【摘要】數學教學不僅能夠幫助小學生建立起堅實的數學基礎,更重要的是它能夠培養學生邏輯思維、抽象思維以及問題解決的能力,這些能力將會伴隨他們一生,成為他們在學習和生活中取得成功的重要基石.基于此,文章圍繞核心素養培養這一大目標,提出了小學數學教學的具體策略,即通過“啟思導悟”階段的開放性問題和模擬情境,激發學生的主動思考與體驗式學習;在“析理明道”環節采用分層解析與類比方法,幫助學生深化對數學概念的理解;最后通過“合作探究”模式鼓勵團隊協作解決問題,并分享各自的學習心得與解題策略,以促進學生知識內化與綜合能力提升.
【關鍵詞】核心素養;小學數學;策略研究
引 言
在當今教育體系中,核心素養已經成為培養學生的重點方向之一.核心素養是指學生應具備的基本能力和品質,它不僅包括知識技能,更強調情感態度和價值觀的培養.對于小學數學的教學而言,培養學生的邏輯思維能力是實現核心素養教育目標的重要環節.小學生正處于認知發展的關鍵時期,通過有效的數學教學能夠為他們打下堅實的基礎.而教師要注意加強與學生的互動,引導他們多元思考,同時循序漸進地引導,并注重組織合作學習,讓學生在與他人的互動中完成對知識的深度了解和建構.這樣,小學生方能全面地鍛煉邏輯思維能力,提高數學核心素養.
一、基于核心素養培養的小學數學教學價值
(一)培養學生邏輯思維能力
邏輯思維是解決問題的關鍵技能之一,而數學教學正是培養這種能力的有效途徑.在數學學習過程中,學生會接觸各種各樣的概念、公式和解題方法,這些都需要通過邏輯推理來理解和應用.通過對數學邏輯的學習,學生不僅能夠掌握解決數學問題的方法,還能逐漸學會如何運用邏輯推理去分析和解決日常生活中的問題.這種能力的培養有助于學生養成系統性思考的習慣,使其在面對復雜情境時能夠更加冷靜地分析問題,尋找解決問題方案.
(二)提升學生抽象思維水平
數學是一門抽象性的學科,它要求學生能夠在具體的數字、圖形中看到更深層次的數學關系和模式.通過數學邏輯的教學,學生被引導著從直觀的具體事物過渡到抽象的概念,比如從具體的加減乘除運算過渡到理解等式、不等式的性質.這種由具體到抽象的過程有助于學生提升抽象思維的能力,這對于他們未來學習更高深的數學知識至關重要.此外,抽象思維的提升還能夠促進學生在其他學科領域的學習,如科學、工程和技術等領域,這些領域同樣需要較高的抽象思維能力.
(三)增強學生問題解決技巧
數學教學強調的是解決問題的過程而非僅僅得到答案.教師通常會設計一系列問題來引導學生思考,鼓勵他們探索不同的解題路徑,并從中選擇最優解.這種教學方式不僅能夠提高學生的解題效率,還能激發他們的創造力和批判性思維.在解決問題的過程中,學生學會了如何有效利用已有的知識資源,如何通過邏輯分析來判斷信息的有效性和相關性.這些技巧對于學生來說是非常寶貴的資源,無論是在學術領域還是在未來的職業生涯中都大有裨益.
二、基于核心素養的小學數學教學應注重的問題
(一)培養學生問題意識與探究精神
在小學數學教學過程中,教師應注重引導學生形成問題意識,鼓勵他們主動發現問題、提出問題,并嘗試解決問題.這種探究式的學習方式能夠激發學生的好奇心,使他們在探索的過程中逐步建立起邏輯思維的能力,形成探究精神.為了達成這一目標,教師需要創設開放性的問題情境,讓學生在解決問題的過程中學會分析、推理和總結,而不是簡單記憶公式或答案.
(二)強調思維過程而非結果
傳統的數學教學往往側重解題技巧和正確答案,而忽視了思考過程的重要性.基于核心素養培養的教學理念要求教師更加重視學生思考的過程,引導他們理解數學概念背后的邏輯關系,而不是僅僅追求最終的答案.這意味著教師要教會學生如何通過邏輯推理來驗證自己的想法,如何運用數學語言準確表達自己的思考過程.通過這種方式,學生能夠在學習數學知識的同時,培養出嚴謹的邏輯思維習慣和批判性思考的能力.
