






摘要:目的" 研究高原肺水腫的發生和早期進展潛在生物標志物,進一步為高海拔肺水腫的發病和早期進展機制提供理論基礎。方法" 從GEO數據庫中提取出人類基因表達譜GSE52209,使用R軟件在數據集中篩選急進入高原48~72 h內高原適應組和高原肺水腫組的差異表達基因(DEGs),通過GO和KEGG探究高原肺水腫的發生和早期進展機制,利用cytoscape軟件的MCC算法鑒定樞紐基因,利用Lasso-Cox回歸分析和ROC曲線分析預測和驗證診斷標記物,利用R軟件檢測數據集樞紐基因的相對表達水平,利用networkanalyst和cytoscape軟件鑒定與樞紐基因作用的miRNA和樞紐miRNA。結果" 共鑒定出DEGs 216個,其中196個基因表達上調,20個基因表達下調;GO和KEGG分析結果顯示,DEGs主要與代謝異常和氧化應激相關;共篩選出7個高原肺水腫診斷標記物(ARRB2、RPLP0、JAK2、ICAM1、ESPL1、RAD54L、SEC61A1),結合gene-miRNA網絡,hsa-miR-335-5p、hsa-miR-16-5p、hsa-miR-149-5p和hsa-miR-615-3p可能是高原肺水腫發生和早期進展相關的樞紐miRNA。結論" ARRB2、RPLP0、JAK2、ICAM1、ESPL1、RAD54L、SEC61A1、hsa-miR-335-5p、hsa-miR-16-5p、hsa-miR-149-5p和hsa-miR-615-3p可能是高原肺水腫發病和早期進展的重要生物標記物,其中ARRB2、RPLP0、JAK2、ICAM1、ESPL1、RAD54L和SEC61A1可能是高原肺水腫的早期診斷標記物。
關鍵詞:高原肺水腫;發病機制;診斷;生物標志物;樞紐基因;miRNA
中圖分類號:R563" " " " " " " " " " " " " " " " " 文獻標識碼:A" " " " " " " " " " " " " " " " " DOI:10.3969/j.issn.1006-1959.2023.15.003
文章編號:1006-1959(2023)15-0012-07
Research on Novel Biomarkers of High Altitude Pulmonary Edema
YUAN Mu,XING Wei,XU Xiang
(Central Laboratory of Daping Hospital,Army Medical University,Chongqing 400042,China)
Abstract:Objective" To study the potential biomarkers of the occurrence and early progression of high altitude pulmonary edema, and to further provide a theoretical basis for the pathogenesis and early progression of high altitude pulmonary edema.Methods" The human gene expression profile GSE52209 was extracted from the GEO database. R software was used to screen differentially expressed genes (DEGs) between the high-altitude adaptation group and the high-altitude pulmonary edema group within 48-72 h after rapid entry into the plateau in the data set. GO and KEGG were used to explore the mechanism of the occurrence and early progression of high-altitude pulmonary edema. The MCC algorithm of cytoscape software was used to identify hub genes. Lasso-Cox regression analysis and ROC curve analysis were used to predict and verify diagnostic markers. R software was used to detect the relative expression level of hub genes in the data set. Networkanalyst and cytoscape software were used to identify miRNAs and hub miRNAs that interact with hub genes.Results" A total of 216 DEGs were identified, of which 196 genes were up-regulated and 20 genes were down-regulated. GO and KEGG analysis showed that DEGs were mainly related to metabolic abnormalities and oxidative stress. A total of 7 diagnostic markers of high altitude pulmonary edema(ARRB2, RPLP0, JAK2, ICAM1, ESPL1, RAD54L, SEC61A1) were screened out. Combined with gene-miRNA network, hsa-miR-335-5p, hsa-miR-16-5p, hsa-miR-149-5p and hsa-miR-615-3p may be hub miRNAs related to the occurrence and early progression of high altitude pulmonary edema.Conclusion" ARRB2, RPLP0, JAK2, ICAM1, ESPL1, RAD54L, SEC61A1, hsa-miR-335-5p, hsa-miR-16-5p, hsa-miR-149-5p and hsa-miR-615-3p may be important biomarkers for the pathogenesis and early progression of high altitude pulmonary edema. ARRB2, RPLP0, JAK2, ICAM1, ESPL1, RAD54L and SEC61A1 may be early diagnostic markers for high altitude pulmonary edema.
