王世榮
(江蘇省金湖中學,211600)
通常所謂的思維包括直覺思維和邏輯思維.一般情況下,在課堂教學中比較重視邏輯思維的培養(yǎng),輕視學生們的觀察、聯(lián)想、類比等直覺思維的培養(yǎng).由于直覺思維是培養(yǎng)學生自主學習的一個重要因素,所以在數(shù)學學習中,直覺思維起著直觀的定向與決策的作用,引導解題過程的分析解決.因此直覺思維對于學生來說至關(guān)重要,需要認真引導和積極培養(yǎng).本文從六個方面探究在解題教學中培養(yǎng)學生直覺思維能力的途徑,供同行參考.
數(shù)和形是從不同的側(cè)面反映數(shù)學問題的本質(zhì),數(shù)和形各有特點,形的直觀、數(shù)的嚴密,二者結(jié)合會起到意想不到的效果.充分利用某些數(shù)學式子的幾何意義來探求問題的本質(zhì),借助圖形的特點啟發(fā)直覺靈感,引導學生通過深入細致地對有關(guān)圖形進行觀察分析,是增強直覺能力、提高解題能力的重要途徑.
例1已知函數(shù)
若|f(x)|≥ax,試求參數(shù)a的取值范圍.
分析由于已知函數(shù)是一個比較復雜的分段函數(shù),用直接代入、再解不等式的方法顯然難度較大,如果通過作出函數(shù)圖象幫助分析判斷可能會快速破題.
如圖1,先作出函數(shù)y=f(x)的圖象,進而得到y(tǒng)=|f(x)|的圖象,在此基礎上再作一次函數(shù)y=ax的圖象,通過研究參數(shù)a,可知滿足|f(x)|≥ax時,直線y=ax的斜率a的取值范圍為0≤a≤k(k為圖象y=x2-2x在原點處的切線斜率),將y=kx與y=x2-2x聯(lián)立,由Δ=0易求得k=-2,故參數(shù)a的取值范圍為[-2,0].

一方面,許多關(guān)于數(shù)量關(guān)系的抽象概念……