摘要:隱匿性肝性腦?。–HE)是指通過神經心理學和(或)神經生理學發現異常,但患者可無癥狀或僅表現為輕度的認知障礙、失眠、睡眠倒錯、計算力和注意力減弱等癥狀的一種肝性腦病,它不同于顯性肝性腦?。∣HE)出現的定向力障礙、撲翼樣震顫等肝性腦病的典型癥狀,這種類型的肝性腦病不易被察覺。CHE易發展為OHE,降低了肝硬化患者的生存率,還影響患者精細操作能力,增加意外傷害風險,加重家庭和社會的負擔。隱匿性肝性腦病發生的確切機制并未明確。近年來研究發現,腸道微生態的變化與肝性腦病的發生、發展及預后有密切的相關。本文旨在系統地對腸道微生態在隱匿性肝性腦病中的發生機制及治療前景進行綜述,深入探討兩者之間的關聯,為臨床防治CHE的手段提供理論依據。
關鍵詞:肝性腦??;隱匿性肝性腦病;腸道微生態;益生元;益生菌
中圖分類號:R575.3" " " " " " " " " " " " " " " " "文獻標識碼:A" " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2025.04.036
文章編號:1006-1959(2025)04-0188-05
The Pathogenesis and Treatment Prospect of Intestinal Microecology
in Occult Hepatic Encephalopathy
WEI Yingying1, HE Wanrong2, LIANG Yunxiao2, LING Mingxia3
(1.Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China;
2.Gastroenterology Department of Guangxi Zhuang Autonomous Region People′s Hospital, Nanning 530022, Guangxi, China;
3.Guilin Medical University, Guilin 541000, Guangxi, China)
Abstract: Covert hepatic encephalopathy (CHE) refers to a type of hepatic encephalopathy characterized by abnormalities discovered through neuropsychology and/or neurophysiology, but characterized by asymptomatic or only mild cognitive impairment, insomnia, sleep inversion, decreased computational and attention abilities. It is different from the typical symptoms of hepatic encephalopathy such as directional impairment and flapping tremors that appear in overt hepatic encephalopathy (OHE), and this type of hepatic encephalopathy is not easily detected. CHE is prone to develop into OHE, which reduces the survival rate of patients with liver cirrhosis, affects their fine motor skills, increases the risk of accidental injury, and increases the burden on families and society. The exact mechanism of covert hepatic encephalopathy is not yet clear. In recent years, research has found that changes in gut microbiota are closely related to the occurrence, development, and prognosis of hepatic encephalopathy. This article aims to systematically review the mechanism and treatment prospects of gut microbiota in Covert hepatic encephalopathy, and deeply explore the relationship between the two, providing theoretical basis for clinical prevention and treatment of CHE.
