999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

從橢圓的簡單幾何性質(zhì)談教學(xué)創(chuàng)新

2014-08-27 22:09:02李漢兵
考試周刊 2014年50期
關(guān)鍵詞:創(chuàng)新教學(xué)

李漢兵

摘 要: 橢圓的幾何性質(zhì)是解析幾何中的重點內(nèi)容,也是研究圓錐曲線的主體之一.本文從橢圓的基本定義推得的標(biāo)準(zhǔn)方程入手,推導(dǎo)分析了橢圓的各種幾何性質(zhì)的內(nèi)在聯(lián)系,從而實現(xiàn)學(xué)生對知識的系統(tǒng)把握和對知識的創(chuàng)新運(yùn)用.

關(guān)鍵詞: 橢圓 幾何性質(zhì) 創(chuàng)新教學(xué)

橢圓的簡單幾何性質(zhì)包括橢圓的范圍、對稱性、頂點、離心率、橢圓的第二定義,等等,是我們解析幾何內(nèi)容的一個重點,很多教材往往把它單獨(dú)分成幾塊拿出來討論,顯得聯(lián)系不緊密,學(xué)生學(xué)習(xí)時感到很困惑.特別是橢圓的第二定義,我們選用的教材沒有作具體闡述,但為了給出圓錐曲線的統(tǒng)一定義,我們有必要做拓展.而高中教材是通過一個例子給出的,也感覺思路不蹈常規(guī),當(dāng)然這一切都是教材的簡潔性決定的.我在這部分內(nèi)容教學(xué)設(shè)計中,創(chuàng)設(shè)了問題情境,把這些內(nèi)容有機(jī)串聯(lián)起來,整個過程如同一次重大戰(zhàn)役,環(huán)環(huán)緊扣,層層深入,促進(jìn)學(xué)生思維的發(fā)散,加強(qiáng)學(xué)生創(chuàng)新意識的培養(yǎng).過程如下。

一、以問題為中心,注重過程教學(xué)

首先,設(shè)計如下情境,提出反常規(guī)的問題.

設(shè)M(x,y)是橢圓上任意一點,焦點F 和F 的坐標(biāo)分別是(-c,0),(c,0)(如圖1).由橢圓的定義可得:

+ =2a(1)

將這個方程移項,兩邊平方得

a -cx=a (2)

兩邊再平方,整理得

+ =1(a>b>0)(3)

問題1:為什么將(3)式作為橢圓的標(biāo)準(zhǔn)方程?

對于這一問題的提出,學(xué)生首先會感到奇怪,似乎(3)式作為標(biāo)準(zhǔn)方程是順理成章的,預(yù)先規(guī)定的,進(jìn)而師生共同展開熱烈討論,然后教師總結(jié).我總結(jié)大致有以下幾點理由:

1.(3)式簡捷,具有對稱的美感.

2.(3)式為我們提供了求橢圓軌跡的標(biāo)準(zhǔn)方程,方便用待定系數(shù)法求解軌跡的方程.

3.根據(jù)解析幾何用曲線的方程研究曲線的幾何性質(zhì)這一特點,(3)式方便研究橢圓的幾何性質(zhì).

針對上述理由3,教師可以組織學(xué)生就如何利用(3)式從整體上把握橢圓的曲線的形狀,展開討論.這樣便自然引出:范圍、對稱性、頂點、離心率等教材中要求的內(nèi)容.若要進(jìn)一步研究橢圓的曲線,就需要列表、描點、連線等常用手段,于是課文中的例3便自然出來了.

二、以探究為熱點,培養(yǎng)創(chuàng)新意識

由于有了第一節(jié)課的基礎(chǔ),本節(jié)課教師的問題設(shè)計顯然很自然了.

老師:上節(jié)課我們討論了(3)式作為橢圓標(biāo)準(zhǔn)方程的諸多優(yōu)點,自然我們會有:

問題2:將(3)式作為橢圓的標(biāo)準(zhǔn)方程有什么缺點?

對于這一問題學(xué)生感到有些困難,教師和學(xué)生一起比較圓的標(biāo)準(zhǔn)方程的優(yōu)點后,發(fā)現(xiàn)(3)式無法揭示橢圓上的動點到定點的距離之和等于定長2a這一本質(zhì)屬性,相比之下(1)式恰好具有這一優(yōu)點.于是師生一起可以討論(1)式的優(yōu)缺點,具體可得:

1.(1)式充分揭示了橢圓的定義.

