【摘要】在小學數(shù)學教學過程中,教師往往采用統(tǒng)一的教學進度和教學方法,忽視了學生之間的個體差異,而開展個性化分層教學,教師可以根據(jù)不同層次學生的特點制訂有針對性的教學計劃.為此,文章主要探究小學數(shù)學教學中開展個性化分層教學的有效途徑,通過分析個性化分層教學的意義,闡述教學中的因材施教、動態(tài)調(diào)整、公平公正和激勵性原則,并詳細介紹課前預習分層、教學目標分層、教學提問分層和課后作業(yè)分層等途徑,以期提升小學數(shù)學教學質(zhì)量,促進不同層次學生的共同進步.
【關(guān)鍵詞】小學數(shù)學;個性化;分層教學
引 言
數(shù)學作為一門基礎(chǔ)學科,在培養(yǎng)學生邏輯思維、問題解決能力等方面起著至關(guān)重要的作用.每名學生在數(shù)學學習方面都具有獨特性,存在著學習能力、興趣愛好和認知水平等方面的差異.在傳統(tǒng)教學模式下,教師往往以相同的教學進度、教學方法和教學內(nèi)容面對全體學生,難以滿足所有學生的多樣化需求,而個性化分層教學能夠根據(jù)學生的不同特點進行有針對性的教學,使每名學生都能在自己的能力范圍內(nèi)得到充分的發(fā)展.下面筆者將深入探究小學數(shù)學教學中開展個性化分層教學的途徑,以期為小學數(shù)學教學提供有益的參考.
一、小學數(shù)學教學中開展個性化分層教學的意義
(一)滿足學生個體差異需求
每名學生都是獨一無二的個體,在數(shù)學學習方面存在著不同的能力水平、學習風格和興趣愛好.開展個性化分層數(shù)學教學能夠充分考慮到這些差異.對于學習能力較強的學生,他們可以在更高層次的學習任務中挑戰(zhàn)自我,拓寬思維的深度和廣度,滿足對知識的強烈渴望.而對于學習能力稍弱的學生,分層教學可以提供更適合他們水平的教學內(nèi)容和方法,讓他們能夠逐步建立起學習信心,扎實掌握基礎(chǔ)知識.個性化分層教學通過滿足不同學生的個體需求,使每名學生都能在數(shù)學學習中找到自己的位置和價值,從而激發(fā)他們的學習積極性和主動性.
(二)促進學生全面發(fā)展
個性化分層數(shù)學教學不僅關(guān)注學生的數(shù)學成績,更注重學生的全面發(fā)展.在分層教學中,教師可以根據(jù)學生的興趣愛好和特長,為他們提供多樣化的學習資源和活動.例如,對于那些對數(shù)學競賽感興趣的學生,教師可以組織他們參加數(shù)學競賽培訓;對于喜歡數(shù)學實踐活動的學生,教師可以開展數(shù)學實驗、數(shù)學建模等活動.教師組織的這些活動,不僅可以提高學生的數(shù)學素養(yǎng),還能培養(yǎng)他們的創(chuàng)新精神、合作能力和實踐能力,為他們的未來發(fā)展奠定堅實的基礎(chǔ).
二、小學數(shù)學教學中開展個性化分層教學的原則
(一)因材施教原則
因材施教是個性化分層教學的核心原則.每名學生在數(shù)學學習能力、興趣愛好、認知水平等方面都存在差異.因此,教師要深入了解學生的這些特點,根據(jù)不同學生的具體情況進行分層.對于學習能力強、接受速度快的學生,教師可以提供更具挑戰(zhàn)性的學習任務和拓展內(nèi)容,鼓勵他們進行深入探究和創(chuàng)新思維;對于學習能力一般的學生,教師要注重鞏固基礎(chǔ)知識,逐步提高他們的學習能力;對于學習有困難的學生,教師要給予他們更多的關(guān)注和輔導,采用簡單易懂的教學方法,幫助他們克服困難,建立學習信心.教師只有真正做到因材施教,才能使每名學生都能在自己的能力范圍內(nèi)得到最大限度的發(fā)展.
