999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

FROM LEIBNIZ SUPERALGEBRAS TO LIE-YAMAGUTI SUPERALGEBRAS

2018-07-16 12:08:00TANGXinxinZHANGQingchengWANGChunyue
數(shù)學(xué)雜志 2018年4期

TANG Xin-xin,ZHANG Qing-cheng,WANG Chun-yue

(1.School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China)

(2.School of Media and Mathematics and Physics,Jilin Engineering Normal University,Changchun 130052,China)

Abstract:In this paper,we study the construction of Lie-Yamaguti superalgebras.By using left Leibniz superalgebras,we give the construction of left Leibniz superalgbebras,then give the construction of Lie-Yamaguti superalgebras from left Leibniz superalgebras.So we gain the construction of Lie-Yamaguti superalgebras,which generalizes the construction of Lie-Yamaguti algebras in the situation of superalgebras.

Keywords: Lie-Yamaguiti superlagebras;(left)Leibniz superlagebras;Akivis superalgebras;Lie supertriple systems;construction

1 Introduction

Lie algebras were studied for many years in mathematics and physics,such as in quantum field theory.As the noncommutative analogs of Lie algebras,Leibniz algebras were first introduced by Cuvier and Loday in[1]and[2].Researchers obtained many results about Leibniz algebras and we can find some of them in[3–6].There are two kinds of Leibniz algebras,left Leibniz algebras and right Leibniz algebras[7].For a given non-commutative algebra(A,·),if the left multiplication lx·y=x ·y,?x,y ∈ A is a derivation of A,then(A,·)is called a left Leibniz algebra[8].As non-associative algebras,left Leibniz algebras can construct Akivis algebras[9].Kinyon and Weinstein found that a left Leibniz algebra has a Lie-Yamaguti algebra structure by using an enveloping Lie algebra of Leibniz algebras.

Recently,Leibniz algebras are generalized to Leibniz superalgebras by Dzhumadil in[10].Then some important results were obtained such as[11]and[12].Like left Leibniz algebras and right Leibniz algebras,we can similarly obtain left Leibniz superalgebras and right Leibniz superalgebras.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.In this paper,we study the construction of left Leibniz superalgebras and Lie-Yamaguti superalgebras.

This paper is organized as follows.In Section 2,we recall the definition of Leibniz superalgebras and prove that every non-associative superalgebra has an Akivis superalgebra structure.Then we give examples and constructions of left Leibniz superalgebras.In Section 3,we define Lie-Yamaguti superalgebras and prove that every left Leibniz superalgebra has a Lie-Yamaguti superalgebra structure.

Throughout this paper,K denotes a field of characteristic zero;All vector spaces and algebras are over K;hg(A)denotes the set of homogeneous elements of the superalgebra A.

2 Leibniz Superalgebras

In this section,we introduce the definition of Leibniz superslgebras,and then give the constructions and examples of Leibniz superalgebras.

Definition 2.1[11](i)A(left)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A→A an even bilinear map such that

for all x,y,z∈hg(A).

(ii)A(right)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A →A an even bilinear map such that

for all x,y,z∈hg(A).

In this paper, “Leibniz superalgebras” means “l(fā)eft Leibniz superalgebras”.A super skew-symmetric Leibniz superalgebra is a Lie superalgebra.In this case,equations(2.1)and(2.2)become the Jacobi super-identity.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.

Definition 2.2 Let(A,·)be a superalgebra.

(i)The super-associator of A is an even trilinear map:A×A×A→A defined by

for all x,y,z∈hg(A).

(ii)The super-Jacobian of A is an even trilinear map:A×A×A→A defined by

Remark 2.3 A not necessarily associative superalgebra is called a non-associative superalgebra.That is to say,(x,y,z)≠0 for some x,y,z ∈ hg(A).

Definition 2.4[13]An Akivis superalgebra is a triple(A,?,[?,?,?]),in which A is a superspace,? :A×A → A an even bilinear map,[?,?,?]:A×A×A → A an even trilinear map such that

for all x,y,z∈hg(A).Equation(2.5)is called the Akivis super-identity.

