999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

FROM LEIBNIZ SUPERALGEBRAS TO LIE-YAMAGUTI SUPERALGEBRAS

2018-07-16 12:08:00TANGXinxinZHANGQingchengWANGChunyue
數學雜志 2018年4期

TANG Xin-xin,ZHANG Qing-cheng,WANG Chun-yue

(1.School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China)

(2.School of Media and Mathematics and Physics,Jilin Engineering Normal University,Changchun 130052,China)

Abstract:In this paper,we study the construction of Lie-Yamaguti superalgebras.By using left Leibniz superalgebras,we give the construction of left Leibniz superalgbebras,then give the construction of Lie-Yamaguti superalgebras from left Leibniz superalgebras.So we gain the construction of Lie-Yamaguti superalgebras,which generalizes the construction of Lie-Yamaguti algebras in the situation of superalgebras.

Keywords: Lie-Yamaguiti superlagebras;(left)Leibniz superlagebras;Akivis superalgebras;Lie supertriple systems;construction

1 Introduction

Lie algebras were studied for many years in mathematics and physics,such as in quantum field theory.As the noncommutative analogs of Lie algebras,Leibniz algebras were first introduced by Cuvier and Loday in[1]and[2].Researchers obtained many results about Leibniz algebras and we can find some of them in[3–6].There are two kinds of Leibniz algebras,left Leibniz algebras and right Leibniz algebras[7].For a given non-commutative algebra(A,·),if the left multiplication lx·y=x ·y,?x,y ∈ A is a derivation of A,then(A,·)is called a left Leibniz algebra[8].As non-associative algebras,left Leibniz algebras can construct Akivis algebras[9].Kinyon and Weinstein found that a left Leibniz algebra has a Lie-Yamaguti algebra structure by using an enveloping Lie algebra of Leibniz algebras.

Recently,Leibniz algebras are generalized to Leibniz superalgebras by Dzhumadil in[10].Then some important results were obtained such as[11]and[12].Like left Leibniz algebras and right Leibniz algebras,we can similarly obtain left Leibniz superalgebras and right Leibniz superalgebras.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.In this paper,we study the construction of left Leibniz superalgebras and Lie-Yamaguti superalgebras.

This paper is organized as follows.In Section 2,we recall the definition of Leibniz superalgebras and prove that every non-associative superalgebra has an Akivis superalgebra structure.Then we give examples and constructions of left Leibniz superalgebras.In Section 3,we define Lie-Yamaguti superalgebras and prove that every left Leibniz superalgebra has a Lie-Yamaguti superalgebra structure.

Throughout this paper,K denotes a field of characteristic zero;All vector spaces and algebras are over K;hg(A)denotes the set of homogeneous elements of the superalgebra A.

2 Leibniz Superalgebras

In this section,we introduce the definition of Leibniz superslgebras,and then give the constructions and examples of Leibniz superalgebras.

Definition 2.1[11](i)A(left)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A→A an even bilinear map such that

for all x,y,z∈hg(A).

(ii)A(right)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A →A an even bilinear map such that

for all x,y,z∈hg(A).

In this paper, “Leibniz superalgebras” means “left Leibniz superalgebras”.A super skew-symmetric Leibniz superalgebra is a Lie superalgebra.In this case,equations(2.1)and(2.2)become the Jacobi super-identity.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.

Definition 2.2 Let(A,·)be a superalgebra.

(i)The super-associator of A is an even trilinear map:A×A×A→A defined by

for all x,y,z∈hg(A).

(ii)The super-Jacobian of A is an even trilinear map:A×A×A→A defined by

Remark 2.3 A not necessarily associative superalgebra is called a non-associative superalgebra.That is to say,(x,y,z)≠0 for some x,y,z ∈ hg(A).

Definition 2.4[13]An Akivis superalgebra is a triple(A,?,[?,?,?]),in which A is a superspace,? :A×A → A an even bilinear map,[?,?,?]:A×A×A → A an even trilinear map such that

for all x,y,z∈hg(A).Equation(2.5)is called the Akivis super-identity.

