楊超富 譚國慶 徐展望


基金項目:國家自然科學基金面上項目(82174410);山東省自然科學基金資助項目(ZR2020KH011);山東省自然科學基金面上項目(ZR2020MH362);全國名老中醫專家傳承工作室建設項目(國中醫藥人教函[202275號])
引用本文:楊超富,譚國慶,徐展望.骨質疏松中衰老相關分泌表型調控機制的研究進展[J]. 中國全科醫學,2024,27(29):3685-3695. DOI:10.12114/j.issn.1007-9572.2023.0721. [www.chinagp.net]
YANG C F,TAN G Q,XU Z W. Research progress on the regulation mechanism of aging-related secretory phenotype in osteoporosis[J]. Chinese General Practice,2024,27(29):3685-3695.
? Editorial Office of Chinese General Practice. This is an open access article under the CC BY-NC-ND 4.0 license.
【摘要】 衰老相關分泌表型(SASP)是細胞衰老的重要特征,在調控疾病微環境中具有重要作用。目前,對于SASP干預骨代謝、誘導骨流失的作用機制了解有限,因此,本文探討了在骨質疏松模型中SASP的調控機制,并歸納總結了其調控特點:SASP在衰老骨細胞中充分表達,以自分泌/旁分泌的方式將衰老效應傳遞到間充質干細胞,從而干預其成骨分化;SASP激活免疫細胞,并促進其衰老,從而誘導炎性組織微環境的形成,加重骨流失;線粒體穩態失調、病理性血糖升高、肥胖誘導的脂肪蓄積均會促進SASP的表達,從而擾亂微環境穩態,將衰老效應傳遞到骨組織。所以,有必要深入了解SASP在骨質疏松中的作用,為后續開發抗SASP療法治療骨質疏松提供借鑒。
【關鍵詞】 骨質疏松;衰老相關分泌表型;細胞衰老;代謝紊亂;免疫調節
【中圖分類號】 R 681 【文獻標識碼】 A DOI:10.12114/j.issn.1007-9572.2023.0721
Research Progress on the Regulation Mechanism of Senescence-associated Secretory Phenotype in Osteoporosis
YANG Chaofu1,TAN Guoqing2*,XU Zhanwang2
1.Shandong University of Traditional Chinese Medicine,Jinan 250039,China
2.Spinal Department,Affiliated Hospital of Shandong University of Traditional Chinese Medicine,Jinan 250013,China
*Corresponding author:TAN Guoqing,Associate chief physician/Associate professor;E-mail:yxkmt@hotmail.com
【Abstract】 Senescence-associated secretory phenotype(SASP) is an important feature of cellular senescence and plays an important role in regulating the disease microenvironment. At present,the role of SASP in intervening bone metabolism and inducing bone loss is very limited. Therefore,this paper discusses the regulatory mechanism of SASP in osteoporosis models and summarizes its regulatory characteristics:SASP is fully expressed in senescent bone cells and transmits aging effects to mesenchymal stem cells in an autocrine/paracrine manner,thereby interfering with osteogenic differentiation. SASP activates immune cells and promotes their aging,thus inducing the formation of inflammatory tissue microenvironment and aggravating bone loss. Mitochondrial homeostasis,pathologic hyperglycemia,and obesity-induced fat accumulation all promote SASP expression,thus disrupting microenvironmental homeostasis and transmitting aging effects to bone tissue. To sum up,understanding the role of SASP in osteoporosis lays a solid foundation for us to develop anti-SASP therapy for osteoporosis in the future.
