根據教學目標設計對應的預習問題鏈,指導學生圍繞問題鏈展開自主預習學習活動。設計問題鏈時,教師必須對教學目標進行分析,圍繞不同目標設計相應的問題鏈,確保問題鏈中各個問題之間的層次性和遞進性,逐步引導學生深入思考,達到教學目標。
比如,在講授“向量”相關知識點時,教師設計如下導學案:
1.既有方向又有大小的量叫作向量,你能否在生活中找到向量的案例;
2.數量中有0°、1°,向量中有沒有與之類似的量,如果有又怎樣定義這些特殊的量呢?
3.數量中有兩數相等和兩數互為相反數等特殊情況,你怎么考慮向量中的類似問題?
上述問題鏈中的三個問題分別對應著三個不同的教學目標:向量的概念、向量的表示方法、向量的關系。學生在預習階段思考上述三個問題,并根據教師分發的預習材料進行學習。當正確回答出問題鏈中的答案時,自身對于向量的基礎知識也就會有所掌握。
(二)問題鏈的引導具有過渡性
在組織學生圍繞問題鏈展開學習時,教師不能放任學生不管,而是要通過適當的引導讓學生逐步找到解決問題的答案。同時,在引導過程中應做到間接性,給學生留下足夠的思考空間,便于學生在思考和解答過程中形成獨特的見解和疑問,實現提升學生學習興趣、提高自身創新力和解決問題能力的目標。
比如,在講授“平行向量關系”這一知識點時,教師設計如下問題鏈:
1.平行向量的概念是什么?
2.與其他向量之間的關系是什么?
3.平行向量與共線向量之間的關系是什么?
教師為了讓學生更好地理解平行向量的概念,設計了上述三道題目。隨后教師可以組織學生展開思考。思考過程中教師可以針對學生學習情況展開教學引導。
教師:“什么是平行向量?”
學生A:“方向相同或相反的非零向量叫平行向量,記作//。”
教師:“在這一定義中突出了幾個重點?為什么?”
學生B:“方向相同或相反,強調向量的方向性。”
學生C:“相同或相反方向的向量可能是平行向量。”
教師:“還有沒有其他的重點?”
學生D:“非零向量。”
教師:“這里為什么強調非零向量?”
案例中教師通過提出“定義中的重點詞語”的方式幫助學生逐漸找到第一問題與第二問題之間的聯系,讓學生更加直接地理解問題鏈中兩個問題之間的關系。在后面的講授過程中,教師可以引導學生通過繪制“零向量”的方式確定其方向的“不確定性”,即可很好地理解平行向量中“非零向量”與平行向量之間的關系。
(三)要注重學生的主體性
在借助問題鏈開展課堂教學活動過程中,教師必須始終堅持“以學生為中心”的教學原則,突出學生主體地位,鼓勵學生與學生之間開展深度交流與合作,引導學生通過獨立思考和合作學習來解決問題鏈中的各個問題。為了實現這一目標,教師可以對教學模式進行優化,通過植入多元教學活動的方式,如小組討論、互相交流等提升教學效果。第一,教師可以采用小組合作的方式開展教學,讓不同小組同學共同完成一個問題鏈中的問題,便于學生在學習過程中提升對所學知識點的整體把握程度,幫助小組學生從不同角度對問題鏈中的知識點進行理解,提升教學效果。比如,在講授“平行向量”這一知識點時,教師可以組織學生共同完成問題鏈中的最后一道題目——經典高考題目。通過組織小組同學共同完成高考題目,不僅可以讓學生了解高考考試的切入點及出題思路,還能讓學生進一步鞏固所學知識,對調動學生學習積極性能起到一定的推動作用。第二,設計與講授知識點相關的教學實踐活動,組織學生在參與實踐活動的過程中進一步鞏固所學知識。比如,在講完“平行向量”這一知識點后,教師可以布置如下實踐任務:“在紙板上繪制一個5X5的方格,并繪制對應的向量,從圖中任意選擇一個點作為起點,并確定一個終點,以此連接一條直線做向量。繪制結束后請同學們找出與向量相等的向量以及與向量長度相同的向量。”按照這種方式開展教學,讓學生切身加入對平行向量的學習和實踐中。第三,在教學過程中應抓住學生提出的各種問題展開有針對性的教學指導,對于學生解答問題鏈中問題的過程中應及時發現學生遇到的各種困難,并根據困難進行針對性解答,調動學生的學習積極性。特別是對于一些超預設的問題,教師也應給予及時的糾正,幫助學生盡快找到問題的答案。第四,在進行問題鏈完成情況評價過程中,教師也應尊重學生的個性差異,通過將過程性評價與終結性評價進行結合,提升教學效果。一方面,教師應時刻關注學生解決問題鏈過程中的思路及表現,結合學生情況給予對應的指導。另一方面,教師應加強問題鏈后學生知識點掌握的情況及教學效果,及時根據學生學習情況做出反思和總結,幫助學生取得提升。
結束語
總之,問題鏈是指將多個相互關聯、相互影響的問題串聯在一起后形成的一個問題組。教學過程中教師借助問題鏈開展教學不僅能降低學生學習難度,增強學生學習信心,還能有效地引導學生養成良好的自主學習習慣。為此,對于高中數學教師來講,應嘗試在傳統的問題教學法基礎上對教學模式進行優化和創新,通過將問題鏈融入課堂教學之中幫助學生更好地提升自身綜合能力。在進行問題鏈設計過程中,教師應遵循從整體到局部、從簡單到復雜、從理論到實踐、從客觀到主觀四個基本原則,設計出實用性強、結構合理、富有創新性和引導性的問題鏈,便于后期教學過程中提升教學效果。而在實踐教學過程中,教師應注意圍繞教學目標分發預習問題鏈,對問題鏈中的每一個問題進行優化設計,對照不同的教學目標進行問題鏈的細化。在組織學生開展學習與實踐過程中,教師應做好教學引導工作,通過言語指導、問題提示、動作表現等方式讓學生找到解決問題的途徑。同時,教師應注意問題鏈的過渡性,通過提示的方式實現學生對知識點的把握。此外,在問題鏈的實踐過程中應堅持以學生為中心的原則,關注每位學生的課堂表現,并以此調整對應的教學策略,實現既定的教學
目標。
參考文獻
[1]歐玉芹,李智群,李甲聰.基于問題鏈的高等數學不定積分概念的教學設計[J].高等數學研究,2022,25(6):79-82.
[2]韓錦文.問題鏈在高中數學課堂教學中的創新應用[J].西部素質教育,2022,8(16):176-178.
[3]薛靖宇,薛穎.三角形的概念與性質的“問題鏈”設計探究[J].赤峰學院學報(自然科學版),2022,38(4):94-96.
[4]趙堅逸.高中數學教學的“問題鏈”設計研究[J].職業教育(中旬刊),2021,20(21):77-78.