(三)符合實際生活情境
將數學知識與現實生活緊密結合起來,可以幫助學生更好地理解抽象的數學概念,并提高他們解決實際問題的能力.通過將數學問題置于具體的生活場景中,學生可以更容易地建立起數學知識與實際應用之間的聯系,從而增強對數學學習的興趣和動力.此外,這種教學方法還有助于培養學生解決復雜問題的能力,因為在現實世界中遇到的問題往往是多維度且復雜的,需要綜合運用多種數學知識和邏輯思維來進行解決.
三、基于核心素養培養的小學數學教學策略
(一)啟思導悟,引發思考
1.開放提問,促進學生獨立思考
教師可以在課堂上提出開放性問題,鼓勵學生大膽猜測、假設,并引導他們通過觀察、實驗或推理來驗證自己的想法.這種互動式教學能夠激發學生的積極性,培養其獨立思考的能力.面對教師精心設計的問題,學生能夠主動思考,全面調動自身內在的好奇心與求知欲.這樣,他們的思維能被有效激活,從不同角度思考問題,更好地理解數學概念.
以蘇教版六年級下冊“正比例和反比例”一課的教學為例,教師可以通過日常生活中的實例,如花園澆水的情境,來引導學生探索數學概念,激發他們對新知識的好奇心和興趣.在教學中,教師可以先向學生提出一個問題:“假設你們家有一個花園需要澆水,那么水管的水流大小與澆水所需的時間之間有什么樣的關系呢?”這樣的問題能夠引發學生的思考,并且使他們意識到,在現實生活中,許多現象都遵循著一定的數學規律.接著,教師可以進一步提問:“如果我們希望盡快完成澆水任務,應該調整水流到多大?這樣做又會對總的用水量產生什么影響呢?”這些問題促使學生開始思考不同變量之間的相互作用,并逐漸理解其中的數學原理.
在學生分享了他們的想法后,教師可以總結并引入數學概念:“當我們說兩個量成反比時,是指其中一個量增大時,另一個量按照一定的比例減小.例如,當水流加大,澆水所需的時間就會縮短;反之亦然.但是,這種變化不是無限制的,因為水流的大小不是無限的.”
這樣的教學方式不僅能幫助學生牢固掌握數學知識點,還能讓他們體會到數學在現實生活中的應用價值,增強知識應用意識.
2.模擬情境,促進學生體驗感悟
創設與學生生活經驗相聯系的情境,讓他們在模擬的情境中感受數學的實際應用.這種體驗式學習能夠加深學生對數學概念的理解,增強其應用數學知識解決實際問題的能力.為此,教師可以通過角色扮演、小組合作等方式,構建貼近學生生活的數學情境,讓學生置身其中,通過實踐操作來探索數學規律.這樣不僅能提高學生的學習興趣,還能讓他們在實踐中領悟數學的奧秘.
以蘇教版五年級上冊“小數加法和減法”一課教學為例,教師可以“超市購物”為主題,設計一個模擬的購物活動,讓學生在活動中體驗使用小數進行加法和減法運算的過程.
首先,教師可以準備一些商品卡片,上面標有各種零食、文具等物品的價格,價格采用小數形式表示,如2.5元、1.2元等.然后,將學生分成幾個小組,每個小組負責一個“攤位”,攤位上有不同的商品供其他小組“購買”.接著,教師可以發放“購物券”,讓學生作為“顧客”去各個攤位選購商品,并計算他們所選商品的總價.在活動過程中,學生需要運用小數加法來計算總價,還需要考慮預算限制,即手中的“購物券”數量有限,這就促使他們不僅要正確計算價格,還要學會合理分配資源.當學生完成購物后,教師還可以安排一個環節,讓每個小組展示他們的購物清單和花費總額,并解釋他們是如何計算的.
為了增加活動的趣味性和挑戰性,教師還可以設定一些額外的任務,比如要求學生在限定時間內完成購物,并確保所購商品總價不超過特定數額,這不僅考驗了他們的小數運算能力,還鍛煉了他們的決策能力和時間管理能力.