【Key words】 Osteoporosis;Senescence-associated secretory phenotype;Cell senescence;Metabolic disorders;Immunomodulation
骨質疏松癥是一種因骨密度下降導致骨折風險增高的全身性代謝骨病。2021年,一項全國性、多中心的雙能X線吸收測定法(DXA)研究調查了中國40歲以上人群骨質疏松癥的標準化患病率,該項研究顯示:40歲及以上女性骨質疏松癥的總體患病率為20.6%,男性為5.0%。絕經后女性骨質疏松癥患病率為32.1%,50歲及以上男性骨質疏松癥患病率為6.9%[1]。雖然該結果與其他相關研究[2]均表明,女性比男性更容易患上骨質疏松癥和隨后的骨折,但對于40歲及以上的男性來說,其椎體骨折發生率要高于女性。因此,對于不同性別的骨質疏松癥患者來說,降低脆性骨折發生風險,增強骨密度和骨穩定性,是治療的重中之重。
衰老相關分泌表型(SASP)的概念最早由Jean-Philippe Copper于2008年提出,用于人類惡性腫瘤的研究。這項研究表明,衰老細胞可以通過分泌一些物質促進癌前細胞癌變,這些物質統稱為SASP因子[3]。隨著不斷研究,SASP因子家族也在發展壯大;SASP由一系列促炎因子、趨化因子、生長因子和蛋白酶組成,是細胞衰老時體內外多種因子刺激產生的,包括腫瘤壞死因子(TNF)-α、白介素(IL)-6、IL-1、IL-8、基質金屬蛋白酶(MMP)、粒細胞集落刺激因子(G-CSF)等。而近年來SASP在調控疾病微環境中的作用越來越得到重視;SASP能影響細胞行為,并與細胞應激性衰老、年齡相關老化有著千絲萬縷的聯系,而這種聯系很大程度上在于SASP可以激活免疫系統,并促進慢性炎癥的形成[4-5]。本文旨在利用SASP相關觀點闡述骨質疏松的形成機制,并重點探討了骨骼老化如何驅動成骨能力降低、SASP如何激活免疫應答以及代謝紊亂如何誘發SASP等重點問題。
本文文獻檢索策略:計算機檢索PubMed、Web of Science等數據庫,將檢索時間設定為建庫至2023年7月,檢索詞包括“osteoporosis”“senescence-associated secretory phenotype”“Bone loss”“cell aging”“metabolic disorders”等。納入標準:內容涉及以上關鍵詞的文獻,優先選擇高質量期刊的文獻。排除標準:文獻內容與本文主題無關聯、文章質量較差、無法獲得全文的文獻。
1 SASP:干預間充質干細胞(MSC)成骨分化,調控骨質疏松中組織的再生與修復
對于骨質疏松癥患者的監管,基于SASP的觀點認為:年齡相關的骨流失只是誘發骨形成減少的一個重要因素,但不是全部——持續的DNA損傷及創傷后機體的應激反應會導致大量SASP因子釋放,從而介導全身慢性無菌性炎癥,也會顯著影響骨代謝平衡,尤其是DNA損傷導致的永久性細胞周期停滯,會影響MSC活性以及增殖分化能力,這會對骨組織的再生與修復造成不可逆的損傷。因此,利用SASP調控MSC使之具有穩定的增殖分化能力,是其成骨分化的基礎。
骨微環境中SASP因子的釋放是影響MSC活性的重要因素。一項研究表明,衰老的骨細胞通過旁分泌途徑改善骨髓間充質干細胞(BMSCs)的分化潛力,其過程表現為:(1)應激來源激活導致骨細胞核內染色質結構的破壞、核完整性的破壞以及衰老相關異染色質灶(SAHF)的形成,并導致γ-H2AX(一種DNA雙鏈斷裂標志物)積累。(2)衰老骨細胞失去分裂能力并經歷生長停滯,但其仍具有代謝活性并分泌SASP,導致IL-6、IL-1α、MMP-3和抵抗素等細胞因子積累。(3)BMSCs集落形成的能力被輕度破壞,成骨、成脂分化潛力降低。(4)經體外誘導的BMSCs礦化結節形成能力顯著降低,脂肪形成能力顯著增加,導致骨骼老化與骨質流失[6]。