(二)動態(tài)調(diào)整原則
學生的學習情況是不斷變化的,因此個性化分層教學不能一成不變.教師要定期對學生的學習情況進行評估和分析,根據(jù)學生的進步或退步情況及時調(diào)整分層.如果學生在一段時間內(nèi)表現(xiàn)出明顯的進步,教師可以將其調(diào)整到更高層次的學習小組;反之,如果學生出現(xiàn)學習困難,教師也可以將其調(diào)整到較低層次的小組,以便給予更有針對性的幫助.動態(tài)調(diào)整原則可以確保分層教學始終符合學生的實際情況,能夠激發(fā)學生的學習動機,促進他們不斷進步.
(三)公平公正原則
在個性化分層教學中,教師要確保對每名學生都公平公正.教師不能因為學生的分層而對他們產(chǎn)生偏見或歧視,要給予每名學生同等的關(guān)注和機會.在教學過程中,教師要根據(jù)不同層次學生的實際情況制訂合理的教學目標和評價標準,讓每名學生都能感受到自己的努力得到了認可和回報.同時,教師還要鼓勵不同層次學生之間的相互交流與合作幫助,營造一個公平、和諧的學習氛圍.
(四)激勵性原則
個性化分層教學要注重激勵學生的學習積極性和主動性.教師可以通過多種方式對學生進行激勵,如表揚、獎勵、展示優(yōu)秀作品等.對于高層次的學生,教師要激勵他們不斷挑戰(zhàn)自我,追求卓越;對于中層次的學生,教師要鼓勵他們向更高層次邁進,突破自我;對于低層次的學生,教師要及時發(fā)現(xiàn)他們的進步和閃光點,給予充分的肯定和鼓勵,讓他們感受到自己的努力是有價值的.激勵性原則可以增強學生的學習動力,提高他們的學習效果.
三、小學數(shù)學教學中開展個性化分層教學的途徑
(一)課前預習分層,奠定學生數(shù)學學習的基礎(chǔ)
課前預習分層能夠充分滿足不同層次學生的學習需求,無論是基礎(chǔ)較弱的學生,還是能力較強的學生,都能在預習中找到適合自己的任務,為課堂學習奠定良好基礎(chǔ).教師可依據(jù)學生的學習能力、成績、學習態(tài)度等因素,將學生分為基礎(chǔ)層、提高層和拓展層,并針對不同層次的學生制訂不同的預習任務.對于基礎(chǔ)層學生,教師可以要求他們閱讀教材內(nèi)容,了解基本概念,嘗試完成簡單練習題.提高層學生在基礎(chǔ)層任務的基礎(chǔ)上,要分析教材中的例題,總結(jié)解題方法,嘗試做難度稍高的練習題.拓展層學生除了需要完成提高層任務,還需進行拓展閱讀或探究相關(guān)知識在實際生活中的應用.