Theorem 2.5 Every non-associative superalgebra(A,·)has an Akivis superalgebra(A,?,[?,?,?])structure with respect to the operation defined by

for all x,y,z∈hg(A).

Proof First,we proceed to verify that“?”is super skew-symmetric.

So we obtain equation(2.4).

Second,consider the Akivis super-identity.On one hand,

On the other hand,

That is

So we get equation(2.5).

An Akivis superalgebra derived from a given non-associative superalgebra A by Theorem 2.5 is said associated with A.We are interested in Akivis superalgebras associated with Leibniz superalgebras.

In terms of equation(2.3),equation(2.1)has the form

Because the operations of the Akivis superalgebra(A,?,[?,?,?])defined by the(left)Leibniz superalgebra(A,·)satisfy the super skew-symmetrization and equation(2.4),the Akivis super-identity(2.5)has the form

By equations(2.8)and(2.1),we have?(?1)|x||y|(y,x,z)=(x·y)·z?(x,y,z).So equaiton(2.9)becomes

Lemma 2.6 Let(A,·)be a Leibniz superalgebra,and consider on(A,·)the operation[x,y]:=x·y?(?1)|x||y|y·x for all x,y∈ hg(A).Then

(i)

(ii)

Proof(i)Equation(2.1)implies that

Likewise,interchanging x and y,we have

Then,consider

(ii)By calculating directly,we have

Lemma 2.7 Let(A,·)be a Leibniz superalgebra,(A,?,[?,?,?])be an Akivis superalgebra associated with Leibniz superalgebra(A,˙).Then

ProofWe get the result from equation(2.10).

An superalgebra(A,·)is called Lie-super-admissible if its commutator superalgebra(A,?)is a Lie superalgebra.We can obtain following lemma immediatly from Lemma 2.7.

Lemma 2.8 A Leibniz superalgebra(A,·)is Lie-super-admissible if and only if

for all x,y,z∈hg(A).

We now give an example of 3-dimensional Leibniz superalgebra and some methods to construct Leibniz superalgebras.We can find following definitions and similar constructions in[14].

Example 2.9 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.

Proposition 2.10 Let(A,?)be an associative superalgebra.Consider the linear map D:A→A which satis fies

Define an even bilinear map[?,?]D:A×A → A,such that

Then(A,[?,?]D)is a left Leibniz superalgebra.

Proof We only need to verify that(A,[?,?]D)is a left Leibniz superalgebra.Calculate directly,

and

So we get[x,[y,z]D]D=[[x,y]D,z]D+(?1)|x||y|[y,[x,z]D]D.Therefore(A,[?,?]D)is a left Leibniz superalgebra.

Definition 2.11[14]A superdialgebra is a triple(A,?,?),in which A is a superspace,?,?:A×A→A two bilinear maps such that

(1)x?(y?z)=(x?y)?z;

(2)x?(y?z)=(x?y)?z=x?(y?z);

(3)x?(y?z)=(x?y)?z=(x?y)?z for all x,y,z∈hg(A).

Proposition 2.12 Let(A,?,?),be a superdialgebra.Define an even bilinear map[?,?]:A × A → A such that[x,y]=(?1)|x||y|y ? x ? x ? y.Then(A,[?,?])is a left Leibniz superalgebra.

Proof Calculate directly,

and

So we get[x,[y,z]]=[[x,y],z]+(?1)|x||y|[y,[x,z]].Therefore(A,[?,?])is a left Leibniz superalgebra.

Definition 2.13[14]A dendriform superalgebra is a triple(A,<,>),in which A is a superspace,<,>:A×A→A two even bilinear maps such that

(1)(x<y)<z=x<(y<z)+x<(y>z);

(2)x>(y>z)=(x<y)>z+(x>y)>z;

(3)(x>y)<z=x>(y<z)for all x,y,z∈hg(A).