通過這樣的實踐活動,學生能夠進一步體會到數學的應用價值,并感受到小數的運算邏輯,鍛煉了運算能力.
(二)析理明道,深化理解
1.分層解析,逐步深入
教師針對數學概念或問題的不同層次進行解析,由淺入深,從簡及繁,能夠幫助學生逐步建立系統的數學知識體系,幫助學生理解數學概念的本質,避免死記硬背.這就需要教師根據學生的認知水平,將復雜的數學問題分解成若干個簡單的子問題,通過逐步解答的方式引導學生層層推進,最終達到解決問題的目的.
以蘇教版四年級上冊“垂線與平行線”一課教學為例,首先,教師可以從學生熟悉的直線出發,提問學生:“你能畫一條直線嗎?它有什么特點?”以引出直線的基本性質,為后續的概念學習奠定基礎.
接著,教師可以引入垂線的概念,先通過實物演示或多媒體動畫展示兩條直線相交形成直角的情況,讓學生直觀感受什么是垂線.教師可以提問:“如果兩條直線相交形成的四個角都是直角,這兩條直線之間有什么特殊關系呢?”通過這樣的引導,學生能夠自然而然地聯想到垂線的概念.為了加深印象,教師還可以設計一些簡單的練習題,讓學生判斷哪些圖形中的直線是相互垂直的.
接下來,教師再過渡到平行線的概念講解.可以先讓學生嘗試畫兩條不會相交的直線,并討論這兩條直線有何共同之處.教師可以進一步解釋:“兩條直線在同一平面內,永遠不會相交,我們就稱它們為平行線.”為了幫助學生理解平行線的特點,教師可以設計一些動手操作的活動,比如讓學生用尺子和鉛筆嘗試畫出平行線,并通過移動尺子驗證平行線之間的距離是否恒定不變,旨在讓他們清楚平行線定理的邏輯.
這種分步教學法能夠幫助學生更好地吸收知識,同時能夠培養其幾何直觀理解能力.
2.類比遷移,觸類旁通
此策略強調通過類比的方法,讓學生將已知的知識與新學的內容聯系起來,從而完成知識之間的遷移與融合.這種方法有助于學生構建更為緊密的知識網絡,提高其綜合運用知識的能力.而教師需注重引導學生發現新舊知識之間的相似性,讓他們通過類比的方式加深對新知識的理解.例如,在學習新的數學概念時,教師可以將其與學生已經熟悉的概念進行比較,以幫助學生快速把握新知識的特點,從而為知識遷移做準備.
以蘇教版六年級上冊“長方體和正方體”一課教學為例,當介紹長方體和正方體的基本性質時,教師可以先回顧之前學過的平面圖形——長方形和正方形,指出它們之間的區別與聯系,再自然地過渡到三維空間中的長方體和正方體.接著,教師可以展示長方體和正方體的模型,并引導學生觀察和討論:“長方體就像是長方形在三維空間里的延伸,它有六個面,每一個面都是一個長方形,而正方體則是由六個完全相同的正方形組成的.”
隨后,教師可以進一步舉例說明:“就像長方形的長和寬決定了它的面積一樣,長方體的長、寬、高決定了它的體積.如果我們把一個長方形沿著高度方向拉伸,就形成了一個長方體呢?而正方形拉伸一定的高度后就形成了正方體.”通過這樣的類比,學生能夠更加直觀地理解長方體和正方體的形成過程及其與平面圖形之間的關系.
在講解完基本概念之后,教師可以提問:“要做一個長方體形狀的禮物盒,需要多少紙張來覆蓋它的表面?這和我們以前學過的長方形面積有什么關系呢?”旨在讓學生將所學應用到實際問題中去.這不僅能夠激發學生的好奇心,還能讓他們主動思考如何將已有的知識應用到新的情境之中,從而在解決問題的過程中體會新舊知識之間的聯系,了解二者之間形成聯系的邏輯,進而強化推理意識.
(三)合作探究,共享成果
1.合作學習,共解難題
通過小組合作的形式,讓學生在交流討論中互相學習,共同解決難題,能夠促進學生的溝通能力和社會交往能力提高,也能提高他們的團隊協作精神.教師將學生分成若干小組,并分配給每個小組一個特定的任務或問題,要求他們通過合作來完成任務.并且,在合作過程中,教師要適時介入指導,確保每個成員都能積極參與,發揮各自的優勢,共同找到解決問題的方法.