以人教版四年級上冊“平行四邊形和梯形”教學為例,教師可以根據(jù)不同層次學生的預習任務,在課堂上進行有針對性的引導.對于基礎(chǔ)層學生,教師在課堂上請他們分享生活中找到的平行四邊形和梯形實例,學生積極發(fā)言,有的說窗戶中的玻璃是平行四邊形,因為它有兩組對邊分別平行;有的說家里的收納盒側(cè)面形狀是梯形,因為它只有一組對邊平行.教師對他們的回答給予肯定和補充,進一步強化了他們對基礎(chǔ)知識的理解.比如,教師可以拿出一個平行四邊形的教具,讓學生指出它的兩組對邊,并強調(diào)平行四邊形的對邊不僅平行,而且長度相等.對于梯形,教師可以通過圖形展示,讓學生明確梯形的上下底和平行的一組對邊.對于提高層學生,教師可以讓他們展示自己畫的平行四邊形和梯形的高,并講解畫高的方法.學生準確地說出畫高的步驟,有的學生說先確定底邊,然后用直角三角板的一條直角邊與底邊重合,另一條直角邊過對邊的一點,最后畫出高.接著,教師可以引導他們思考不同形狀的圖形高的特點,拓展思維.比如,教師可以出示一個斜著的平行四邊形,讓學生畫出不同底邊上的高,并觀察高的長度是否相等.通過討論和分析,學生發(fā)現(xiàn)平行四邊形的高可以有無數(shù)條,并且同一底邊上的高長度相等.對于梯形,教師可以讓學生畫出不同類型梯形的高,如直角梯形、等腰梯形等,讓學生觀察高與上下底的關(guān)系.對于拓展層學生,教師可以讓他們分享自己找到的平行四邊形和梯形在建筑和藝術(shù)領(lǐng)域的應用實例,如埃菲爾鐵塔中的平行四邊形結(jié)構(gòu)、一些現(xiàn)代建筑中的梯形設(shè)計等.接著,教師可以鼓勵他們深入分析平行四邊形和梯形的性質(zhì)在實際生活中的意義,培養(yǎng)他們的創(chuàng)新思維和綜合運用知識的能力.拓展層學生可以詳細介紹埃菲爾鐵塔的結(jié)構(gòu)中平行四邊形的作用,比如平行四邊形的不穩(wěn)定性使得鐵塔在風的作用下能夠有一定的變形能力,從而減少風的阻力.對于梯形在建筑中的應用,學生可以分析梯形的穩(wěn)定性如何保證大壩的安全.教師還可以引導拓展層學生思考如何利用平行四邊形和梯形的性質(zhì)設(shè)計一個創(chuàng)意作品,比如設(shè)計一個可以變形的玩具,或者一個具有穩(wěn)定性的書架等.通過這樣的課堂互動,不同層次的學生都能在自己的能力范圍內(nèi)得到提升和發(fā)展.
(二)教學目標分層,明確數(shù)學學習的方向
教學目標分層在小學數(shù)學教學中意義重大,它能讓教師精準定位不同層次學生的學習需求,為每名學生明確具體的努力方向.對于基礎(chǔ)較弱的學生,教師設(shè)定的適宜目標可增強他們的學習信心,使其在逐步達成目標的過程中減少挫敗感,體會到學習的成就感.而對于能力較強的學生,具有挑戰(zhàn)性的目標則如同閃耀的燈塔,激發(fā)他們強烈的探索欲望和競爭意識.通過這種方式,教學目標分層能夠顯著提高教學效果,讓不同層次的學生都能在數(shù)學學習中取得進步與發(fā)展.
以人教版五年級上冊“小數(shù)乘法”教學為例,教師首先要根據(jù)學生的學習成績、學習能力、學習態(tài)度等因素,將學生科學地分為基礎(chǔ)層、提高層和拓展層.接著,針對不同層次的學生制訂相應的教學目標.對于基礎(chǔ)層學生,教師可以設(shè)定以掌握基礎(chǔ)知識和基本技能為主的目標.例如,理解小數(shù)乘法的意義,掌握小數(shù)乘法的計算方法,能夠正確計算簡單的小數(shù)乘法.提高層學生的目標則在基礎(chǔ)層目標之上,要求學生能夠靈活運用小數(shù)乘法解決實際問題,理解小數(shù)乘法的運算規(guī)律.拓展層學生除了完成提高層目標,還需進行拓展探究,培養(yǎng)創(chuàng)新思維和綜合能力,如探究小數(shù)乘法在不同領(lǐng)域的應用或嘗試用不同方法解決復雜問題.在實際教學中,教師再根據(jù)不同層次學生的目標進行有針對性的教學.對于基礎(chǔ)層學生,教師可以通過具體的生活實例,如商店里一支鉛筆0.5元,買3支鉛筆需要多少元錢,引入小數(shù)乘整數(shù)的概念,引導學生理解0.5×3就是求3個0.5相加是多少.隨后詳細講解計算方法,基礎(chǔ)層學生認真聽講,積極進行計算練習,逐步掌握小數(shù)乘整數(shù)的基本計算.對于提高層學生,教師給出實際問題,如:小明坐公交車,每次乘車費用是1.6元,一周坐5次公交車,一共需要花費多少元錢?提高層學生迅速列出算式1.6×5并正確計算結(jié)果,在解決問題過程中總結(jié)小數(shù)乘整數(shù)的運算規(guī)律.教師組織小組討論,讓他們分享發(fā)現(xiàn),加深對運算規(guī)律的理解.對于拓展層學生,教師可以提出更具挑戰(zhàn)性的問題,如在工程建設(shè)中,一段長度為2.5千米的道路,每千米造價是12.8萬元,那么這段道路的總造價是多少萬元?拓展層學生不僅能正確計算結(jié)果,還能思考小數(shù)乘整數(shù)在工程計算中的重要性,嘗試用不同方法解決問題.有的將小數(shù)拆分成整數(shù)和小數(shù)部分分別計算再相加,有的利用乘法分配律進行簡便計算.教師鼓勵學生分享解題方法,激發(fā)其創(chuàng)新思維,同時引導學生思考小數(shù)乘整數(shù)與整數(shù)乘法的聯(lián)系和區(qū)別,提升他們的綜合能力.
