李璐華


【摘要】 筆者在本文中以北師大版八年級上冊第4章第1節《函數》一課為例,淺談在APOS視角下的數學概念教學設計。
【關鍵詞】 APOS理論 初中 函數概念 教學設計
【中圖分類號】 G633.6 【文獻標識碼】 A 【文章編號】 1992-7711(2015)02-86-01
數學概念是形成數學知識體系、構建數學理論大廈的基石,是導出數學定理和數學法則的邏輯基礎,是進行判斷、推理的依據,是形成數學知識體系的基本要素。數學課程標準在課程目標中指出,要讓學生獲得必要的基礎知識和基本技能,理解基本的數學概念、數學本質。但是目前,在初中數學概念教學中,有兩種傾向:一是大多數教師習慣采用的概念同化教學方式,這種傳統的教學方式偏重概念的邏輯結構,學生對數學概念的學習是靠教師直接或間接的代替而進行的塊體驗、抽象,容易造成一部分中等生和學困生對概念理解不深;二是進行大量“去數學化”的實驗探究,忽略了對思維的鍛煉,結果整節課下來,學生對概念的內涵不能了解透徹。
1 教學背景
《函數》是2013北師大版8年級數學上冊第4章第1節的內容。學生七年級上冊學習了《用字母表示數》,體會了字母表示數的意義;在七年級下冊已學習了《變量之間的關系》,對變量間互相依存的關系有了一定的認識,為學習《函數》知識打下了一定的基礎。教材中從具體實際問題的數量關系和變化規律中抽象出函數的概念,然后讓學生分析了大量的實際問題,感受表示兩個變量之間關系的方式是多樣的,如列表法,圖像法,解析式法,但都有著共性:其中一個變量依賴于另一個變量。函數是研究現實世界變化規律的一個重要模型,對它的學習一直是初中階段數學學習的一個重要內容。本節內容讓學生初步體會函數的概念,為后續學習打下基礎。同時,函數的學習可以使學生體會到數形結合的思想方法,感受事物是相互聯系和規律的變化。
2 教學目標
知識與技能目標:初步掌握函數概念,能判斷兩個變量之間的關系是否可以看作函數;根據兩個變量之間的關系式,給定其中一個變量的值相應的會求出另一個變量的值;會對一個具體實例進行概括抽象成為函數問題。
3 教學重難點
教學重點:掌握函數概念,會判斷兩個變量之間的關系是否可以看作函數。
教學難點:理解函數的概念,能把實際問題抽象概括成函數問題。
4 APOS理論下的教學過程
4.1第1階段:活動階段(Action)
[活動1]問題1:游樂園中的摩天輪
(1)如果你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?
右上圖反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。
(2)從圖象上,你能讀出哪些信息?
(3)對于給定的時間t,相應的高度h確定嗎?
根據右上圖進行填表(如表1所示):
首先由學生分組討論完成,然后相互交流。
4.2第2階段:過程階段(Process)
[活動2]探討:以上三個問題中的共同點是什么?不同點又是什么?
生:相同點是,這三個問題中都研究了兩個變量。不同點是,在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。
4.3第3階段:對象階段(Object)
[活動3]歸納揭示函數的概念:
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
歸納出函數概念后,留幾分鐘時間給學生消化理解概念,并提出自己不理解的地方,教師再提出:
(1)上面問題中的自變量和因變量是什么?
(2)你能舉出生活中是函數的例子嗎?
(3)你是怎樣理解“確定”這兩個字的含義的?
學生分組討論交流,教師點評總結:理解函數概念應把握三點,一個變化過程;兩個變量;對于一個變量的每一個值,另一個變量都有唯一的值與它對應,即是一種對應關系。判斷兩個量是否具有函數關系就以這三點為依據。
4.4第4階段:圖式階段(Scheme)
通過前三個階段,學生對函數的概念以及常用的三種表示方式有了一定的理解。本階段主要通過練習鞏固,讓學生根據所學的新概念,自主建立函數的心理圖式,對兩個變量之間的關系、函數的概念以及函數的三種表示法構建出自己的“圖式網”;進而,讓學生知道本課主要學習內容是什么,如何應用來解決問題,這節課學到了什么知識。
5 APOS理論應用于概念教學的幾點思考
5.1理解數學,于過程中生成概念
“函數”的概念在歷史上經歷了二百多年、三次修正的過程,才歸納、總結、抽象、概括為現行初中課本中函數的概念,“函數”概念是初中數學最抽象、學生最難學的內容。因此,北師大版教材的編者在編寫教材時,也從分考慮到讓學生參與函數概念形成的全過程,把傳授知識與培養能力兩個目標結合起來。
5.2理解學生,從過程中體驗概念
學生是學習過程的主體,“APOS理論”強調學生的學習是一個主動建構的過程,每個學習者都以自己原有的認知結構為基礎對新的信息進行編碼,構建自己的理解;函數是學生進入初中以來第一次碰到的內容,且概念本身具有高度的抽象性,學生理解和熟悉概念相當的困難。
5.3理解教學,在操作中建構概念
學生對于數學概念的掌握不可能一蹴而就,而是一個從感知到掌握的循序漸進的過程。特別是“函數”這個貫穿于整個中學階段的核心概念,它的教學更應該采用螺旋式的循序漸進的方式。“APOS理論”揭示了概念形成的規律性和學生的認知規律。在這個教學設計中,通過幾個與函數相關的生活中的實例來歸納它們的共同本質特征,符合學生的認知規律,能讓學生體會到函數來源于生活,又服務于生活。