2.(1)式難以討論橢圓的其他幾何性質(zhì),如范圍、對稱性、頂點,等等.

通過以上討論,自然產(chǎn)生問題3:是否存在一個方程,同時體現(xiàn)橢圓的第一定義和橢圓的幾何性質(zhì)?自然將目光轉(zhuǎn)向(2)式,將(2)式變形,得

=a- x(4)

即|MF |=a-ex(5)

同理可得|MF |=a+ex (6)

將(2)式再變形,得

= ( -x)

即 = (7)

(5)(6)兩式將橢圓上點到焦點的距離轉(zhuǎn)化為只和焦點的橫坐標(biāo)有關(guān)的一維算式,充分體現(xiàn)了數(shù)學(xué)降維思想.而(7)式正好揭示了橢圓的第二定義,如圖2所示.

如此處理教材,自然流暢,既能完成教學(xué)任務(wù),又能充分揭示知識的發(fā)生過程,通過被人們所遺棄的(2)式,挖掘出如此寶貴的教學(xué)成果,這會讓學(xué)生興奮不已.在品嘗創(chuàng)新果實的同時也培養(yǎng)了學(xué)生的創(chuàng)新能力.

三、以反思為主調(diào),奏響創(chuàng)新旋律

務(wù)必指出,反思是創(chuàng)新的源泉.通過前二節(jié)課的探索,特別是第二課時獲得一系列創(chuàng)新成果以后,教師更要引導(dǎo)學(xué)生養(yǎng)成良好的反思習(xí)慣,打破思維定勢,爭取更大的突破.

總結(jié)上二節(jié)課的討論,我們發(fā)現(xiàn)對(1)式的每一次變形,都會取得一系列令人激動的科學(xué)成果,那么自然會問:

問題4:(1)式還有其他變形嗎?如果有又能得到什么收獲呢?

此時,學(xué)生的思維已被激活,討論積極,熱情高漲,通過討論可獲得一系列成果如下。

成果一:將(1)兩邊平方,整理可得:

· +x +y =a +b (8)

(8)式揭示了橢圓的又一本質(zhì)屬性:

|MF ||MF |+|MO| =a +b ,

即,橢圓上動點到兩焦點的距離之積,和它到橢圓中心距離的平方之和等于常數(shù)(如圖3).

成果二:將(5)(6)代入(8)式可得:

|MO|= (9)

若將動點到中心的長度稱為橢圓的半徑,那么(9)式給出了橢圓半徑的計算方法,它只和該點的橫坐標(biāo)有關(guān),同樣起到降維作用.

成果三:若將(1)式的兩邊乘以 - ,整理可得:

= (10)

(10)式給出了橢圓的又一本質(zhì)屬性:即橢圓上動點到兩焦點的距離之差與該點到橢圓的一條對稱軸(垂直于焦點所在直線)的距離之比是一個常數(shù).

成果四:在△F MF 中(圖1),設(shè)∠F MF =α,則由余弦定理可得:

4c =|MF | +|MF | -2|MF ||MF |cosα

=(|MF |+|MF |) -2|MF ||MF |(1+cosα)

=4a -2|MF ||MF |(1+cosα)

所以|MF ||MF |= (11)

將(11)式代入(8)式可得:

|MO|= (12)

(12)式給出了橢圓半徑與動點到兩焦點連線所成角的關(guān)系.

應(yīng)該指出:本節(jié)課的創(chuàng)新討論是無止境的,關(guān)鍵在于培養(yǎng)學(xué)生的創(chuàng)新意識,當(dāng)然由于學(xué)生的程度不同,得到的成果也不同,無論如何,教師都應(yīng)給予學(xué)生充分肯定.

從對(1)式做變形看,自然也可考慮將其他式子變形,如將(3)式變形成

= ,于是可得,橢圓上動點到兩焦點A(-a,0),B(a,0)的連線的斜率之積等于常數(shù).

參考文獻(xiàn):

[1]李佰春.數(shù)學(xué)教育學(xué)[M].合肥:安徽大學(xué)出版社,2004.

[2]顧沅.教學(xué)任務(wù)與案例分析.上城教育信息港.