Proposition 2.14 Let(A,<,>)be a dendriform superalgebra.Define two even bilinear maps?,[?,?]:A×A → A such that x?y=x< y+y> x,[x,y]=(?1)|x||y|y?x?x?y.Then(A,[?,?])is a left Leibniz superalgebra.

ProofCalculate directly,

and

and

So we get

Therefore(A,[?,?])is a left Leibniz superalgebra.

Definition 2.15[14]A Rota-Baxter superalgebra is a triple(A,·,R),in which A is a superspace,(A,·)a superalgebra,R:A → A an even bilinear map satistying Rota-Baxter super-identity

for all x,y ∈ hg(A).R:A → A is called a Rota-Baxter super-operator of weight λ.If(A,·)is an associative superalgebra,then we call(A,·,R)associative Rota-Baxter superalgebra.

Proposition 2.16 Let(A,·,R)be an associative Rota-Baxter superalgebra with weight 0.Define two even bilinear maps?,[?,?]:A×A → A such that

Then(A,[?,?])is a left Leibniz superalgebra.

ProofCalculate directly,

and

and

By Rota Baxter super-identity,we can get

Therefore(A,[?,?])is a left Leibniz superalgebra.

3 Leibniz Superalgebras,Lie Supertriple Systems,Lie-Yamaguti Superalgebras

Definition 3.1 A Lie-Yamaguti superalgebra(LYSA)is a triple(A,[?,?],{?,?,?}),in which A is a superspace,[?,?]:A × A → A an even bilinear map and{?,?,?}:A×A×A→A an even trilinear map such that

(LYS01)|[x,y]|=|x|+|y|;

(LYS02)|{x,y,z}|=|x|+|y|+|z|;

(LYS1)d[x,y]+(?1)|x||y|[y,x]=0;

(LYS2){x,y,z}+(?1)|x||y|{y,x,z}=0;

(LYS5){x,y,[u,v]}=[{x,y,u},v]+(?1)|u|(|x|+|y|)[u,{x,y,v}];

(LYS6)

for all x,y,z,u,v,w∈hg(A),where?x,y,zdenotes the sum over cyclic permutation of x,y,z.

Definition 3.2[15]A Lie supertriple system is a pair(A,{?,?,?})such that

(1){x,y,z}=(?1)|x||y|{y,x,z};

(3)

for all x,y,z,u,v,w∈hg(A).

If[x,y]=0 for all x,y∈hg(A),then Lie-Yamaguti superalgebras become Lie supertriple systems.So Lie-Yamaguti superalgebras can be seen as general Lie supertriple systems.

Let lxdenote the left multiplication operator on(A,·)which given by lxy=x ·y for all x,y ∈ hg(A).Then equation(2.1)means that lxare super-derivations of(A,·).By Lemma 2.6(ii),we can get following proposition.

Proposition 3.3 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Then the operators lxare derivations of(A,?,[?,?,?])for all x ∈ A.

We can obtain a Lie-Yamaguti superalgebra structure from Leibniz superalgebra as following theorem.

Theorem 3.4 Every(left)Leibniz superalgebra(A,·)has a Lie-Yamaguti superalgebra structure(A,[?,?],{?,?,?})with respect to the operation defined by

ProofEquations(3.2),(2.1)and(2.8)imply

Moreover,we have

So we get

Thus equations(3.2),(3.3)and(3.4)are different expressions of the operation “{?,?,?}”.Now we proceed to verify equations(LYS1)–(LYS6).For(LYS1),

So we get(LYS1).For(LYS2),

So we get(LYS2).For(LYS3),(2.10)and(3.3)imply

So we get(LYS3)by transposition.For(LYS4),

So we get(LYS4).For(LYS5),

So we get(LYS5).For(LYS6),

So we get(LYS6).Therefore(A,[?,?],{?,?,?})is a Lie-Yamaguti superalgebra.