以蘇教版六年級上冊“長方體和正方體”一課教學為例,教師可在完成基本教學之后將全班學生分成若干小組,為每個小組分發一套包含不同尺寸的長方體和正方體模型的材料包,以及一些輔助工具,如尺子、彩筆等.
活動初期,教師可以提出一個問題作為討論的起點:“如果我們有一個長方體模型,你們能找出它的長、寬、高各是多少嗎?你們又如何確定這個長方體是不是正方體呢?”隨后,教師鼓勵學生們圍繞這個問題展開討論,嘗試使用手中的工具測量各個維度的長度,記錄下來,并讓每個小組選出一位代表,分享他們是如何確定長方體的長、寬、高的.接著,教師可以進一步提出挑戰性的任務:“假設我們要制作一個體積為120立方厘米的長方體盒子,你們能想出幾種不同的尺寸組合嗎?”這時,小組成員們需要一起動腦筋,計算各種可能的長、寬、高的組合,確保最終的體積符合要求.在這個環節中,學生不僅要利用已有的數學知識,還需要相互協作,共同克服困難.
在整個過程中,教師應不斷鼓勵學生提問和解答問題,激發他們的創造性思維,要注意觀察每個小組的合作情況,及時給予必要的指導和支持,確保每名學生都有機會發言并提出自己的想法.這樣,學生才能在學習中不斷增強量感和數感.
2.分享思路,互相借鑒
鼓勵學生之間互相分享解題思路和學習心得,能夠使他們產生更豐富的創意和靈感.而且,這種方法不僅能夠增進學生之間的相互了解和支持,也有助于拓寬他們的思維視野.為了促成學生之間的這種交流互動,教師可以設立“數學角”等活動區域,讓學生在課余時間自由交流,分享自己的學習經驗和成果.這種形式不僅能夠增強學生的自信心,還能營造良好的班級學習氛圍.
比如,在教學完蘇教版四年級上冊“可能性”一課后,教師就可以在教室的一角布置一個溫馨且充滿趣味的學習空間,這里可以放置一些與“可能性”課題相關的教具和材料,如骰子、硬幣、轉盤等以及一些空白卡片供學生記錄自己的想法,鼓勵學生在數學角里自由探索,用骰子或硬幣做一些簡單的實驗,并把你的發現寫在卡片上,與同學分享.
在活動過程中,教師可以觀察學生的進展,并適時給予指導:“有沒有人愿意和大家分享一下你是怎么計算出某個事件的可能性的?你用了哪些方法?”這樣,學生不僅能學會如何清晰地表達自己的思考過程,還能從其他同學那里學到不同的解題技巧.
總之,通過這樣的活動,學生不僅鞏固了課堂上學到的知識,還提高了數據意識.這不僅促進了他們數學邏輯思維的發展,也為他們今后的學習生涯奠定了堅實的基礎.
結 語
總而言之,基于核心素養培養的小學數學教學旨在培養學生全面的數學能力和思維品質.教師通過開放性問題的設置與情境模擬的方式能夠激發學生的內在思考動力,鼓勵他們自主探索問題的答案,能夠培養其獨立思考的習慣和解決問題的能力;而運用分層解析法和類比遷移技巧,能夠引導學生從淺入深地理解數學概念,幫助他們加深對知識的理解,使其能夠靈活應用所學;鼓勵學生之間的交流與合作,讓他們共同面對挑戰,分享各自的解決思路,不僅能增強學生的團隊協作精神,還讓每個參與者都能從同伴那里學到新的視角和方法.整體而言,以上教學方法不僅能提升小學生的數學邏輯思維水平,還能促進其綜合素養的發展.
【參考文獻】
[1]李利娟.論小學數學教學中學生邏輯思維能力的培養[J].中國多媒體與網絡教學學報(下旬刊),2024(3):184-186.
[2]韓瓊.小學數學教學中學生邏輯思維能力培養探究[J].基礎教育論壇,2023(24):75-77.
[3]桌廳.小學數學量感教學的優化策略[J].數學學習與研究,2024(31):98-101.