[3]顧沅.追求卓越—教師專業(yè)發(fā)展案例研究[M].人民教育出版社.

[4]羅增儒.中學(xué)數(shù)學(xué)課例分析[M].陜西師范大學(xué)出版社.

[5]任志鴻主編.高中新教材數(shù)學(xué)優(yōu)秀教案[M].南方出版社.endprint

摘 要: 橢圓的幾何性質(zhì)是解析幾何中的重點內(nèi)容,也是研究圓錐曲線的主體之一.本文從橢圓的基本定義推得的標(biāo)準(zhǔn)方程入手,推導(dǎo)分析了橢圓的各種幾何性質(zhì)的內(nèi)在聯(lián)系,從而實現(xiàn)學(xué)生對知識的系統(tǒng)把握和對知識的創(chuàng)新運(yùn)用.

關(guān)鍵詞: 橢圓 幾何性質(zhì) 創(chuàng)新教學(xué)

橢圓的簡單幾何性質(zhì)包括橢圓的范圍、對稱性、頂點、離心率、橢圓的第二定義,等等,是我們解析幾何內(nèi)容的一個重點,很多教材往往把它單獨(dú)分成幾塊拿出來討論,顯得聯(lián)系不緊密,學(xué)生學(xué)習(xí)時感到很困惑.特別是橢圓的第二定義,我們選用的教材沒有作具體闡述,但為了給出圓錐曲線的統(tǒng)一定義,我們有必要做拓展.而高中教材是通過一個例子給出的,也感覺思路不蹈常規(guī),當(dāng)然這一切都是教材的簡潔性決定的.我在這部分內(nèi)容教學(xué)設(shè)計中,創(chuàng)設(shè)了問題情境,把這些內(nèi)容有機(jī)串聯(lián)起來,整個過程如同一次重大戰(zhàn)役,環(huán)環(huán)緊扣,層層深入,促進(jìn)學(xué)生思維的發(fā)散,加強(qiáng)學(xué)生創(chuàng)新意識的培養(yǎng).過程如下。

一、以問題為中心,注重過程教學(xué)

首先,設(shè)計如下情境,提出反常規(guī)的問題.

設(shè)M(x,y)是橢圓上任意一點,焦點F 和F 的坐標(biāo)分別是(-c,0),(c,0)(如圖1).由橢圓的定義可得:

+ =2a(1)

將這個方程移項,兩邊平方得

a -cx=a (2)

兩邊再平方,整理得

+ =1(a>b>0)(3)

問題1:為什么將(3)式作為橢圓的標(biāo)準(zhǔn)方程?

對于這一問題的提出,學(xué)生首先會感到奇怪,似乎(3)式作為標(biāo)準(zhǔn)方程是順理成章的,預(yù)先規(guī)定的,進(jìn)而師生共同展開熱烈討論,然后教師總結(jié).我總結(jié)大致有以下幾點理由:

1.(3)式簡捷,具有對稱的美感.

2.(3)式為我們提供了求橢圓軌跡的標(biāo)準(zhǔn)方程,方便用待定系數(shù)法求解軌跡的方程.

3.根據(jù)解析幾何用曲線的方程研究曲線的幾何性質(zhì)這一特點,(3)式方便研究橢圓的幾何性質(zhì).

針對上述理由3,教師可以組織學(xué)生就如何利用(3)式從整體上把握橢圓的曲線的形狀,展開討論.這樣便自然引出:范圍、對稱性、頂點、離心率等教材中要求的內(nèi)容.若要進(jìn)一步研究橢圓的曲線,就需要列表、描點、連線等常用手段,于是課文中的例3便自然出來了.

二、以探究為熱點,培養(yǎng)創(chuàng)新意識

由于有了第一節(jié)課的基礎(chǔ),本節(jié)課教師的問題設(shè)計顯然很自然了.

老師:上節(jié)課我們討論了(3)式作為橢圓標(biāo)準(zhǔn)方程的諸多優(yōu)點,自然我們會有:

問題2:將(3)式作為橢圓的標(biāo)準(zhǔn)方程有什么缺點?