Key words: Hepatic encephalopathy; Covert hepatic encephalopathy; Intestinal microecology; Prebiotics; Probiotics
肝性腦?。╤epatic encephalopathy, HE)是一種以代謝紊亂為基礎、神經精神異常為特征的綜合癥,常由急性或慢性肝功能障礙引起,或與門靜脈-體循環的各種異常分流有關[1]。在近年的分類中,國際肝性腦病研究協會(ISHEN)提出的肝硬化神經認知功能變化譜(SONIC)對HE的定義進行了細化,將其分為隱匿性HE(covert hepatic encephalopathy, CHE)和顯性HE(overt hepatic encephalopathy, OHE)[2]。根據SONIC的標準,將West-Haven分類中的0級和1級HE統稱為CHE,而2級至4級則歸為OHE。CHE患者可無癥狀或僅表現為輕微的認知障礙,興奮或焦慮、注意力和計算能力下降,無撲翼樣震顫,神經生理學及心理學測試異常;而OHE可出現定向力障礙、撲翼樣震顫等明顯的臨床表現及神經精神異常。CHE的全球發病率根據地區和診斷標準的不同而有所差異。國外研究顯示,肝硬化患者中20%~80%可能合并CHE[3-5],而國內數據則顯示這一比例為30%~84%[1,6]。CHE的存在不僅降低了肝硬化患者的生存率,還與疾病的進展及生活質量的明顯下降有關[7]。CHE患者在注意力、控制力及操作能力方面存在明顯障礙,這使得從事如高空作業、機械操作或駕駛等活動的患者發生意外的風險增加,進一步加重了家庭和社會的經濟負擔[8,9]。CHE的發病機制復雜,涉及高氨血癥、神經炎癥、氧化應激及神經遞質的變化等因素。近年發現腸道微生態失衡在其發病中扮演著重要角色,腸道菌群失調、小腸細菌過度生長(smanintestine bacterial overgrowth, SIBO)、腸黏膜受損等誘導高血氨、系統神經炎癥,最終引發HE,可見HE的發病與腸-肝-腦軸功能受損的密切相關。腸道微生態這一領域的研究發現有望為HE的治療提供新的思路和方法。本文現綜述腸道微生態與CHE的發生機制和當前的治療前景,以期為臨床提供參考和指導。
1腸道微生態發病的機制
1.1腸道微生態、菌群的變化" 肝硬化患者中腸道微生態的結構和功能變化與HE的發生密切相關。由于肝功能減退和門靜脈高壓,腸道內的有益菌數量減少,致病菌如腸桿菌科和腸球菌科增多,導致氨和內毒素的產生增加[10]。這種菌群失調不僅增加了菌血癥和HE的風險,還伴隨小腸細菌過度生長(SIBO)和腸道通透性增加,進一步促使細菌和毒素透過腸壁進入血液,引發全身炎癥反應[11-13]。肝硬化患者的腸道菌群失調與系統性炎癥密切相關。研究表明[14],特定的細菌家族如產堿桿菌科和卟啉單胞菌科與HE的認知障礙和炎癥有關。此外,門脈高壓可導致胃腸道淤血和缺氧,激活黃嘌呤氧化酶,產生過量自由基,這些自由基與內毒素共同破壞腸壁的完整性,導致病理性菌群移位[15]。毒素和細菌的侵入通過干擾神經遞質平衡,激活神經炎癥反應,最終影響大腦功能,加劇HE的病理進程[16]。
1.2腸-肝軸的變化" 腸道和肝臟不僅共同起源于同一胚層,它們之間還存在密切的解剖和功能聯系,共同影響著彼此的健康狀態。肝臟通過膽道分泌膽汁酸(BA)和抗菌分子如IgA和血管生成素1至腸道,這些分泌物幫助控制腸道內的細菌生長,維持生態平衡[17,18]。此外,體循環將肝臟代謝的物質如游離脂肪酸、膽堿代謝物、乙醇代謝物等運輸至腸道,影響腸道的功能和微生物組成,從而形成復雜的腸-肝軸。肝臟對腸道微生物群的直接影響主要通過膽汁酸實現。膽汁酸不僅是腸道屏障的重要組成部分,還通過與腸道菌群相互作用,參與其轉化過程,有利于腸黏膜的修復和微生態的平衡。膽汁酸與腸道菌群的相互作用通過激活肝細胞核受體(FXR)產生抗菌肽,如血管生成素1和RNAse家族成員4,這些抗菌肽有助于抑制過度生長的微生物并維護腸道屏障的完整性[19]。在肝硬化等肝功能不全的病理狀態下,膽汁酸的生產和分泌減少,導致腸道內有益菌如毛螺旋菌和瘤胃球菌減少,進而影響短鏈脂肪酸(SCFA)如丁酸鹽的產量。SCFA是腸道健康的關鍵因子,不僅能維護腸道屏障的完整性,減少細菌的移位,還具有穿過血腦屏障促進認知功能的能力[20-22]。SCFA的減少不僅影響腸道的免疫功能和黏膜完整性,還可能通過與其他菌群代謝產物如胺和硫醇等產生協同作用,對大腦功能產生負面影響,這在HE的發病機制中占據重要地位。因此,維護腸-肝軸的健康狀態對于預防和治療肝相關疾病至關重要。