Remark 3.5 By Proposition 2.10,Proposition 2.12,Proposition 2.14 and Proposition 2.16,we can get left Leibniz superalgebras from associative superalgebras,superdialgebras,dendriform superalgebras and associative Rota-Baxter superalgebras.Then using Theorem 3.4,we will obtain corresponding Lie-Yamaguti superalgebras from above superalgebras[16].Then we give an 3-dimensional example of Lie-Yamaguti superalgebra by Theorem 3.4.

Example 3.6 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.By Theorem 2.8,when we define the binary operation and the ternary operation by(3.1)and(3.2),we get a Lie-Yamaguti superalgebra(A,[?,?],{?,?,?})with nonzero product

The following proposition is a direct conclusion of Theorem 3.4.

Proposition 3.7 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Define{x,y,z}=(?1)|x||y|[y,x,z]+[x,y,z]for all x,y,z ∈ hg(A),then(A,?,{?,?,?})is a Lie-Yamaguti superalgebra.

In Leibniz superlagebra(A,·)and its associate Akivis algebra(A,?,[?,?,?]),consider even ternaty operation

for all x,y,z∈hg(L).We have

and the Akivis super-identity(2.5)is written as

A superalgebra(A,(?,?,?))called a supertriple system if the even trilinear operation satis fies(3.6)and(3.7).By Theorem 2.5,any non-associative algebra has a supertriple system structure defined by(3.5),and we call it the associate supertriple system.

主站蜘蛛池模板: 大陆精大陆国产国语精品1024| 国产精品片在线观看手机版| 青青操国产| 欧美在线三级| 亚洲国产日韩欧美在线| 成年A级毛片| 国产高清在线观看91精品| 亚洲精品免费网站| 成人亚洲视频| 在线看片免费人成视久网下载| 色综合网址| 91成人在线免费观看| 久久精品人妻中文视频| 精品国产自在现线看久久| 国产一区二区三区在线观看视频| 日韩欧美中文字幕在线精品| 欧美国产精品不卡在线观看| 国产精品理论片| 无码精品福利一区二区三区| 国产乱人视频免费观看| 亚洲第一黄色网址| 国产SUV精品一区二区6| 精品久久蜜桃| 99精品伊人久久久大香线蕉| 日韩乱码免费一区二区三区| 99精品免费在线| 国产美女精品在线| 亚洲三级色| 色综合天天综合中文网| 亚洲天堂久久久| 72种姿势欧美久久久大黄蕉| 啦啦啦网站在线观看a毛片| av一区二区三区高清久久| 99国产在线视频| 久久成人免费| 黄色三级毛片网站| 69av免费视频| 国产在线观看人成激情视频| 日韩激情成人| 亚洲天堂网2014| 成人国产精品一级毛片天堂| 在线国产欧美| 国产黄色免费看| 香蕉在线视频网站| 91麻豆国产在线| 97在线免费| 亚洲一区二区视频在线观看| 国产精品一线天| 自拍中文字幕| 亚洲性视频网站| 亚洲精品色AV无码看| 欧美日韩导航| 亚洲无码高清一区| 亚洲男人在线天堂| 亚洲无线一二三四区男男| 国产91丝袜在线播放动漫| 99热这里只有精品5| 亚洲精品天堂自在久久77| 国产真实乱人视频| 欧美精品1区2区| aⅴ免费在线观看| 色综合天天综合中文网| 国产精品深爱在线| 国产一级视频在线观看网站| 久久人搡人人玩人妻精品| 日日拍夜夜操| 亚洲欧洲国产成人综合不卡| 色欲不卡无码一区二区| 麻豆国产精品视频| 婷婷伊人久久| av在线人妻熟妇| 日韩精品亚洲一区中文字幕| 婷婷综合在线观看丁香| 久久香蕉国产线| 国产女主播一区| 9久久伊人精品综合| 波多野结衣无码视频在线观看| 精品国产网站| 国产在线97| 伊人久久综在合线亚洲2019| 一本色道久久88亚洲综合| 亚洲熟妇AV日韩熟妇在线|