廖達凡
(江西省大余中學 341500)

圖1



評注在涉及平面幾何圖形中相關向量的數量積時,能充分利用幾何圖形的特點,借助向量加法或減法的三角形運算法則及平面向量基本定理,將未知向量用已知向量來表示,從而實現問題的解決,是解答這一類問題的基本規律.

圖2




圖3

評注在涉及平面幾何圖形中相關向量的數量積的取值范圍時,根據幾何圖形的特點,建立適當的平面直角坐標系,使平面向量坐標化,將向量數量積運算轉化成坐標運算,從而使問題通過坐標法來解決,是解決這一類問題的常見途徑.


圖4





圖5




圖6


評注在計算平面幾何圖形中有關向量的數量積時,若幾何圖形中有“垂直”這一特征時,在將未知向量用已知向量來表示時,可根據幾何圖形的特點盡量往已知互相垂直的向量轉化,結合向量垂直的充要條件能使問題得到更快的解答. 解答這一類問題時可利用幾何圖形中的這一特征.