Key words:High altitude pulmonary edema;Pathogenesis;Diagnosis;Biomarkers;Key hub genes;miRNA
高海拔地區的平原旅行者可能患高原肺水腫(high altitude pulmonary edema,HAPE),這是一種在高原地區嚴重和較為常見的疾病[1],其癥狀與海拔上升的高度和速度有關[2]。急性高原肺水腫發生時,首先表現為間質性肺水腫,后發展為肺泡性肺水腫。間質性肺水腫癥狀不明顯,這些患者經常被誤診,導致預后不良。目前,HAPE的常規診斷是基于臨床表現和醫學影像學表現,通常表現為無或少痰和非特異性胸片表現,與典型HAPE不同[3]。因此,迫切需要在早期HAPE患者中檢測出新的生物標志物來明確高原肺水腫從而改善患者預后,檢測血液的非侵入性生物標志物創傷小,靈敏性較高,其也可能是高原肺水腫靶向治療的重要基因。高通量技術已被用于探索生物標志物[4],生物信息學分析已經探索出了多種疾病的生物標志物[5,6]。本研究通過生物信息學方法分析高原肺水腫分子機制和潛在生物標志物,利用GEO數據庫鑒定適應高原組和高原肺水腫組中的差異表達基因(differentially expressed genes,DEGs)和樞紐基因,對DEGs進行GO和KEGG富集分析,探索高原肺水腫的發生機制,構建與樞紐基因作用的gene-miRNA網絡,確定靶向樞紐基因的樞紐miRNA,尋找高原肺水腫潛在的生物標記物。
1資料與方法
1.1高原肺水腫DEGs的鑒定" 使用R軟件的GEOquery軟件包(版本4.0.3,http://r-project.org/)從GEO數據庫(http://www.ncbi.nlm.nih.gov/geo)中下載mRNA高通量測序數據集GSE52209,數據集為急進入高原后2~3 d內適應高原和發生高原肺水腫兩組轉錄組數據。使用R軟件的“limma”包鑒別數據集中的DEGs,用“ggplot2”包制作火山圖,用“pheatmap”包制作熱圖,adj.P<0.05和|log2FC|>1的基因被認為是DEGs。
1.2 DEGs的富集分析" 上傳DEGs到在線網站metascape(https://metascape.org/),選擇custom analysis選項Enrichment中GO Molecular Functions、GO Biological Processes、GO Cellular Components和KEGG Pathway分析后得出包含分子功能、生物學過程、細胞組分3種分析的GO分析和KEGG分析。
1.3蛋白-蛋白相互作用(PPI)網絡的建立和樞紐基因的鑒定" PPI分析使用在線網站(https://cn.string-db.org/)進行,使用置信值>0.4來識別PPI對,用“igraph”包繪制PPI網絡圖。然后,用cytoscape軟件建立一個基于DEGs的PPI網絡,使用該軟件的CytoHubba插件中MCC算法通過計算不同DEGs連接度鑒定出DEGs的樞紐基因。
1.4 預測和驗證診斷性生物標記物及其表達水平比較" 使用“glmnet”包,整合患病狀態和基因表達數據進行Lasso-Cox回歸分析,使用十折交叉驗證構建疾病診斷模型,進行診斷標記物的預測。使用“pROC”包對數據集的樞紐基因進行ROC曲線分析,并使用“ggplot2”包對結果進行可視化,曲線下面積(area under the curve,AUC)>0.7的基因被認為具有良好的診斷價值。將數據矩陣按照生物標記物分組,使用基于R語言的生物信息學分析平臺“Sangerbox 3.0”中的“多組箱線圖”模塊繪制箱式圖得到兩組生物標記物基因表達水平的比較,統計學分析采用雙側t檢驗,P<0.05被認為差異有統計學意義。