骨穩態的調節依賴MSC和造血干細胞(HSC)譜系之間的相互作用,且在衰老進程中尤為明顯。在衰老過程中,這些細胞譜系發生劇烈變化,導致骨髓-淋巴造血和脂肪-成骨分化之間的不平衡[7-8],這導致骨髓生成和脂肪生成增加,而不是淋巴細胞生成和骨生成。SASP觀點認為:衰老及數量減少的骨細胞會產生SASP因子,定向改變MSC譜系,導致破骨細胞增加。該過程具體表現為:(1)MSC、HSC多次傳代導致細胞衰老,并分泌SASP,越來越多的SASP因子(TNF-α、IL-1β和IL-6等)參與循環,骨髓成熟度增加,隨著基因表達產物增多,誘導衰老進行性加重,導致骨細胞出現衰老表型甚至消融,引起數目減少。(2)骨細胞分泌SASP因子,反向作用MSC,下調成骨通路Wnt、Hedgehog、Notch表達,并導致MSC成脂分化增加,脂肪積累。(3)循環性RANKL增加,循環性骨保護素(OPG)減少,RANKL/OPG比率下降、血清Ⅰ型c-端肽(CTX)分泌增加,破骨細胞生成增加,導致骨質減少[9]。
諸如衰老的骨細胞等可以通過產生SASP來誘導MSC的衰老,因此要穩定應用MSC等再生醫學成果來改善骨質流失、骨缺損的情況,則需要探討MSC傳代引發自身衰老導致的問題:許多研究證實,傳代晚期MSC會分泌SASP因子促進早期MSC衰老,極大影響了利用干細胞移植促進組織再生的策略[10-11]。且傳代晚期MSC的成骨、成脂分化潛力減弱,其穩態的維持卻依賴于產生的SASP:含有脂質代謝物的細胞外囊泡經由衰老MSC產生、并具有誘導細胞衰老和凋亡的毒性,反而加重了衰老進程[12]。小尺寸的MSC具有更高的生長潛力和更低的衰老率[13],SASP通過自分泌/旁分泌正調節環路維持衰老進程[14]。相關研究證實,臍帶血來源的間充質干細胞(UCB-MSC)的小細胞具有更強的增殖能力,并且表現出更低的細胞衰老[15]:UCB-MSC小細胞多次傳代產生低劑量的以生長調節致癌基因α、IL-8為主的SASP因子,其與趨化因子受體2(CXCR2)結合加速細胞衰老進程,并受Toll樣受體2(TLR2)和TLR5促進、MSC小細胞分泌的si-RNA抑制。傳代晚期MSC細胞可通過旁分泌方式釋放IL-1α、IL-8等炎性因子以核因子(NF)-κB依賴的方式誘導早期MSC的衰老[16]。信號蛋白WNT3可通過抑制SASP因子的旁分泌途徑來中斷MSC的衰老進程:并且WNT信號不是通過調節增殖和分化,而是通過保護細胞免受衰老的有害影響來支持MSC增殖和發育潛力[17]。MSC中轉錄因子TWIST1的沉默會增加衰老的發生,并導致其代謝異常,具體可表現為細胞耗氧率增加[18]。核層缺陷的發生是導致MSC早衰的原因之一:異常的前核纖層蛋白A通過MSC中的GATA4依賴性途徑觸發旁分泌衰老;GATA4的缺失通過早老蛋白或前核纖層蛋白A抑制MSC中的NF-κB和MCP-1消除了SASP依賴性衰老[19]。BMI-1是調節MSC自我更新的重要因子,衰老MSC細胞中SASP因子IL-1α升高,導致B細胞特異性莫洛尼鼠白血病病毒整合位點1 BMI-1表達降低,是MSC早衰的原因之一[20]。
mi-RNA被認為是調控MSC行為的重要靶標,包封mi-RNA的小細胞外囊泡可作為無細胞療法應用于骨再生與修復。SASP觀點認為:mi-RNA借由外泌體囊泡運輸,通過旁分泌途徑誘導MSC出現衰老表型。此外mi-RNA也可由MSC產生,通過調節特定的靶基因加速衰老進程。miR-29c-3p可通過p53-p21和p16-pRB途徑靶向CNOT6促進MSC衰老[21]。miR-31在老年人和骨質疏松癥患者的血漿中升高,經由衰老來源細胞的外泌體囊泡運輸,并被MSC吸收,通過敲低其靶標frizzed-3來抑制成骨分化[22]。miR-335可顯著調節MSC的增殖和分化,在體內通過響應誘導細胞衰老的刺激而增加。miR-335的過表達借由外泌體囊泡運輸作用于MSC,并降低其軟骨成骨潛力[23]。P65可以防止MSC產生SASP因子,并防止MSC之間的旁分泌衰老和通過小細胞外囊泡的促炎信息的傳遞[24]。
2 SASP:介導骨質疏松中慢性炎癥反應,調控骨免疫網絡
