999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

HYPOTHESIS TESTING IN LINEAR MODELS WITH MARKOV TYPE ERRORS

2018-07-16 12:08:14YANHuiHUHongchang
數學雜志 2018年4期

YAN Hui,HU Hong-chang

(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

Abstract:In this paper,we study the hypothesis testing for the homogeneity of the Markov chain of the errors in linear models.By using the quasi-maximum likelihood estimates(QMLEs)of some unknown parameter and the methods of martingale-difference,the limiting distribution for likelihood ratio test statistics is obtained.

Keywords:linear model;Markov chain;homogeneity;hypothesis testing;martingale

1 Introduction

The theory and application of linear models with Markov type dependent errors recently attracted increasing research attention.In the case that the errors form a homogeneous Markov chain,one can see Maller[1],Pere[2],Fuller[3]and form a non-homogeneous Markov chain,see Azrak and Mélard[4],Carsoule and Franses[5],Dahlhaus[6],Kwoun and Yajima[7].It is well-known that compared with a homogeneous Markov chain,the limit behavior of a non-homogeneous Markov chain is much more complicated to handle.To simplify the models,we consider the hypothesis testing for the homogeneity of the process of errors in the following linear model

where xt∈ Rdare deterministic regressor vectors,β is a d-dimensional unknown parameter,and{εt}is a Markov chain with recursive formula as follows

where θ∈ R is an unknown parameter,φt(θ)is a real valued function on a compact set Θ which contains the true value θ0as an inner point,and the ηtare i.i.d.mean zero random variables(rvs)with finite variance σ2(also to be estimated).

It is obvious that the errors{εt}is a non-homogeneous Markov chain when the coefficient φt(θ)depends on t.This paper discusses the hypothesis testing for the homogeneity of Markov chain{εt}based on the quasi-maximum likelihood estimates(QMLEs)of the unknown parameters.Limiting distribution for likelihood ratio test statistics of hypotheses is obtained by the techniques of martingale-difference.

2 Preliminaries and Statement of Result

The log-likelihood of y2,y3,···,ynconditional on y1is defined by[1]

We maximize(2.1)to obtain QML estimators denoted by?βn,?θnand?σ2n(when they exsit).Then the corresponding estimators,satisfy[1]

Write the“true”model as

By(2.5)

We need the following conditions

(A2)There is a constant α>0 such that

for any t∈ {1,2,···,n}and θ∈ Θ.

Remark 2.1 Condition(A1)is often imposed in order to obtain the existence of the estimators in some linear models with Markov type errors,see e.g.Muller[1],Hu[8],Xu and Hu[9].

And[8,9]used condition(A2),Kwound and Yajima[7]used the first condition in(A2).Silvapulle[10],Tong et.al.[11]used the condition similar to(A3),when they discussed the asymptotic properties of the estimators in some linear and partial linear models.

Define(d+1)-vectorG=(β,θ),and

where

From eq.(5.29)in Hu[8],we have

where

In this paper,we consider the hypothesis

where the function ρ(θ)<1,θ∈ Θ and ρ(θ0) ≠0,ρ′(θ)is bounded on Θ.

The main result in this paper is the following theorem.

Theorem2.1 Assume(A1)–(A3).Suppose H0:φt(θ)= ρ(θ)holds.Then as n → ∞,whereis chi-square rv with m degrees of freedom.

3 Lemmas

Lemma 3.1Assume(A1)–(A3).Thenand,the QML estimators of β,θ and σ2in model(1.1)–(1.2)exist.And as n → ∞,

Proof See Theorem 3.1 and Theorem 3.2 in Hu[8].