1.5作用于樞紐基因的miRNAs鑒定" 使用在線網站networkanalyst 3.0(https://www.networkanalyst.ca/)相關聯miRTarBase v8.0數據庫鑒定出與樞紐基因作用的miRNA,并用cytoscape3.7.2軟件繪制它們與樞紐基因的相互作用網,根據miRNA與樞紐基因作用的個數鑒定樞紐miRNA。
2結果
2.1 DEGs的數據預處理和鑒定" 共鑒定216個DEGs,其中上調DEGs有196個,下調DEGs有20個,見表1;差異基因火山圖見圖1A;基因熱圖中,G1為高原適應組,G2為HAPE組,見圖1B。
2.2 DEGs的富集分析" GO分析顯示,DEGs主要與無機分子實體跨膜轉運轉運蛋白活性、抑制蛋白家族結合、乳腺發育、嘌呤核堿基跨膜轉運蛋白活性、細胞對氧化應激的反應等功能有關,見圖2A;KEGG通路分析顯示,DEGs在多種通路中富集,包括cAMP信號通路、甲狀旁腺激素合成、分泌和作用、促性腺激素釋放激素分泌、生長激素合成、分泌和作用、膠質瘤、甲型流感通路,見圖2B。
2.3 PPI網絡的構建與樞紐基因的鑒定" 利用Cytoscape進行PPI分析和可視化(圖3A),根據每個樞紐基因與其它差異基因作用的個數,確定ARRB2、RPSA、RPLP0、JAK2、ICAM1、ESPL1、GNG13、GNRH1、RAD54L、SEC61A1可作為樞紐基因(圖3B),樞紐基因可能對高原肺水腫的發生和早期進展有重要作用。
2.4診斷性生物標記物的篩選和鑒定" 使用Lasso-Cox回歸算法從樞紐基因中識別出7個可能具有診斷效用的生物標志物ARRB2、RPLP0、JAK2、ICAM1、ESPL1、RAD54L和SEC61A1(圖4A、圖4B),Lasso-Cox回歸算法是一種建立模型預測生物標記物的常用方法。因為高原肺水腫患者樣本數量較少,為了評估以上生物標記物的診斷效用,繪制了ROC曲線進行數據集內部驗證,并計算了AUC,7個生物標記物的AUC均>0.7(圖4C)。因此,上述7個基因的mRNA表達作為外周血生物標志物具有較高的診斷價值。
2.5生物標記物表達比較" 與高海拔適應組相比,HAPE組ARRB2、JAK2、ICAM1、ESPL1、RAD54L和SEC61A1mRNA表達上調,RPLP0表達下調,見圖5。
2.6 gene-miRNA調控網絡構建" 通過gene-miRNA作用數據庫鑒定與生物標記物作用的miRNA。通過構建gene-miRNA網絡圖用于鑒定與樞紐基因作用的樞紐miRNA,7個生物標記物及其相應的調控miRNA見圖6。在7個生物標記物中,JAK2、SEC61A1和ICAM1被hsa-miR-335-5p調控,JAK2、SEC61A1和ICAM1被hsa-miR-16-5p調控,ARRB2、ESPL1和RPLP0被hsa-miR-149-5p調控,ARRB2、ESPL1和SEC61A1被hsa-miR-615-3p調控。由以上結果可知hsa-miR-335-5p、hsa-miR-16-5p、hsa-miR-149-5p和hsa-miR-615-3p可能為高原肺水腫的樞紐miRNA。它們在高原肺水腫的發病和早期進展可能發揮重要作用。
3討論
