方先金
【摘要】提高中學數學教學質量,不僅僅是為了提高學生的數學成績,更重要的是能使學生學到有用的數學。為此,筆者認為在中學數學教學中構建數學建模意識無疑是我們中學數學教學改革的一個正確的方向。本文結合自己的教學體會,從理論上及實踐上闡述:一是構建數學建模意識的基本方法。二是通過建模教學培養學生的創新思維。
【關鍵詞】數學建模 數學模型方法 數學建模意識 創新思維
一、數學建模與數學建模意識
著名數學家懷特海曾說:“數學就是對于模式的研究”。
所謂數學模型,是指對于現實世界的某一特定研究對象,為了某個特定的目的,在做了一些必要的簡化假設,運用適當的數學工具,并通過數學語言表述出來的一個數學結構,數學中的各種基本概念,都以各自相應的現實原型作為背景而抽象出來的數學概念。各種數學公式、方程式、定理、理論體系等等,都是一些具體的數學模型。而通過對問題數學化,模型構建,求解檢驗使問題獲得解決的方法稱之為數學模型方法。我們的數學教學說到底實際上就是教給學生前人給我們構建的一個個數學模型和怎樣構建模型的思想方法,以使學生能運用數學模型解決數學問題和實際問題。
具體的講數學模型方法的操作程序大致上為:
由此,我們可以看到,培養學生運用數學建模解決實際問題的能力關鍵是把實際問題抽象為數學問題,必須首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學的始終,也就是要不斷的引導學生用數學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。
二、構建數學建模意識的基本途徑
1.為了培養學生的建模意識,中學數學教師應首先需要提高自己的建模意識。這不僅意味著我們在教學內容和要求上的變化,更意味著教育思想和教學觀念的更新。中學數學教師除需要了解數學科學的發展歷史和發展動態之外,還需要不斷地學習一些新的數學建模理論,并且努力鉆研如何把中學數學知識應用于現實生活。
2.數學建模教學還應與現行教材結合起來研究。教師應研究在各個教學章節中可引入哪些模型問題。要經常滲透建模意識,這樣通過教師的潛移默化,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。
3.注意與其它相關學科的關系。由于數學是學生學習其它自然科學以至社會科學的工具而且其它學科與數學的聯系是相當密切的。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。這樣的模型意識不僅僅是抽象的數學知識,而且將對他們學習其它學科的知識以及將來用數學建模知識探討各種邊緣學科產生深遠的影響。
4.在教學中還要結合專題討論與建模法研究。我們可以選擇適當的建模專題,通過討論、分析和研究,熟悉并理解數學建模的一些重要思想,掌握建模的基本方法。甚至可以引導學生通過對日常生活的觀察,自己選擇實際問題進行建模練習,從而讓學生嘗到數學建模成功的“甜”和難于解決的“苦”借亦拓寬視野、增長知識、積累經驗。這亦符合玻利亞的“主動學習原則”,也正所謂“學問之道,問而得,不如求而得之深固也”。
三、把構建數學建模意識與培養學生創造性思維過程統一起來
我認為培養學生創造性思維的過程有三點基本要求。第一,對周圍的事物要有積極的態度。第二,要敢于提出問題。第三,善于聯想,善于理論聯系實際。因此在數學教學中構建學生的建模意識實質上是培養學生的創造性思維能力,因為建模活動本身就是一項創造性的思維活動。它既具有一定的理論性又具有較大的實踐性;既要求思維的數量,還要求思維的深刻性和靈活性,而且在建模活動過程中,能培養學生獨立,自覺地運用所給問題的條件,尋求解決問題的最佳方法和途徑,可以培養學生的想象能力,直覺思維、猜測、轉換、構造等能力。而這些數學能力正是創造性思維所具有的最基本的特征。
1.發揮學生的想象能力,培養學生的直覺思維
眾所周知,數學史上不少的數學發現來源于直覺思維,如笛卡爾坐標系、費爾馬大定理、歌德巴赫猜想、歐拉定理等,應該說它們不是任何邏輯思維的產物,而是數學家通過觀察、比較、領悟、突發靈感發現的。通過數學建模教學,使學生有獨到的見解和與眾不同的思考方法,如善于發現問題,溝通各類知識之間的內在聯系等是培養學生創新思維的核心。
2.構建建模意識,培養學生的轉換能力
恩格斯曾說過:“由一種形式轉化為另一種形式不是無聊的游戲而是數學的杠桿,如果沒有它,就不能走很遠。”由于數學建模就是把實際問題轉換成數學問題,因此如果我們在數學教學中注重轉化,用好這根有力的杠桿,對培養學生思維品質的靈活性、創造性及開發智力、培養能力、提高解題速度是十分有益的。
3.以“構造”為載體,培養學生的創新能力
“一個好的數學家與一個蹩腳的數學家之間的差別,就在于前者有許多具體的例子,而后者則只有抽象的理論。”
我們前面講到,“建模”就是構造模型,但模型的構造并不是一件容易的事,又需要有足夠強的構造能力,而學生構造能力的提高則是學生創造性思維和創造能力的基礎:創造性地使用已知條件,創造性地應用數學知識。只要我們在教學中教師仔細地觀察,精心的設計,可以把一些較為抽象的問題,通過現象除去非本質的因素,從中構造出最基本的數學模型,使問題回到已知的數學知識領域,并且能培養學生的創新能力。
參考文獻:
[1]沈文選.數學建模.湖南師大出版社,1999.
[2]中國教育學會中學數學教學專業委員會.面向21世紀的數學教學.浙江教育出版社,1997.
[3]胡炯濤,張凡.中學數學教學縱橫談.山東教育出版社,1997.
[4]黃立俊,方水清.增強應用意識,增強建模能力.中學數學雜志,1998.
[5]薛治剛.高中數學應用問題.吉林科學技術出版社,北京朗曼教學與研究中心,1998.