謝貴
【摘 要】在小學數(shù)學教學中培養(yǎng)學生思維能力要貫穿于整個教學過程,還要重視練習題的設計,學生通過操作教師有目的設計利于學生思維能力發(fā)展的練習題也能達到預期效果。
【關鍵詞】數(shù)學教學;思維能力;教學過程;習題設計
從小學數(shù)學教學過程來說,數(shù)學知識和技能的掌握與思維能力的發(fā)展也是密不可分的。一方面,學生在理解和掌握數(shù)學知識的過程中,不斷地運用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷、推理;另一方面,在學習數(shù)學知識時,為運用思維方法和形式提供了具體的內(nèi)容和材料。這樣說,絕不能認為教學數(shù)學知識、技能的同時,會自然而然地培養(yǎng)了學生的思維能力。數(shù)學知識和技能的教學只是為培養(yǎng)學生思維能力提供有利的條件,還需要在教學時有意識地充分利用這些條件,并且根據(jù)學生年齡特點有計劃地加以培養(yǎng),才能達到預期的目的。如果不注意這一點,教材沒有有意識地加以編排,教法違背激發(fā)學生思考的原則,不僅不能促進學生思維能力的發(fā)展,相反地還有可能逐步養(yǎng)成學生死記硬背的不良習慣。
一、培養(yǎng)學生思維力要貫穿于整個教學中
1.培養(yǎng)學生思維能力要貫穿在小學階段各個年級的數(shù)學教學中
要明確各年級都擔負著培養(yǎng)學生思維能力的任務。從一年級一開始就要注意有意識地加以培養(yǎng)。例如,開始認識大小、長短、多少,就有初步培養(yǎng)學生比較能力的問題。開始教學10以內(nèi)的數(shù)和加、減計算,就有初步培養(yǎng)學生抽象、概括能力的問題。開始教學數(shù)的組成就有初步培養(yǎng)學生分析、綜合能力的問題。這就需要教師引導學生通過實際操作、觀察,逐步進行比較、分析、綜合、抽象、概括,形成10以內(nèi)數(shù)的概念,理解加、減法的含義,學會10以內(nèi)加、減法的計算方法。如果不注意引導學生去思考,從一開始就有可能不自覺地把學生引向死記數(shù)的組成,機械地背誦加、減法得數(shù)的道路上去。而在一年級養(yǎng)成了死記硬背的習慣,以后就很難糾正。
2.培養(yǎng)學生思維能力要貫穿在每一節(jié)課的各個環(huán)節(jié)中
不論是開始的復習,教學新知識,組織學生練習,都要注意結(jié)合具體的內(nèi)容有意識地進行培養(yǎng)。例如復習20以內(nèi)的進位加法時,有經(jīng)驗的教師給出式題以后,不僅讓學生說出得數(shù),還要說一說是怎樣想的,特別是當學生出現(xiàn)計算錯誤時,說一說計算過程有助于加深理解“湊十”的計算方法,學會類推,而且有效地消滅錯誤。經(jīng)過一段訓練后,引導學生簡縮思維過程,想一想怎樣能很快地算出得數(shù),培養(yǎng)學生思維的敏捷性和靈活性。在教學新知識時,不是簡單地告知結(jié)論或計算法則,而是引導學生去分析、推理,最后歸納出正確的結(jié)論或計算法則。
3.培養(yǎng)思維能力要貫穿在各部分內(nèi)容的教學中
這就是說,在教學數(shù)學概念、計算法則、解答應用題或操作技能(如測量、畫圖等)時,都要注意培養(yǎng)思維能力。任何一個數(shù)學概念,都是對客觀事物的數(shù)量關系或空間形式進行抽象、概括的結(jié)果。因此教學每一個概念時,要注意通過多種實物或事例引導學生分析、比較、找出它們的共同點,揭示其本質(zhì)特征,做出正確的判斷,從而形成正確的概念。
二、教師要設計好練習題培養(yǎng)學生思維能力
1.培養(yǎng)學生的思維能力同學習計算方法、掌握解題方法一樣,也必須通過練習
培養(yǎng)思維能力的最有效辦法是通過解題的練習來實現(xiàn)。因此設計好練習題就成為能否促進學生思維能力發(fā)展的重要一環(huán)。一般地說,課本中都安排了一定數(shù)量的有助于發(fā)展學生思維能力的練習題。但是不一定都能滿足教學的需要,而且由于班級的情況不同,課本中的練習題也很難做到完全適應各種情況的需要。因此教學時往往要根據(jù)具體情況做一些調(diào)整或補充。
2.設計練習題要有針對性,要根據(jù)培養(yǎng)目標來進行設計
例如,為了了解學生對數(shù)學概念是否清楚,同時也為了培養(yǎng)學生運用概念進行判斷的能力,可以出一些判斷對錯或選擇正確答案的練習題。舉個具體例子:“所有的質(zhì)數(shù)都是奇數(shù)。( )”如要作出正確判斷,學生就要分析偶數(shù)里面有沒有質(zhì)數(shù)。而要弄清這一點,要明確什么叫做偶數(shù),什么叫做質(zhì)數(shù),然后應用這兩個概念的定義去分析能被2整除的數(shù)里面有沒有一個數(shù),它的約數(shù)只1和它自身。想到了2是偶數(shù)又是質(zhì)數(shù),這樣就可以斷定上面的判斷是錯誤的。
3.設計一題多變題,培養(yǎng)學生的思維能力
小學數(shù)學知識的結(jié)構(gòu),都是由淺入深,由易到難,由簡單到復雜的。如果教師在教學過程中依照知識的內(nèi)在聯(lián)系,適當?shù)剡\用“一題多變”,可以防止學生的認識局限在所學的例題里,還可以避免解題的思路來束縛在原有的路子上,從而增強學生解題的應變能力。例如在應用題設計時,要求他們改變畫線部分的條件自編應用題。學生在個人的獨立思考的基礎上,再進行小組討論,變換條件,編出了形式不同的應用題。通過改編應用題的練習,不僅使學生進一步加深理解百分數(shù)應用題的結(jié)構(gòu)特點,而且培養(yǎng)了學生的思維能力。
總之,在數(shù)學教學過程中,教師要千方百計的培養(yǎng)學生的思維能力,只有給學生插上思維的翅膀,才能讓學生嘗試到成功的喜悅,引導他們到知識的太空中翱翔。