既往研究證明[7-9],利鈉肽、超敏肌鈣蛋白T、代謝物(c8-神經酰胺、鞘氨醇、谷氨酰胺)和SULT1A1是高原肺水腫的診斷性生物標志物。然而,這些生物標志物對高原肺水腫的早期診斷仍然沒有特異性,目前有關miRNA和其他非編碼RNA在高海拔肺水腫診斷中作用的研究很少。本研究共鑒定出216個DEGs,其中20個DEGs表達上調,196個DEGs表達下調。GO和KEGG富集分析顯示,DEGs主要在代謝異常和氧化應激等功能和通路富集。有研究表明[10],神經酰胺增多可攻擊肺內皮細胞導致屏障功能下降,小鼠模型可出現高原肺水腫。PPI、Lasso-Cox、ROC分析顯示,ARRB2、RPSA、RPLP0、JAK2、ICAM1、ESPL1、GNG13、GNRH1、RAD54L、SEC61A1可能為高原肺水腫具有診斷效用的生物標記物;hsa-miR-335-5p、hsa-miR-16-5p、hsa-miR-149-5p和hsa-miR-615-3p可能是高原肺水腫的樞紐miRNA。上述生物標記物可能在高原肺水腫的發生發展中發揮重要作用。
ARRB2被認為參與了激動劑介導的G蛋白偶聯受體的阻滯,可抑制來自激素、神經遞質或感覺信號的刺激[11],與阻滯素β1(Arrestin beta 1,ARRB1)一樣,體外實驗證明它可以抑制腎上腺素能受體功能[12]。在NLRP3炎癥小體的激活步驟中,ARRB2直接與NLRP3結合,通過抑制促炎細胞因子的釋放來抑制炎癥反應[13]。JAK2介導造血素、血小板生成素、粒細胞-巨噬細胞集落類似因子和顆粒細胞集落刺激因子受體激活[14]。EPO促紅細胞生成素受體(EPO-R)和JAK2是促紅細胞生成所必需的[15]。IL-6/JAK2/STAT3信號通路可引起疾病炎癥[16],JAK2基因的激活也能增強細胞增殖和存活[17]。ICAM1是一種表達于內皮細胞和免疫細胞表面的糖蛋白[18],ICAM1的上調促進了炎癥細胞的募集[19]。RPLP0是一個管家基因,其編碼人酸性核糖體磷酸化蛋白的大P0亞基[20]。ESPL1是多種癌癥的生物標記物,其在染色體遺傳中起重要作用,可增加腫瘤細胞的增殖、侵襲和遷移[21,22],其與SEC61A1在腫瘤中發揮相同作用,SEC61A1也可作為多種惡性腫瘤和的生物標記物[23,24]。有研究表明[25],Rad54L過表達可通過改變細胞周期和細胞衰老促進腫瘤細胞異常增殖,其可作為膀胱癌的生物標記物和精確治療靶點。許多關于肺部疾病的研究都著眼于miRNA和樞紐基因之間的關系,miRNA通過介導其靶基因mRNA的降解來調節基因的表達。有實驗發現了hsa-miR-335-5p在巨噬細胞的成熟中發揮作用[26]。hsa-miR-335-5p也被證明可以通過負調控AKT/GSK3β信號通路來預防小鼠的慢性鼻竇炎[27]。研究發現[28],肌萎縮性脊髓側索硬化癥和mir-335-5p下調可導致神經元線粒體功能障礙和凋亡。hsa-miR-16-5p可調控膿毒癥的進展和預后。另有研究發現[29],hsa-miR-615-3p與慢性血栓栓塞性肺動脈高壓的發生發展密切相關。hsa-miR-149-5p在慢性阻塞性肺疾病中有抑制IL-6表達,發揮抑炎的作用[30]。目前大部分研究表明高原肺水腫的發生與免疫浸潤無關,與肺泡毛細血管內皮細胞間隙增大,引起液體進入肺泡間質和肺泡,引起肺水腫,這與之前的研究相一致[31,32]。
本研究的局限性:①只鑒定了7個樞紐基因,對其它差異基因沒有過多的討論;②樣本量有限,需要進一步用臨床樣本驗證該結論。
綜上所述,高原肺水腫的發生和早期進展可能與代謝異常和氧化應激有關,上述7種生物標記物和樞紐miRAN對高原肺水腫的發生和早期進展可能有重要作用,并可能作為高原肺水腫治療的靶基因,這可能為高原肺水腫的治療提供新的策略。
參考文獻:
[1]Si L,Wang H,Jiang Y,et al.MIR17HG polymorphisms contribute to high-altitude pulmonary edema susceptibility" in the Chinese population[J].Sci Rep,2022,12(1):4346.