1.3腦-腸軸的調節作用" HE的發病機制主要涉及腸道微生態的變化、炎癥介質的產生以及血氨水平的升高,這些因素通過腦-腸軸的交互作用相互影響,導致嚴重的神經系統功能障礙。腸道微生態的失衡是HE發病的重要因素之一。肝硬化導致門靜脈高壓,進而影響腸道微環境,致使有益菌如乳酸菌和雙歧桿菌減少,而致病菌如腸桿菌和腸球菌增多。這種微生態的失衡加劇了腸道產氨能力和內毒素的生成,進而通過血液循環影響肝臟及其他器官的功能[14,23-25]。腸道微生態的改變導致炎癥介質和氨的產生增加。氨是通過血腦屏障(BBB)進入大腦,并在星形膠質細胞中積累,導致細胞內pH值、膜電位和電解質平衡的改變,抑制三羧酸循環,損害線粒體通透性,引起細胞功能障礙[26-28]。此外,腸道產生的氨不能在肝臟中完全轉化為尿素,導致血氨水平升高,進一步加劇星形膠質細胞的功能障礙和腦水腫,破壞神經元與星形膠質細胞之間的信號傳遞。腦-腸軸是腸道和大腦之間的重要信息傳輸通路,涵蓋了腸道微生態的變化、炎癥介質的產生以及血氨水平的升高等因素。腸道微生態的改變通過腸神經系統和迷走神經的影響,可以直接傳遞到大腦,影響大腦中的神經遞質和神經反應,進而影響認知和行為功能。腸道產生的炎癥介質和毒素如氨通過受損的BBB影響大腦功能,促進了神經炎癥的發生和神經系統的損傷[23,29,30]。
2腸道菌群調節的治療前景
2.1益生菌和益生元的應用" 益生菌和益生元通過調節腸道微生物群,加速腸道轉運,改變細菌代謝和菌群結構,有效降低血清氨水平和其他神經毒性物質,從而改善HE的治療效果。這些補充劑不僅改善腸道屏障功能和免疫調節,還有助于降低門靜脈高壓,為治療HE提供新的治療策略[31-33]。特別是益生菌如VSL#3已被證明能顯著減少因HE導致的住院風險,其通過改善腸黏膜屏障和調節腸道菌群來發揮作用[34]。此外,丁酸梭菌和嬰兒雙歧桿菌的聯合應用在治療HBV誘導的肝硬化中表現出良好效果,這種益生菌組合能夠促進有益菌群的富集,降低致病菌如腸球菌和腸桿菌科的數量,從而有助于改善認知功能和降低氨水平[22]。益生菌也能增加SCFA的產量,激活GPR41/43等特異性G蛋白偶聯受體,這些受體的激活有助于增強胰高血糖素樣肽-1和-2的能量代謝,進一步調節腸道屏障功能[21]。益生元如乳果糖在治療HE中同樣發揮重要作用,它通過促進健康細菌生長,增加SCFA產量,降低腸道pH值,從而維持腸道穩定狀態。這些SCFA還能促進鈣、鎂、鋅和鐵等礦物質的吸收,提高這些礦物質的溶解度和通過腸壁的吸收效率[35,36]。當前研究表明[37],乳果糖不僅能逆轉最小HE,還能預防明顯HE的發生,并顯著提高生活質量。正在開發的新型益生元,如合成聚糖,展現出在降低氨生成方面比傳統乳果糖更高的效率,這為HE的未來治療提供了新的可能性[38]。盡管現有數據顯示益生菌和益生元對HE治療具有積極作用,但仍需進行更多研究以驗證其長期效果和最佳臨床應用。
2.2腸道微生態移植(FMT)的潛在療效" FMT是一種將健康捐贈者的糞便轉移至患者結腸中的方法,目的在于通過恢復正常微生物群來治療由微生物組失衡引起的疾病。這種方法已被批準并有效地用于治療潰瘍性結腸炎和復發性艱難梭菌感染[39,40]。最近,FMT也被探索用于治療HE。Kao D等[41]在2015年報道了HE患者通過FMT治療的首例病例,該患者接受了每周4次的FMT治療,短期內顯示出主觀和客觀的顯著改善,盡管在第14周復發至基線水平。此外,Li J等[42]的研究表明,FMT能夠改善因四氯化碳(CCl4)誘導的肝功能障礙大鼠的行為、HE嚴重程度及空間學習能力,并可預防肝壞死和腸粘膜屏障損傷,從而有效降低血清氨水平和腸道通透性。另一研究對慢性肝病患者進行了3次FMT,選擇含有大量有益細菌的供體,進行為期1年的隨訪,結果顯示患者腸道菌群得到顯著改變,肝功能和臨床癥狀均有所改善,HE發生率和Child-Pugh評分均有所下降[43]。盡管FMT顯示出恢復腸道微生物多樣性和治療HE的潛力,但是由于肝硬化和HE的復雜性,現有的FMT研究需要擴大樣本量,需要更多研究來確定其長期安全性、治療持續時間和供體糞便的最佳特性,特別是考慮到供體篩選的重要性,以防止病原體通過糞便傳播。