對于這一問題學(xué)生感到有些困難,教師和學(xué)生一起比較圓的標(biāo)準(zhǔn)方程的優(yōu)點后,發(fā)現(xiàn)(3)式無法揭示橢圓上的動點到定點的距離之和等于定長2a這一本質(zhì)屬性,相比之下(1)式恰好具有這一優(yōu)點.于是師生一起可以討論(1)式的優(yōu)缺點,具體可得:

1.(1)式充分揭示了橢圓的定義.

2.(1)式難以討論橢圓的其他幾何性質(zhì),如范圍、對稱性、頂點,等等.

通過以上討論,自然產(chǎn)生問題3:是否存在一個方程,同時體現(xiàn)橢圓的第一定義和橢圓的幾何性質(zhì)?自然將目光轉(zhuǎn)向(2)式,將(2)式變形,得

=a- x(4)

即|MF |=a-ex(5)

同理可得|MF |=a+ex (6)

將(2)式再變形,得

= ( -x)

即 = (7)

(5)(6)兩式將橢圓上點到焦點的距離轉(zhuǎn)化為只和焦點的橫坐標(biāo)有關(guān)的一維算式,充分體現(xiàn)了數(shù)學(xué)降維思想.而(7)式正好揭示了橢圓的第二定義,如圖2所示.

如此處理教材,自然流暢,既能完成教學(xué)任務(wù),又能充分揭示知識的發(fā)生過程,通過被人們所遺棄的(2)式,挖掘出如此寶貴的教學(xué)成果,這會讓學(xué)生興奮不已.在品嘗創(chuàng)新果實的同時也培養(yǎng)了學(xué)生的創(chuàng)新能力.

三、以反思為主調(diào),奏響創(chuàng)新旋律

務(wù)必指出,反思是創(chuàng)新的源泉.通過前二節(jié)課的探索,特別是第二課時獲得一系列創(chuàng)新成果以后,教師更要引導(dǎo)學(xué)生養(yǎng)成良好的反思習(xí)慣,打破思維定勢,爭取更大的突破.

總結(jié)上二節(jié)課的討論,我們發(fā)現(xiàn)對(1)式的每一次變形,都會取得一系列令人激動的科學(xué)成果,那么自然會問:

問題4:(1)式還有其他變形嗎?如果有又能得到什么收獲呢?

此時,學(xué)生的思維已被激活,討論積極,熱情高漲,通過討論可獲得一系列成果如下。

成果一:將(1)兩邊平方,整理可得:

· +x +y =a +b (8)

(8)式揭示了橢圓的又一本質(zhì)屬性:

|MF ||MF |+|MO| =a +b ,

即,橢圓上動點到兩焦點的距離之積,和它到橢圓中心距離的平方之和等于常數(shù)(如圖3).

成果二:將(5)(6)代入(8)式可得:

|MO|= (9)

若將動點到中心的長度稱為橢圓的半徑,那么(9)式給出了橢圓半徑的計算方法,它只和該點的橫坐標(biāo)有關(guān),同樣起到降維作用.

成果三:若將(1)式的兩邊乘以 - ,整理可得:

= (10)

(10)式給出了橢圓的又一本質(zhì)屬性:即橢圓上動點到兩焦點的距離之差與該點到橢圓的一條對稱軸(垂直于焦點所在直線)的距離之比是一個常數(shù).

成果四:在△F MF 中(圖1),設(shè)∠F MF =α,則由余弦定理可得:

4c =|MF | +|MF | -2|MF ||MF |cosα

=(|MF |+|MF |) -2|MF ||MF |(1+cosα)

=4a -2|MF ||MF |(1+cosα)

所以|MF ||MF |= (11)

將(11)式代入(8)式可得:

|MO|= (12)

(12)式給出了橢圓半徑與動點到兩焦點連線所成角的關(guān)系.

應(yīng)該指出:本節(jié)課的創(chuàng)新討論是無止境的,關(guān)鍵在于培養(yǎng)學(xué)生的創(chuàng)新意識,當(dāng)然由于學(xué)生的程度不同,得到的成果也不同,無論如何,教師都應(yīng)給予學(xué)生充分肯定.

從對(1)式做變形看,自然也可考慮將其他式子變形,如將(3)式變形成

= ,于是可得,橢圓上動點到兩焦點A(-a,0),B(a,0)的連線的斜率之積等于常數(shù).

參考文獻(xiàn):

[1]李佰春.數(shù)學(xué)教育學(xué)[M].合肥:安徽大學(xué)出版社,2004.