(三)教學提問分層,保證教學中數(shù)學問題的深度
對于不同層次的學生而言,它能精準滿足其學習需求.教師可依據(jù)學生的學習成績、學習能力、學習態(tài)度等因素,將學生分為基礎(chǔ)層、提高層和拓展層.在進行問題設(shè)計時,針對不同層次的學生各有側(cè)重.對于基礎(chǔ)層學生,問題主要圍繞基礎(chǔ)知識和簡單概念,以記憶和理解為主.
以人教版六年級上冊“圓的認識”教學為例,教師可以充分運用教學提問分層策略.對于基礎(chǔ)層學生,教師可以提出問題:“圓的半徑是怎樣定義的?圓有多少條半徑?”基礎(chǔ)層學生認真思考后,結(jié)合課本知識回答出圓的半徑是連接圓心和圓上任意一點的線段,圓有無數(shù)條半徑.教師給予肯定和鼓勵,進一步鞏固他們對圓的基本概念的理解.對于提高層學生,教師可以提問:“已知一個圓的直徑是8厘米,求這個圓的周長和面積.”“在一個長方形中畫一個最大的圓,這個圓與長方形有什么關(guān)系?”提高層學生迅速動筆計算,運用圓的周長和面積公式準確求出結(jié)果.對于在長方形中畫最大圓的問題,教師要讓他們通過分析得出圓的直徑等于長方形的寬,并且闡述圓與長方形在面積、周長等方面的關(guān)系,引導學生嘗試不同的解題思路,拓展思維.對于拓展層學生,教師可以提出問題:“如何利用圓的知識設(shè)計一個富有創(chuàng)意的校園景觀?”“圓在藝術(shù)創(chuàng)作中扮演著怎樣的角色?”拓展層學生展開熱烈討論,發(fā)揮豐富的想象力,有的提出可以用不同大小的圓組成一個噴泉景觀,有的從藝術(shù)作品中的圓形元素入手,分析圓在藝術(shù)表達中的獨特魅力.教師可以鼓勵學生用圖形或文字展示自己的設(shè)計方案,培養(yǎng)他們的創(chuàng)新能力和綜合素養(yǎng).
(四)課后作業(yè)分層,提升數(shù)學練習的個性化
教師通過作業(yè)分層能夠真正實現(xiàn)因材施教,依據(jù)不同學生的學習能力和水平設(shè)計個性化作業(yè),讓每名學生都能在適合自己的作業(yè)任務中得到充分鍛煉和提高.對于基礎(chǔ)較弱的學生,難度適宜的作業(yè)可避免他們因作業(yè)過難而產(chǎn)生挫敗感,增強自信心,激發(fā)學習興趣.對于能力較強的學生,富有挑戰(zhàn)性的作業(yè)則能滿足他們的求知欲,進一步提升他們的學習積極性.同時,分層作業(yè)能讓學生更有針對性地進行練習,及時發(fā)現(xiàn)并改進自身薄弱環(huán)節(jié),從而顯著提高整體學習效果.在小學數(shù)學教學中,教師要依據(jù)學生的學習成績、課堂表現(xiàn)、作業(yè)完成情況等因素,將學生分為基礎(chǔ)層、提高層和拓展層.基礎(chǔ)層作業(yè)以基礎(chǔ)知識的鞏固和簡單應用為主,提高層作業(yè)在基礎(chǔ)層作業(yè)的基礎(chǔ)上,增加一些綜合性的題目和拓展應用,拓展層作業(yè)則需要注重創(chuàng)新思維和探究能力的培養(yǎng).