[2]Gudbjartsson T,Sigurdsson E,Gottfredsson M,et al.High altitude illness and related diseases - a review[J].Laeknabladid,2019,105(11):499-507.
[3]Zhou Q.Standardization of methods for early diagnosis and on-site treatment of" high-altitude pulmonary edema[J].Pulm Med,2011,2011:190648.
[4]Gordon-Rodriguez E,Quinn TP,Cunningham JP.Learning sparse log-ratios for high-throughput sequencing data[J].Bioinformatics,2021,38(1):157-163.
[5]Mann M,Kumar C,Zeng WF,et al.Artificial intelligence for proteomics and biomarker discovery[J].Cell Syst,2021,12(8):759-770.
[6]Zhong Y,Xu F,Wu J,et al.Application of Next Generation Sequencing in Laboratory Medicine[J].Ann Lab Med,2021,41(1):25-43.
[7]Mellor A,Boos C,Holdsworth D,et al.Cardiac biomarkers at high altitude[J].High Alt Med Biol,2014,15(4):452-458.
[8]Guo L,Tan G,Liu P,et al.Three plasma metabolite signatures for diagnosing high altitude pulmonary edema[J].Sci Rep,2015,5:15126.
[9]Barker KR,Conroy AL,Hawkes M,et al.Biomarkers of hypoxia, endothelial and circulatory dysfunction among climbers in Nepal with AMS and HAPE: a prospective case-control study[J].J Travel Med,2016,23(3):taw005.
[10]Petrache I,Natarajan V,Zhen L,et al.Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease" in mice[J].Nat Med,2005,11(5):491-498.
[11]Oda Y,Kanahara N,Iyo M.Alterations of Dopamine D2 Receptors and Related Receptor-Interacting Proteins in Schizophrenia: The Pivotal Position of Dopamine Supersensitivity Psychosis in Treatment-Resistant Schizophrenia[J].Int J Mol Sci,2015,16(12):30144-30163.
[12]Wang H,Deng QW,Peng AN,et al.β-arrestin2 functions as a key regulator in the sympathetic-triggered immunodepression after stroke[J].J Neuroinflammation,2018,15(1):102.
[13]Cao F,Huang C,Cheng J,et al.β-arrestin-2 alleviates rheumatoid arthritis injury by suppressing NLRP3 inflammasome activation and NF- κB pathway in macrophages[J].Bioengineered,2022,13(1):38-47.
[14]Javadi M,Richmond TD,Huang K,et al.CBL linker region and RING finger mutations lead to enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling via elevated levels of JAK2 and LYN[J].J Biol Chem,2013,288(27):19459-19470.
[15]He S,Wang T,Shi C,et al.Network pharmacology-based approach to understand the effect and mechanism of" Danshen against anemia[J].J Ethnopharmacol,2022,282:114615.
[16]Xu S,Pan X,Mao L,et al.Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation[J].Cell Commun Signal,2020,18(1):104.