Theorem 2.5 Every non-associative superalgebra(A,·)has an Akivis superalgebra(A,?,[?,?,?])structure with respect to the operation defined by

for all x,y,z∈hg(A).

Proof First,we proceed to verify that“?”is super skew-symmetric.

So we obtain equation(2.4).

Second,consider the Akivis super-identity.On one hand,

On the other hand,

That is

So we get equation(2.5).

An Akivis superalgebra derived from a given non-associative superalgebra A by Theorem 2.5 is said associated with A.We are interested in Akivis superalgebras associated with Leibniz superalgebras.

In terms of equation(2.3),equation(2.1)has the form

Because the operations of the Akivis superalgebra(A,?,[?,?,?])defined by the(left)Leibniz superalgebra(A,·)satisfy the super skew-symmetrization and equation(2.4),the Akivis super-identity(2.5)has the form

By equations(2.8)and(2.1),we have?(?1)|x||y|(y,x,z)=(x·y)·z?(x,y,z).So equaiton(2.9)becomes

Lemma 2.6 Let(A,·)be a Leibniz superalgebra,and consider on(A,·)the operation[x,y]:=x·y?(?1)|x||y|y·x for all x,y∈ hg(A).Then

(i)

(ii)

Proof(i)Equation(2.1)implies that

Likewise,interchanging x and y,we have

Then,consider

(ii)By calculating directly,we have

Lemma 2.7 Let(A,·)be a Leibniz superalgebra,(A,?,[?,?,?])be an Akivis superalgebra associated with Leibniz superalgebra(A,˙).Then

ProofWe get the result from equation(2.10).

An superalgebra(A,·)is called Lie-super-admissible if its commutator superalgebra(A,?)is a Lie superalgebra.We can obtain following lemma immediatly from Lemma 2.7.

Lemma 2.8 A Leibniz superalgebra(A,·)is Lie-super-admissible if and only if

for all x,y,z∈hg(A).

We now give an example of 3-dimensional Leibniz superalgebra and some methods to construct Leibniz superalgebras.We can find following definitions and similar constructions in[14].

Example 2.9 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.

Proposition 2.10 Let(A,?)be an associative superalgebra.Consider the linear map D:A→A which satis fies

Define an even bilinear map[?,?]D:A×A → A,such that

Then(A,[?,?]D)is a left Leibniz superalgebra.

Proof We only need to verify that(A,[?,?]D)is a left Leibniz superalgebra.Calculate directly,

and

So we get[x,[y,z]D]D=[[x,y]D,z]D+(?1)|x||y|[y,[x,z]D]D.Therefore(A,[?,?]D)is a left Leibniz superalgebra.

Definition 2.11[14]A superdialgebra is a triple(A,?,?),in which A is a superspace,?,?:A×A→A two bilinear maps such that

(1)x?(y?z)=(x?y)?z;

(2)x?(y?z)=(x?y)?z=x?(y?z);

(3)x?(y?z)=(x?y)?z=(x?y)?z for all x,y,z∈hg(A).

Proposition 2.12 Let(A,?,?),be a superdialgebra.Define an even bilinear map[?,?]:A × A → A such that[x,y]=(?1)|x||y|y ? x ? x ? y.Then(A,[?,?])is a left Leibniz superalgebra.

Proof Calculate directly,

and

So we get[x,[y,z]]=[[x,y],z]+(?1)|x||y|[y,[x,z]].Therefore(A,[?,?])is a left Leibniz superalgebra.

Definition 2.13[14]A dendriform superalgebra is a triple(A,<,>),in which A is a superspace,<,>:A×A→A two even bilinear maps such that

(1)(x<y)<z=x<(y<z)+x<(y>z);

(2)x>(y>z)=(x<y)>z+(x>y)>z;

(3)(x>y)<z=x>(y<z)for all x,y,z∈hg(A).