骨質疏松癥患者的骨微環境中含有大量促炎因子,可介導全身出現慢性炎性反應。SASP觀點認為:這種慢性炎癥狀態的建立會顯著加重細胞衰老,促炎因子是SASP的重要組成部分可由全身出現衰老表型的細胞釋放,而抵抗這種炎性狀態很大程度上依賴免疫系統,尤其是免疫細胞的行為。該筆者以SASP因子作為橋梁,探討了免疫系統與骨代謝平衡之間的聯系以及衰老的免疫細胞出現的變化。建立骨免疫調控機制,探討如何通過免疫途徑改善骨質疏松癥患者促炎狀態導致的骨
流失。
2.1 巨噬細胞極化與SASP
在衰老微環境中,巨噬細胞可以被多種細胞因子募集,包括SASP因子和NK細胞分泌組,由此產生免疫功能上的聯系。NK細胞通過與衰老細胞相互作用產生干擾素γ(IFN-γ)[25-26],招募巨噬細胞。此外,巨噬細胞也響應SASP因子CCL2、CXCL1、CXCL16和IL-8等的募集[27],SASP相關的CCL2導致促炎性M1巨噬細胞的積累[28-29]。且隨著衰老進行性加重,巨噬細胞表現出高炎性、低免疫活性狀態,并出現衰老特征,其具體過程為:(1)巨噬細胞響應年齡衰老,激活sCD163、CXCL10標志的低水平先天性免疫途徑,導致功能失調[30]。(2)SASP因子釋放作用于巨噬細胞,導致TNF-α水平增加。(3)巨噬細胞出現衰老特征,并向M2型轉變,并下調IL-10水平、顯著降低吞噬能力[31]。
衰老細胞難以被巨噬細胞殺死,并且可抑制巨噬細胞通過旁分泌途徑識別SASP信號清除凋亡細胞殘體的能力。衰老細胞介導的胞吞作用抑制(SCES)會導致巨噬細胞功能癱瘓,其原因是CD47表達增強,同時衰老細胞中CD47修飾酶QPCT/L增加。SCES通過干擾SIRPα-CD47-SHP-1軸或QPCT/L活性而抑制巨噬細胞能力。CD47和CD24表達增加是衰老細胞介導穩態功能失調(例如胞吐作用)的組成部分,而胞吐作用必須有效發生才能維持組織穩態并抑制自身免疫[32-35]。CD38是巨噬細胞功能調節的重要因子,可以調節細胞Ca2+代謝,具有抗破骨細胞生成的特性。CD38表達增強可以減少破骨細胞的數量和骨吸收;SASP因子可以誘導巨噬細胞中CD38表達,這些M1樣巨噬細胞表達高水平的CD38并增強CD38依賴性NAD+酶活性,從而降低組織NAD+水平,而與衰老相關的NAD+水平的降低減少了SASP因子的產生,并減輕其病理作用[36-38]。并且,通過Ca2+、cAMP和TNF-α調節CD38的表達,有助于將破骨細胞和成骨細胞的強代謝活性與其各自的骨吸收和骨重塑功能結合起來[39-40]。
2.2 多免疫細胞串擾的促炎網絡與SASP
為響應SASP因子,多種免疫細胞集合串擾產生龐雜的促炎網絡,極大影響著骨微環境的穩定,往往單個免疫細胞集群沒有特殊作用,而多個免疫細胞集群卻受一種或幾種促炎因子調節。因此,探討多免疫細胞整體調控SASP網絡的能力尤為重要。
單核細胞作為優良的細胞儲備,可以充當破骨細胞、巨噬細胞、樹突狀細胞的前體[41],且可以產生趨化因子募集免疫細胞到骨重塑位點[42]。并且,單核細胞集群具有異質性,根據CD14、CD16表達量的不同分為3個子集:經典(CD14高/CD16-)、中間(CD14高/CD16+)和非經典(CD14低/CD16+)。SASP因子誘導了非經典子集CD16+表現出最明顯的促炎狀態、高miR-146a(一種負向調節TLR 通路的mi-RNA)表達,這被認為是單核細胞的衰老狀態。此外,NF-κB和 IL-1α可能是介導單核細胞出現衰老表型的關鍵靶點,血漿環境中TNF-α、IL-8水平升高則會導致這種衰老表型進行性加深[43]。此外,又有研究發現,SASP因子GDF-15可以誘導單核細胞產生更多CD16+表型,并且可以通過抑制其線粒體呼吸的能力,促進衰老[44]。樹突狀細胞(DC細胞)在維持免疫穩態中尤為重要,未成熟DC細胞可以誘導T細胞反應缺失及調節性T細胞(Treg)反應來促進免疫耐受,從而終止炎癥[45],并減輕炎癥性的骨流失[46]。