2.3飲食和生活方式調整的作用" 鑒于腸道菌群在HE發病機制中的核心角色,調整飲食已被推薦為一種有效的治療策略。一項涵蓋275名參與者的橫斷面研究發現,較低的蛋白質和動物脂肪攝入與增加的HE風險相關[44]。特別是支鏈氨基酸的攝入與降低HE復發風險有關[45]。根據歐洲肝臟研究協會(EASL)和美國肝臟疾病研究協會(AASLD)的指南,建議肝硬化患者的每日能量攝入量為35~40 kcal/kg,優先選擇復合碳水化合物,這些應占總熱量攝入的40%~60%。同時,建議脂質攝入量占總熱量的25%~50%,因為研究顯示這對改善腸道運輸時間具有積極作用[46-48]。
2.4其他新型抗生素" 利福昔明是一種具有明確效用的抗生素,已被證實對治療HE有效。該藥物通過廣泛抑制腸道內細菌的生長,能顯著改善患者的認知能力,減少內毒素血癥,并提高血清長鏈脂肪酸的水平,從而有效改善OHE、逆轉MHE并預防HE的復發[49,50]。研究還表明[51],利福昔明的低劑量治療可以逆轉肝硬化患者的CHE,同時改善健康相關生活質量(HRQOL),其效果與高劑量相當,且具有良好的安全性。此外,利福昔明-α版本不僅能夠處理顯性和隱性HE,還能降低感染風險,減少腸道的口腔吸收,減輕全身炎癥。其在改善肝硬化患者的腸道屏障功能中起到關鍵作用,這可能是其通過減少細菌移位和降低全身內毒素水平來改善病情的機制。
3總結及展望
盡管在HE的研究和治療上取得了一些進展,但機制并未完全明確、早期診斷存在困難、治療方法也存在局限。在針對HE的微生物組療法中,乳果糖、利福昔明、益生菌及FMT已顯示初步效果。盡管存在這些治療選項,但許多患者的癥狀持續存在,且部分患者無法耐受乳果糖。未來研究應專注于優化實驗設計、選擇適宜的微生物組療法,并開發針對HE的個性化治療策略。例如,FMT灌腸主要影響遠端結腸,而口服FMT膠囊則作用更廣泛。研究應進一步探索肝硬化中腸道屏障功能受損的關鍵區域,以及測試針對HE患者缺乏的代謝物(如SCFA和次級膽汁酸)的療法。微生物組療法的效果可能取決于患者現有的微生物組成,提示個性化基于微生物群落結構和功能的治療可能最有效。隨著對HE發病機制的深入研究和治療方法的不斷改進,個體化治療、精準診斷以及針對性治療將成為未來研究重點,希望能夠為HE患者提供更好的生活質量和治療效果。
參考文獻:
[1]中華醫學會肝病學分會.肝硬化肝性腦病診療指南[J].中華肝臟病雜志,2018,34(10):721-736.
[2]中華醫學會消化病學分會.中國肝硬化臨床診治共識意見[J].中華消化雜志,2023,43(4):227-247.
[3]Gairing SJ,Mangini C,Zarantonello L,et al.Prevalence of Minimal Hepatic Encephalopathy in Patients With Liver Cirrhosis: A Multicenter Study[J].Am J Gastroenterol,2023,118(12):2191-2200.
[4]Rathi S,Chopra M,Chouduri G,et al.Prevalence of Minimal Hepatic Encephalopathy in Patients With Liver Cirrhosis: A Cross-Sectional, Clinicoepidemiological, Multicenter, Nationwide Study in India: The PREDICT Study[J].J Clin Exp Hepatol,2019,9(4):476-483.
[5]Ridola L,Cardinale V,Riggio O.The burden of minimal hepatic encephalopathy: from diagnosis to therapeutic strategies[J].Ann Gastroenterol,2018,31(2):151-164.
[6]Zeng X,Yin C,Sun CY,et al.Prevalence and risk factors of covert hepatic encephalopathy in cirrhotic patients: A multicenter study in China[J].J Dig Dis,2023,24(2):122-132.