Proposition 2.14 Let(A,<,>)be a dendriform superalgebra.Define two even bilinear maps?,[?,?]:A×A → A such that x?y=x< y+y> x,[x,y]=(?1)|x||y|y?x?x?y.Then(A,[?,?])is a left Leibniz superalgebra.

ProofCalculate directly,

and

and

So we get

Therefore(A,[?,?])is a left Leibniz superalgebra.

Definition 2.15[14]A Rota-Baxter superalgebra is a triple(A,·,R),in which A is a superspace,(A,·)a superalgebra,R:A → A an even bilinear map satistying Rota-Baxter super-identity

for all x,y ∈ hg(A).R:A → A is called a Rota-Baxter super-operator of weight λ.If(A,·)is an associative superalgebra,then we call(A,·,R)associative Rota-Baxter superalgebra.

Proposition 2.16 Let(A,·,R)be an associative Rota-Baxter superalgebra with weight 0.Define two even bilinear maps?,[?,?]:A×A → A such that

Then(A,[?,?])is a left Leibniz superalgebra.

ProofCalculate directly,

and

and

By Rota Baxter super-identity,we can get

Therefore(A,[?,?])is a left Leibniz superalgebra.

3 Leibniz Superalgebras,Lie Supertriple Systems,Lie-Yamaguti Superalgebras

Definition 3.1 A Lie-Yamaguti superalgebra(LYSA)is a triple(A,[?,?],{?,?,?}),in which A is a superspace,[?,?]:A × A → A an even bilinear map and{?,?,?}:A×A×A→A an even trilinear map such that

(LYS01)|[x,y]|=|x|+|y|;

(LYS02)|{x,y,z}|=|x|+|y|+|z|;

(LYS1)d[x,y]+(?1)|x||y|[y,x]=0;

(LYS2){x,y,z}+(?1)|x||y|{y,x,z}=0;

(LYS5){x,y,[u,v]}=[{x,y,u},v]+(?1)|u|(|x|+|y|)[u,{x,y,v}];

(LYS6)

for all x,y,z,u,v,w∈hg(A),where?x,y,zdenotes the sum over cyclic permutation of x,y,z.

Definition 3.2[15]A Lie supertriple system is a pair(A,{?,?,?})such that

(1){x,y,z}=(?1)|x||y|{y,x,z};

(3)

for all x,y,z,u,v,w∈hg(A).

If[x,y]=0 for all x,y∈hg(A),then Lie-Yamaguti superalgebras become Lie supertriple systems.So Lie-Yamaguti superalgebras can be seen as general Lie supertriple systems.

Let lxdenote the left multiplication operator on(A,·)which given by lxy=x ·y for all x,y ∈ hg(A).Then equation(2.1)means that lxare super-derivations of(A,·).By Lemma 2.6(ii),we can get following proposition.

Proposition 3.3 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Then the operators lxare derivations of(A,?,[?,?,?])for all x ∈ A.

We can obtain a Lie-Yamaguti superalgebra structure from Leibniz superalgebra as following theorem.

Theorem 3.4 Every(left)Leibniz superalgebra(A,·)has a Lie-Yamaguti superalgebra structure(A,[?,?],{?,?,?})with respect to the operation defined by

ProofEquations(3.2),(2.1)and(2.8)imply

Moreover,we have

So we get

Thus equations(3.2),(3.3)and(3.4)are different expressions of the operation “{?,?,?}”.Now we proceed to verify equations(LYS1)–(LYS6).For(LYS1),

So we get(LYS1).For(LYS2),

So we get(LYS2).For(LYS3),(2.10)and(3.3)imply

So we get(LYS3)by transposition.For(LYS4),

So we get(LYS4).For(LYS5),

So we get(LYS5).For(LYS6),

So we get(LYS6).Therefore(A,[?,?],{?,?,?})is a Lie-Yamaguti superalgebra.