[17]Xia Y,Hong Q,Gao Z,et al.Somatically acquired mutations in primary myelofibrosis: A case report and meta-analysis[J].Exp Ther Med,2021,21(3):193.
[18]Zhou Q,Cheng KW,Gong J,et al.Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells[J].Biochem Pharmacol,2019,166:231-241.
[19]Bui TM,Wiesolek HL,Sumagin R.ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis[J].J Leukoc Biol,2020,108(3):787-799.
[20]Andersen CB,Runge Walther A,Pipó-Ollé E,et al.Falcarindiol Purified From Carrots Leads to Elevated Levels of Lipid Droplets and Upregulation of Peroxisome Proliferator-Activated Receptor-γ Gene Expression in Cellular Models[J].Front Pharmacol,2020,11:565524.
[21]Nie Z,Pu T,Han Z,et al.Extra Spindle Pole Bodies-Like 1 Serves as a Prognostic Biomarker and Promotes" Lung Adenocarcinoma Metastasis[J].Front Oncol,2022,12:930647.
[22]Song R,Huang J,Yang C,et al.ESPL1 is Elevated in Hepatocellular Carcinoma and Predicts Prognosis[J].Int J Gen Med,2022,15:8381-8398.
[23]Singh N,Sharma R,Bose S.Meta-analysis of transcriptomics data identifies potential biomarkers and their" associated regulatory networks in gallbladder cancer[J].Gastroenterol Hepatol Bed Bench,2022,15(4):311-325.
[24]Guan Q,Zhao P,Tian Y,et al.Identification of cancer risk assessment signature in patients with chronic" obstructive pulmonary disease and exploration of the potential key genes[J].Ann Med,2022,54(1):2309-2320.
[25]Wang Y,Zhou T,Chen H,et al.Rad54L promotes bladder cancer progression by regulating cell cycle and cell" senescence[J].Med Oncol,2022,39(12):185.
[26]De Luna N,Turon-Sans J,Cortes-Vicente E,et al.Downregulation of miR-335-5P in Amyotrophic Lateral Sclerosis Can Contribute to Neuronal Mitochondrial Dysfunction and Apoptosis[J].Sci Rep,2020,10(1):4308.
[27]Xu SJ,Hu HT,Li HL,et al.The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells[J].Cells,2019,8(10):1140.
[28]Zhang Z,Chen L,Xu P,et al.Gene correlation network analysis to identify regulatory factors in sepsis[J].J Transl Med,2020,18(1):381.
[29]Miao R,Dong XB,Gong JN,et al.Analysis of significant microRNA associated with chronic thromboembolic" pulmonary hypertension[J].Natl Med J China,2018,98(18):1397-1402.
[30]Yi E,Zhang J,Zheng M,et al.Long noncoding RNA IL6-AS1 is highly expressed in chronic obstructive pulmonary" disease and is associated with interleukin 6 by targeting miR-149-5p and early" B-cell factor 1[J].Clin Transl Med,2021,11(7):e479.
[31]Yuan M,Hu X,Xing W,et al.B2M is a biomarker associated with immune infiltration in High altitude pulmonary" edema[J].Comb Chem High Throughput Screen,2023 May 10.Epub ahead of print.
[32]Swenson ER,B?覿rtsch P.High-altitude pulmonaryedema[J].Compr Physiol,2012,2(4):2753-2773.
收稿日期:2023-06-09;修回日期:2023-06-18
編輯/成森
基金項目:1.陸軍特色醫學中心軍事醫學前沿創新能力培養計劃(編號:2019CXJSB017);2.重慶市教育委員會新冠病毒感染與防治應急專項(編號:KYYJ2020009)
作者簡介:袁牧(1991.10-),男,江蘇海安人,碩士研究生,主要從事間充質干細胞抗炎研究
通訊作者:徐祥(1972.9-),男,云南昆明人,博士,研究員,主要從事間充質干細胞抗炎研究