以人教版四年級下冊“三角形的內(nèi)角和”教學為例,教師可以實施課后作業(yè)分層策略,具體如下表所示.

對于基礎(chǔ)層學生,教師布置的作業(yè)內(nèi)容為完成課本練習題,計算常見三角形內(nèi)角和如直角三角形、等腰三角形等,并畫出幾個三角形標注角的度數(shù)后計算內(nèi)角和進行驗證.學生在課后通過實際計算和畫圖操作,進一步鞏固了三角形內(nèi)角和是180度的概念.在課堂上,教師組織基礎(chǔ)層學生展示作業(yè)成果,讓他們說出計算過程和方法,然后進行點評和指導,幫助他們加深對知識的理解.
對于提高層學生,教師設(shè)計的作業(yè)內(nèi)容可以給定一些不規(guī)則三角形的部分角度信息求其他角的度數(shù)以及利用三角形內(nèi)角和知識解決實際生活中的問題,如在一個三角形廣告牌中,已知兩個角的度數(shù)求第三個角的度數(shù).學生在完成作業(yè)過程中,充分運用所學知識進行分析推理,成功解決較為復雜的問題.課堂上,教師要讓學生積極分享解題思路和方法,與其他學生進行交流討論,并引導他們總結(jié)解題技巧和規(guī)律,提升綜合應用能力.
對于拓展層學生,作業(yè)內(nèi)容包括探究三角形內(nèi)角和的證明方法,除課本上的剪拼法,教師可以讓學生嘗試用其他方法進行證明,也可以設(shè)計一個實驗驗證三角形內(nèi)角和在不同條件下是否會發(fā)生變化.學生主動探索,通過查閱資料、實驗操作等方式提出多種不同的證明思路.最后在課堂上,教師可以讓學生展示實驗的過程和結(jié)果,并與其他學生共同探討三角形內(nèi)角和的本質(zhì),如此,可以促進他們的思維創(chuàng)新,并培養(yǎng)他們的探究精神和科學素養(yǎng).
結(jié) 語
綜上所述,在小學數(shù)學教學中開展個性化分層教學具有重要的現(xiàn)實意義.通過遵循因材施教、動態(tài)調(diào)整、公平公正和激勵性原則,采取課前預習分層、教學目標分層、教學提問分層和課后作業(yè)分層等途徑,可以更好地滿足不同層次學生的學習需求,提高教學效率和質(zhì)量,促進學生的全面發(fā)展.在實際教學中,教師應不斷探索和創(chuàng)新個性化分層教學的方法,根據(jù)學生的實際情況進行靈活調(diào)整,確保分層教學的有效性.相信在個性化分層教學的推動下,小學數(shù)學教學將迎來更加美好的未來,為培養(yǎng)具有創(chuàng)新精神和實踐能力的高素質(zhì)人才奠定堅實的基礎(chǔ).
【參考文獻】
[1]伍瑞.“雙減”背景下小學第三學段數(shù)學分層作業(yè)的設(shè)計與應用研究[J].林區(qū)教學,2024(9):116-120.
[2]張鋒.基于教育云平臺的小學數(shù)學分層作業(yè)設(shè)計研究[J].中國新通信,2024,26(13):179-181.
[3]劉明霞.基于學生差異的小學數(shù)學分層教學策略[J].數(shù)學學習與研究,2024(25):69-71.