Remark 3.5 By Proposition 2.10,Proposition 2.12,Proposition 2.14 and Proposition 2.16,we can get left Leibniz superalgebras from associative superalgebras,superdialgebras,dendriform superalgebras and associative Rota-Baxter superalgebras.Then using Theorem 3.4,we will obtain corresponding Lie-Yamaguti superalgebras from above superalgebras[16].Then we give an 3-dimensional example of Lie-Yamaguti superalgebra by Theorem 3.4.

Example 3.6 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.By Theorem 2.8,when we define the binary operation and the ternary operation by(3.1)and(3.2),we get a Lie-Yamaguti superalgebra(A,[?,?],{?,?,?})with nonzero product

The following proposition is a direct conclusion of Theorem 3.4.

Proposition 3.7 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Define{x,y,z}=(?1)|x||y|[y,x,z]+[x,y,z]for all x,y,z ∈ hg(A),then(A,?,{?,?,?})is a Lie-Yamaguti superalgebra.

In Leibniz superlagebra(A,·)and its associate Akivis algebra(A,?,[?,?,?]),consider even ternaty operation

for all x,y,z∈hg(L).We have

and the Akivis super-identity(2.5)is written as

A superalgebra(A,(?,?,?))called a supertriple system if the even trilinear operation satis fies(3.6)and(3.7).By Theorem 2.5,any non-associative algebra has a supertriple system structure defined by(3.5),and we call it the associate supertriple system.

主站蜘蛛池模板: 偷拍久久网| 久久狠狠色噜噜狠狠狠狠97视色| 毛片大全免费观看| 一本大道无码高清| 欧美成人a∨视频免费观看| 国产一级毛片网站| 成人在线天堂| 国产成人一区二区| 无码人妻热线精品视频| 免费在线国产一区二区三区精品| 亚洲日韩久久综合中文字幕| 欧美成人免费一区在线播放| h网址在线观看| 国产成人综合网| 日韩成人免费网站| 久久人妻系列无码一区| 精品91自产拍在线| 精品自拍视频在线观看| 尤物特级无码毛片免费| 国产成人精品2021欧美日韩 | 精品久久久久久久久久久| 亚洲—日韩aV在线| 这里只有精品国产| 国产无遮挡裸体免费视频| 国产成人精品一区二区免费看京| 国产超薄肉色丝袜网站| 超碰色了色| 日本国产在线| 久久人体视频| 国产成人免费手机在线观看视频| 婷婷中文在线| 成人一级黄色毛片| 久久伊伊香蕉综合精品| 国产美女免费网站| 狼友av永久网站免费观看| 97在线免费| 精品国产99久久| 青青青国产免费线在| 久久无码高潮喷水| 日韩国产黄色网站| 欧美三級片黃色三級片黃色1| 97se亚洲综合| 亚洲一区二区约美女探花| 日韩色图区| 日韩专区欧美| 亚洲欧美激情小说另类| 婷婷久久综合九色综合88| 被公侵犯人妻少妇一区二区三区| 四虎影视8848永久精品| 精品一区二区三区自慰喷水| 秘书高跟黑色丝袜国产91在线| 自偷自拍三级全三级视频 | 久热re国产手机在线观看| 亚洲综合久久一本伊一区| 日韩经典精品无码一区二区| 特级aaaaaaaaa毛片免费视频| 国产成+人+综合+亚洲欧美| 视频国产精品丝袜第一页| 在线另类稀缺国产呦| 欧美一级色视频| 91麻豆精品国产高清在线| 麻豆精品国产自产在线| 日韩大片免费观看视频播放| 日韩免费中文字幕| 精品一区国产精品| 欧美在线综合视频| 国产导航在线| 色综合天天娱乐综合网| 女人爽到高潮免费视频大全| 一本二本三本不卡无码| 久久香蕉国产线看精品| 国产精品视频999| 在线色国产| 婷婷五月在线视频| 亚洲浓毛av| 本亚洲精品网站| 五月婷婷综合色| 亚洲天堂日韩在线| 青青网在线国产| 在线欧美a| 伊人久久福利中文字幕| 亚洲av无码成人专区|