[2]顧沅.教學(xué)任務(wù)與案例分析.上城教育信息港.

[3]顧沅.追求卓越—教師專業(yè)發(fā)展案例研究[M].人民教育出版社.

[4]羅增儒.中學(xué)數(shù)學(xué)課例分析[M].陜西師范大學(xué)出版社.

[5]任志鴻主編.高中新教材數(shù)學(xué)優(yōu)秀教案[M].南方出版社.endprint

摘 要: 橢圓的幾何性質(zhì)是解析幾何中的重點內(nèi)容,也是研究圓錐曲線的主體之一.本文從橢圓的基本定義推得的標(biāo)準(zhǔn)方程入手,推導(dǎo)分析了橢圓的各種幾何性質(zhì)的內(nèi)在聯(lián)系,從而實現(xiàn)學(xué)生對知識的系統(tǒng)把握和對知識的創(chuàng)新運(yùn)用.

關(guān)鍵詞: 橢圓 幾何性質(zhì) 創(chuàng)新教學(xué)

橢圓的簡單幾何性質(zhì)包括橢圓的范圍、對稱性、頂點、離心率、橢圓的第二定義,等等,是我們解析幾何內(nèi)容的一個重點,很多教材往往把它單獨(dú)分成幾塊拿出來討論,顯得聯(lián)系不緊密,學(xué)生學(xué)習(xí)時感到很困惑.特別是橢圓的第二定義,我們選用的教材沒有作具體闡述,但為了給出圓錐曲線的統(tǒng)一定義,我們有必要做拓展.而高中教材是通過一個例子給出的,也感覺思路不蹈常規(guī),當(dāng)然這一切都是教材的簡潔性決定的.我在這部分內(nèi)容教學(xué)設(shè)計中,創(chuàng)設(shè)了問題情境,把這些內(nèi)容有機(jī)串聯(lián)起來,整個過程如同一次重大戰(zhàn)役,環(huán)環(huán)緊扣,層層深入,促進(jìn)學(xué)生思維的發(fā)散,加強(qiáng)學(xué)生創(chuàng)新意識的培養(yǎng).過程如下。

一、以問題為中心,注重過程教學(xué)

首先,設(shè)計如下情境,提出反常規(guī)的問題.

設(shè)M(x,y)是橢圓上任意一點,焦點F 和F 的坐標(biāo)分別是(-c,0),(c,0)(如圖1).由橢圓的定義可得:

+ =2a(1)

將這個方程移項,兩邊平方得

a -cx=a (2)

兩邊再平方,整理得

+ =1(a>b>0)(3)

問題1:為什么將(3)式作為橢圓的標(biāo)準(zhǔn)方程?

對于這一問題的提出,學(xué)生首先會感到奇怪,似乎(3)式作為標(biāo)準(zhǔn)方程是順理成章的,預(yù)先規(guī)定的,進(jìn)而師生共同展開熱烈討論,然后教師總結(jié).我總結(jié)大致有以下幾點理由:

1.(3)式簡捷,具有對稱的美感.

2.(3)式為我們提供了求橢圓軌跡的標(biāo)準(zhǔn)方程,方便用待定系數(shù)法求解軌跡的方程.

3.根據(jù)解析幾何用曲線的方程研究曲線的幾何性質(zhì)這一特點,(3)式方便研究橢圓的幾何性質(zhì).

針對上述理由3,教師可以組織學(xué)生就如何利用(3)式從整體上把握橢圓的曲線的形狀,展開討論.這樣便自然引出:范圍、對稱性、頂點、離心率等教材中要求的內(nèi)容.若要進(jìn)一步研究橢圓的曲線,就需要列表、描點、連線等常用手段,于是課文中的例3便自然出來了.

二、以探究為熱點,培養(yǎng)創(chuàng)新意識

由于有了第一節(jié)課的基礎(chǔ),本節(jié)課教師的問題設(shè)計顯然很自然了.

老師:上節(jié)課我們討論了(3)式作為橢圓標(biāo)準(zhǔn)方程的諸多優(yōu)點,自然我們會有:

問題2:將(3)式作為橢圓的標(biāo)準(zhǔn)方程有什么缺點?