Lemma 3.2 Assume(A2)and(A3).Then

Proof

From Lemma 4.1 in Xu and Hu[9],we haveThen

By recursive method,

Similarly,

Therefore,from(3.2),(3.4)and(3.5),

where c0is the bound of

4 Proof of Theorem

Using(2.2),(2.8)and(2.4),

By(2.8),

Then,from(2.4),

By(5.23)and(5.24)in Hu[8],as n→∞,|T2|=op(1),|T3|=op(1).Thus

From(2.7),

Using(4.1),(4.3),(4.4)and Taylor expansion,

Thus,

Now we give an approximation for.In fact,from eq.(5.28)in Hu[8],

Φn,Dn,Snsame as in(2.14)and(2.11).Then

which means

In view of Lemma 3.2,the law of large numbers holds for the sequenceNote thatthen

From(4.11)and(2.14),

Thus,from(4.8),(4.13),(4.14)and Lemma 3.2,straightforward calculus yields

We now finish the proof of Theorem 2.1.From(2.4)and(2.8),

By(2.2),(2.8)and(4.16),

In view of eq.(4.14)and Lemma 3.1,Lemma 3.2,

and

Then to prove that

we need only to show that

then,to obtain(4.21),it will suffice to verify the Lindeberg condition for the sequence

In fact,since

?n(θ0,σ0)=O(n)as n → ∞,then for every ε>0,we have

Now,we obtain(4.21)due to the central limit theorem for martingale difference array(Theorem 8.1 in Pollard[12]).Then we prove(4.18)from(4.20).

主站蜘蛛池模板: 久久久久久尹人网香蕉| 最新国产你懂的在线网址| 久久成人国产精品免费软件 | 少妇精品网站| 成人年鲁鲁在线观看视频| 国产一级毛片网站| 欧美日韩国产成人高清视频| 欧美成人午夜在线全部免费| 亚洲人成网站在线播放2019| 久久窝窝国产精品午夜看片| 在线观看91精品国产剧情免费| 玖玖免费视频在线观看| 欧美日韩资源| 婷婷色在线视频| 亚洲一区二区日韩欧美gif| 亚洲av日韩av制服丝袜| 26uuu国产精品视频| 天堂岛国av无码免费无禁网站| 无码粉嫩虎白一线天在线观看| 青青国产成人免费精品视频| 亚洲乱伦视频| 国产乱子伦精品视频| 国产午夜在线观看视频| 青青草原国产精品啪啪视频| 亚洲高清在线天堂精品| 亚洲国产欧美目韩成人综合| 幺女国产一级毛片| 老熟妇喷水一区二区三区| 国产女人在线视频| 波多野结衣二区| 四虎永久在线精品国产免费| 欧美精品伊人久久| 九色国产在线| 经典三级久久| 亚洲v日韩v欧美在线观看| 国产女人综合久久精品视| 国产成人夜色91| 在线观看欧美精品二区| 男人天堂伊人网| 亚洲欧美另类中文字幕| 国产精品一区二区无码免费看片| 天堂网亚洲综合在线| 亚洲一级毛片| 国产成人福利在线| 999在线免费视频| 3p叠罗汉国产精品久久| 青青网在线国产| 极品尤物av美乳在线观看| 久久久91人妻无码精品蜜桃HD| 日韩精品高清自在线| www亚洲天堂| 欧美影院久久| 午夜无码一区二区三区| 欧美日韩精品在线播放| 香蕉伊思人视频| 午夜免费视频网站| 91在线播放国产| 中文字幕日韩久久综合影院| 久热这里只有精品6| 天天色综网| 亚洲第一区在线| 亚洲美女AV免费一区| 无码精品一区二区久久久| 久久semm亚洲国产| 四虎永久免费地址| 欧美国产在线精品17p| 国产欧美日韩在线在线不卡视频| 欧美日韩另类在线| 九色在线观看视频| 高h视频在线| 久久96热在精品国产高清| 2020国产精品视频| 中国一级特黄大片在线观看| 超碰色了色| 欧美 国产 人人视频| 亚洲不卡影院| 天堂在线www网亚洲| 波多野结衣久久高清免费| 狠狠色香婷婷久久亚洲精品| 四虎影院国产| 国产精品免费p区| 国产成人精彩在线视频50|