[7]Wang J,Deng MJ,Shi PM,et al.Covert hepatic encephalopathy is associated with aggressive disease progression and poor survival in patients with cirrhosis[J].J Dig Dis,2023,24(12):681-690.
[8]Ridola L,Nardelli S,Gioia S,et al.Quality of life in patients with minimal hepatic encephalopathy[J].World J Gastroenterol,2018, 24(48):5446-5453.
[9]Bajaj JS,Duarte-Rojo A,Xie JJ,et al.Minimal Hepatic Encephalopathy and Mild Cognitive Impairment Worsen Quality of Life in Elderly Patients With Cirrhosis[J].Clin Gastroenterol Hepatol,2020,18(13):3008-3016.e3002.
[10]Butterworth RF.Hepatic encephalopathy: a central neuroinflammatory disorder?[J].Hepatology,2011,53(4):1372-1376.
[11]Cho I,Blaser MJ.The human microbiome: at the interface of health and disease[J].Nat Rev Genet,2012,13(4):260-270.
[12]Maslennikov R,Pavlov C,Ivashkin V.Small intestinal bacterial overgrowth in cirrhosis: systematic review and meta-analysis[J].Hepatol Int,2018,12(6):567-576.
[13]Shahbazi A,Sepehrinezhad A,Vahdani E,et al.Gut Dysbiosis and Blood-Brain Barrier Alteration in Hepatic Encephalopathy: From Gut to Brain[J].Biomedicines,2023,11(5):1272.
[14]Bajaj JS,Ridlon JM,Hylemon PB,et al.Linkage of gut microbiome with cognition in hepatic encephalopathy[J].Am J Physiol Gastrointest Liver Physiol,2012,302(1):G168-G175.
[15]Liu S,Yang X.Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer[J].Front Cell Infect Microbiol,2023,13:1140126.
[16]Zhang H,Chen Y,Wang Z,et al.Implications of Gut Microbiota in Neurodegenerative Diseases[J].Front Immunol,2022,13:785644.
[17]Hamoud AR,Weaver L,Stec DE,et al.Bilirubin in the Liver-Gut Signaling Axis[J].Trends Endocrinol Metab,2018,29(3):140-150.
[18]Winston JA,Theriot CM.Diversification of host bile acids by members of the gut microbiota[J].Gut Microbes,2020,11(2):158-171.
[19]Jin M,Kalainy S,Baskota N,et al.Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids[J].Liver Int,2019,39(8):1437-1447.
[20]Intlekofer KA,Berchtold NC,Malvaez M,et al.Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism[J].Neuropsychopharmacology,2013,38(10):2027-2034.
[21]Markowiak-Kopec P,Slizewska K.The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome[J].Nutrients,2020,12(4):1107.
[22]Xia X,Chen J,Xia J,et al.Role of probiotics in the treatment of minimal hepatic encephalopathy in patients with HBV-induced liver cirrhosis[J].J Int Med Res,2018,46(9):3596-3604.
[23]Saboo K,Petrakov NV,Shamsaddini A,et al.Stool microbiota are superior to saliva in distinguishing cirrhosis and hepatic encephalopathy using machine learning[J].J Hepatol,2022,76(3):600-607.
[24]Patel VC,Lee S,McPhail MJW,et al.Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial[J].J Hepatol,2022,76(2):332-342.
[25]Zhang Z,Zhai H,Geng J,et al.Large-scale survey of gut microbiota associated with MHE Via 16S rRNA-based pyrosequencing[J].Am J Gastroenterol,2013,108(10):1601-1611.
[26]Albrecht J,Norenberg MD.Glutamine: a Trojan horse in ammonia neurotoxicity[J].Hepatology,2006,44(4):788-794.
[27]Haenisch S,von Rüden EL,Wahmkow H,et al.miRNA-187-3p-Mediated Regulation of the KCNK10/TREK-2 Potassium Channel in a Rat Epilepsy Model[J].ACS Chem Neurosci,2016,7(11):1585-1594.
[28]Srivastava A,Chaturvedi S,Gupta RK,et al.Minimal hepatic encephalopathy in children with chronic liver disease: Prevalence, pathogenesis and magnetic resonance-based diagnosis[J].J Hepatol,2017,66(3):528-536.