對于這一問題學(xué)生感到有些困難,教師和學(xué)生一起比較圓的標(biāo)準(zhǔn)方程的優(yōu)點后,發(fā)現(xiàn)(3)式無法揭示橢圓上的動點到定點的距離之和等于定長2a這一本質(zhì)屬性,相比之下(1)式恰好具有這一優(yōu)點.于是師生一起可以討論(1)式的優(yōu)缺點,具體可得:

1.(1)式充分揭示了橢圓的定義.

2.(1)式難以討論橢圓的其他幾何性質(zhì),如范圍、對稱性、頂點,等等.

通過以上討論,自然產(chǎn)生問題3:是否存在一個方程,同時體現(xiàn)橢圓的第一定義和橢圓的幾何性質(zhì)?自然將目光轉(zhuǎn)向(2)式,將(2)式變形,得

=a- x(4)

即|MF |=a-ex(5)

同理可得|MF |=a+ex (6)

將(2)式再變形,得

= ( -x)

即 = (7)

(5)(6)兩式將橢圓上點到焦點的距離轉(zhuǎn)化為只和焦點的橫坐標(biāo)有關(guān)的一維算式,充分體現(xiàn)了數(shù)學(xué)降維思想.而(7)式正好揭示了橢圓的第二定義,如圖2所示.

如此處理教材,自然流暢,既能完成教學(xué)任務(wù),又能充分揭示知識的發(fā)生過程,通過被人們所遺棄的(2)式,挖掘出如此寶貴的教學(xué)成果,這會讓學(xué)生興奮不已.在品嘗創(chuàng)新果實的同時也培養(yǎng)了學(xué)生的創(chuàng)新能力.

三、以反思為主調(diào),奏響創(chuàng)新旋律

務(wù)必指出,反思是創(chuàng)新的源泉.通過前二節(jié)課的探索,特別是第二課時獲得一系列創(chuàng)新成果以后,教師更要引導(dǎo)學(xué)生養(yǎng)成良好的反思習(xí)慣,打破思維定勢,爭取更大的突破.

總結(jié)上二節(jié)課的討論,我們發(fā)現(xiàn)對(1)式的每一次變形,都會取得一系列令人激動的科學(xué)成果,那么自然會問:

問題4:(1)式還有其他變形嗎?如果有又能得到什么收獲呢?

此時,學(xué)生的思維已被激活,討論積極,熱情高漲,通過討論可獲得一系列成果如下。

成果一:將(1)兩邊平方,整理可得:

· +x +y =a +b (8)

(8)式揭示了橢圓的又一本質(zhì)屬性:

|MF ||MF |+|MO| =a +b ,

即,橢圓上動點到兩焦點的距離之積,和它到橢圓中心距離的平方之和等于常數(shù)(如圖3).

成果二:將(5)(6)代入(8)式可得:

|MO|= (9)

若將動點到中心的長度稱為橢圓的半徑,那么(9)式給出了橢圓半徑的計算方法,它只和該點的橫坐標(biāo)有關(guān),同樣起到降維作用.

成果三:若將(1)式的兩邊乘以 - ,整理可得:

= (10)

(10)式給出了橢圓的又一本質(zhì)屬性:即橢圓上動點到兩焦點的距離之差與該點到橢圓的一條對稱軸(垂直于焦點所在直線)的距離之比是一個常數(shù).

成果四:在△F MF 中(圖1),設(shè)∠F MF =α,則由余弦定理可得:

4c =|MF | +|MF | -2|MF ||MF |cosα

=(|MF |+|MF |) -2|MF ||MF |(1+cosα)

=4a -2|MF ||MF |(1+cosα)

所以|MF ||MF |= (11)

將(11)式代入(8)式可得:

|MO|= (12)

(12)式給出了橢圓半徑與動點到兩焦點連線所成角的關(guān)系.

應(yīng)該指出:本節(jié)課的創(chuàng)新討論是無止境的,關(guān)鍵在于培養(yǎng)學(xué)生的創(chuàng)新意識,當(dāng)然由于學(xué)生的程度不同,得到的成果也不同,無論如何,教師都應(yīng)給予學(xué)生充分肯定.

從對(1)式做變形看,自然也可考慮將其他式子變形,如將(3)式變形成

= ,于是可得,橢圓上動點到兩焦點A(-a,0),B(a,0)的連線的斜率之積等于常數(shù).

參考文獻(xiàn):

[1]李佰春.數(shù)學(xué)教育學(xué)[M].合肥:安徽大學(xué)出版社,2004.

[2]顧沅.教學(xué)任務(wù)與案例分析.上城教育信息港.

[3]顧沅.追求卓越—教師專業(yè)發(fā)展案例研究[M].人民教育出版社.

[4]羅增儒.中學(xué)數(shù)學(xué)課例分析[M].陜西師范大學(xué)出版社.

[5]任志鴻主編.高中新教材數(shù)學(xué)優(yōu)秀教案[M].南方出版社.endprint

猜你喜歡
創(chuàng)新教學(xué)
運(yùn)用創(chuàng)新教學(xué),打造小學(xué)數(shù)學(xué)魅力課堂
考試周刊(2016年89期)2016-12-01 12:56:04
“慕課”的優(yōu)勢及對大學(xué)英語傳統(tǒng)教學(xué)的啟示
略論中學(xué)體育教學(xué)
淺談初中化學(xué)課堂教學(xué)創(chuàng)新
新一代(2016年15期)2016-11-16 15:53:47
高中地理教學(xué)方法探究
南北橋(2016年10期)2016-11-10 17:10:48
職高office2010教學(xué)之我見
南北橋(2016年10期)2016-11-10 16:41:49
創(chuàng)新教學(xué),打造幼兒英語多彩課堂
創(chuàng)新高中語文教學(xué)模式,實施才情個性化教學(xué)
基于身體與職業(yè)素能的中職體育創(chuàng)新教學(xué)研究
課堂細(xì)心雕琢,提高教學(xué)效能
考試周刊(2016年77期)2016-10-09 11:27:15
主站蜘蛛池模板: 日韩精品久久无码中文字幕色欲| 全午夜免费一级毛片| 四虎永久免费地址| 91po国产在线精品免费观看| 亚洲综合狠狠| 亚洲AV无码乱码在线观看裸奔| 老色鬼久久亚洲AV综合| 精品福利一区二区免费视频| 亚洲国产中文精品va在线播放| 久久永久视频| 精品一区二区三区无码视频无码| 成人夜夜嗨| 手机永久AV在线播放| 国产无码制服丝袜| 成人精品视频一区二区在线 | 久久综合伊人 六十路| 国产视频一二三区| 國產尤物AV尤物在線觀看| 欧美亚洲激情| 国产91线观看| 国产一区二区三区在线无码| 中日无码在线观看| 国产成人亚洲欧美激情| 91视频首页| 精品视频一区在线观看| 国产男人天堂| 国产精品视频a| 亚洲AⅤ波多系列中文字幕| 久久91精品牛牛| 午夜天堂视频| 国产精品网曝门免费视频| 午夜啪啪福利| 91蜜芽尤物福利在线观看| 在线播放91| 国产久草视频| 国产精品永久免费嫩草研究院| 青青青草国产| 男人天堂亚洲天堂| 国产微拍一区| 在线观看无码a∨| 毛片免费在线| 一本大道东京热无码av| 538国产视频| 亚洲国产理论片在线播放| 中文字幕66页| 精品第一国产综合精品Aⅴ| 永久免费无码日韩视频| 国产欧美精品一区aⅴ影院| 国产精品密蕾丝视频| 白浆视频在线观看| 欧美亚洲国产精品久久蜜芽| 欧美国产视频| 第九色区aⅴ天堂久久香| 搞黄网站免费观看| 激情综合网激情综合| 色爽网免费视频| 国产浮力第一页永久地址| 欧美无专区| 伊人91在线| 亚洲综合狠狠| 91久久大香线蕉| 亚洲无码高清一区二区| 四虎精品国产AV二区| 91欧美在线| 扒开粉嫩的小缝隙喷白浆视频| 国产一区二区人大臿蕉香蕉| 国产男女免费完整版视频| 国产色婷婷视频在线观看| 亚洲天堂精品在线| 操美女免费网站| 首页亚洲国产丝袜长腿综合| 国产香蕉国产精品偷在线观看| 91在线丝袜| 天天激情综合| 伊人久综合| 永久免费无码日韩视频| 日韩专区欧美| 国产精品亚洲欧美日韩久久| 五月天婷婷网亚洲综合在线| 中文字幕日韩视频欧美一区| 午夜免费小视频| 欧美一区二区福利视频|