[29]Braniste V,Al-Asmakh M,Kowal C,et al.The gut microbiota influences blood-brain barrier permeability in mice[J].Sci Transl Med,2014,6(263):263ra158.
[30]Segarra M,Aburto MR,Acker-Palmer A.Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis[J].Trends Neurosci,2021,44(5):393-405.
[31]Rehman MU,Ghazanfar S,Ul Haq R,et al.Probiotics (Bacillus clausii and Lactobacillus fermentum NMCC-14) Ameliorate Stress Behavior in Mice by Increasing Monoamine Levels and mRNA Expression of Dopamine Receptors (D(1) and D(2)) and Synaptophysin[J].Front Pharmacol,2022,13:915595.
[32]Shahgond L,Patel C,Thakur K,et al.Therapeutic potential of probiotics - Lactobacillus plantarum UBLP40 and Bacillus clausii UBBC07 on thioacetamide-induced acute hepatic encephalopathy in rats[J].Metab Brain Dis,2022,37(1):185-195.
[33]Wang X,Zhang P,Zhang X.Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity[J].Molecules,2021,26(19):6076.
[34]Dhiman RK,Rana B,Agrawal S,et al.Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial[J].Gastroenterology,2014,147(6):1327-1337.e1323.
[35]Gibson GR,Hutkins R,Sanders ME,et al.Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J].Nat Rev Gastroenterol Hepatol,2017,14(8):491-502.
[36]Whisner CM,Castillo LF.Prebiotics, Bone and Mineral Metabolism[J].Calcif Tissue Int,2018,102(4):443-479.
[37]Gluud LL,Vilstrup H,Morgan MY.Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis[J].Cochrane Database Syst Rev,2016,4:Cd003044.
[38]Tranah TH,Edwards LA,Schnabl B,et al.Targeting the gut-liver-immune axis to treat cirrhosis[J].Gut,2021,70(5):982-994.
[39]Nooij S,Vendrik KEW,Zwittink RD,et al.Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection[J].Genome Med,2024,16(1):37.
[40]Wang WW,Zhang Y,Huang XB,et al.Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction[J].World J Gastroenterol,2017,23(38):6983-6994.
[41]Kao D,Roach B,Park H,et al.Fecal microbiota transplantation in the management of hepatic encephalopathy[J].Hepatology,2016,63(1):339-340.
[42]Li J,Wang D,Sun J.Application of fecal microbial transplantation in hepatic encephalopathy after transjugular intrahepatic portosystemic shunt[J].Medicine (Baltimore),2022,101(3):e28584.
[43]Brahe LK,Astrup A,Larsen LH.Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?[J].Obes Rev,2013,14(12):950-959.
[44]Ahluwalia V,Betrapally NS,Hylemon PB,et al.Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis[J].Sci Rep,2016,6:26800.
[45]European Association for the Study of the Liver.EASL Clinical Practice Guidelines on nutrition in chronic liver disease[J].J Hepatol,2019,70(1):172-193.
[46]Kelly CR,Ananthakrishnan AN.Manipulating the Microbiome With Fecal Transplantation to Treat Ulcerative Colitis[J].JAMA,2019,321(2):151-152.
[47]Paramsothy S,Nielsen S,Kamm MA,et al.Specific Bacteria and Metabolites Associated With Response to Fecal Microbiota Transplantation in Patients With Ulcerative Colitis[J].Gastroenterology,2019,156(5):1440-1454.e1442.
[48]Pazgan-Simon M,Zuwa a-Jagie" o J,Serafińska S,et al.Nutrition principles and recommendations in different types of hepatic encephalopathy[J].Clin Exp Hepatol,2016,1(4):121-126.
[49]Han X,Luo Z,Wang W,et al.Efficacy and Safety of Rifaximin Versus Placebo or Other Active Drugs in Critical ill Patients With Hepatic Encephalopathy[J].Front Pharmacol,2021,12:696065.
[50]Patidar KR,Bajaj JS.Antibiotics for the treatment of hepatic encephalopathy[J] Metab Brain Dis,2013,28(2):307-312.
[51]Tan W,Wang J,Shi PM,et al.Effects of Low-dose and High-dose Rifaximin in the Treatment of Covert Hepatic Encephalopathy[J].J Clin Transl Hepatol,2022,10(6):1099-1106.
收稿日期:2024-06-02;修回日期:2024-06-20
編輯/肖婷婷