而SASP因子大量釋放導致的免疫微環境失調會刺激DC細胞成熟——成熟的DC細胞反而會抑制Treg反應,并產生免疫刺激性T細胞(例如Th17)反應破壞骨質[47]。不止于此,DC細胞介導的具有免疫效應的外泌體囊泡也參與調控SASP:在響應感染、促炎因子等信號后,DC細胞觸發炎性小體活化[48],并分泌含有IL-1B等促炎因子的外泌體[49],借由旁分泌途徑將衰老效應傳遞給周圍細胞。自然殺傷細胞(NK細胞)可以通過生成M-CSF 和 RANKL誘導單核細胞分化為破骨細胞,從而加劇骨流失,而其本身的破骨細胞生成能力較差[50]。SASP觀點認為:衰老細胞可分泌多種趨化因子(CXCL10等)通過與CXCR3結合增強NK細胞增殖遷移的能力,從而介導其對衰老細胞的清除[51]。并且CD158d的表達可以刺激靜息NK細胞,通過募集TRAF6激活 TAK1 來誘導NF-κB信號產生[52],從而導致NK細胞衰老并出現SASP[53],該分泌組可以顯著促進血管生成。
T細胞可以響應微環境刺激并做出其他免疫細胞比擬不了的精細化反應,在骨平衡中,不同亞群的T細胞有著極為重要的作用:T細胞功能的實現有賴于CD4+T和CD8+T細胞亞群的協同效應。其中,由CD4+T分化來的Th17主要負責刺激破骨細胞產生,從而介導骨吸收過程[54-55],而Treg則能有效抑制骨吸收,二者的動態平衡是維持骨代謝穩定的關鍵部分。不止于此,CD8+T細胞可通過分泌骨保護素(OPG)[56]和IFN-γ[57]抑制破骨細胞生成。SASP觀點認為:兩種T細胞亞群會出現衰老表型,并接受SASP因子的調控,表現出代謝活躍的高促炎狀態,并顯著加強骨流失。衰老CD4+T表現出PD-1+記憶表型——這些細胞在T細胞受體刺激下不會增殖,并產生大量SASP因子:例如骨橋蛋白、TNF-α和IL-6[58]等,這與C/EBPα表達上調有關。不同于衰老CD4+T,衰老的CD8+ T有自身獨特的SASP(以CD8+CD45RA+CD27-T子群最具異質性):即產生更多的IL-6、IL-1β,并分泌蛋白酶(組織蛋白酶和絲氨酸蛋白酶,還包括ADAM家族和金屬蛋白酶),并受p38/MAPK調控[59]。
在B細胞中,只有記憶B細胞亞群會表達SASP,尤其是晚期/耗盡記憶B細胞(LM B細胞)。LM B細胞亞群通過自發激活AMPK活性,誘導p38/MAPK表達,并導致促炎因子(TNF-α、IL-6、IL-8等)、炎性mi-RNA ( miR-155、16、93等)釋放,通過旁分泌途徑將衰老信號傳遞到周圍組織[54]。SASP介導的高促炎狀態刺激B細胞產生RANKL和粒細胞集落刺激因子(G-CSF)[60-61],從而激活了破骨細胞的生成,將B細胞促進骨重塑的作用轉化為骨吸收[62]。具體機制見圖1。
3 SASP:調控骨質疏松中多重代謝反應
骨質疏松癥患者的一個顯著特征是全身多種代謝失調,SASP被認為可以介導代謝失常后的二次損害,并與不良組織微環境的形成有關。在本文這一部分筆者探討了部分代謝失調與SASP的調控之間的關系,以及他們可能對骨代謝平衡造成的危害,以期構建更為全面詳細的SASP控制網絡。
3.1 線粒體穩態失調:能量代謝異常、氧化應激與SASP
線粒體穩態對維持細胞能量供應以及介導全身的抗氧化代謝極其重要,換言之,線粒體穩態失調會導致能量代謝異常,并使細胞出現氧化應激狀態,這是觸發SASP的重要條件。
衰老會導致線粒體功能障礙(SAMD),并促進SASP產生。沉默調節蛋白4(SIRT4)僅在線粒體中表達,并受miR-15b負向調控。在衰老細胞中SIRT4表達上升,導致miR-15b生成受抑制。靶向抑制miR-15b增強SIRT4表達會促進線粒體內活性氧(ROS)生成,并降低線粒體膜電位——導致線粒體功能紊亂。并且,抑制miR-15b會導致SASP以SIRT4依賴的方式釋放,并阻止了正常水平下miR-15b以IRAK2依賴方式抑制SASP因子IL-6、IL-8的產生[63-64]。GRSF1 是維持線粒體氧化磷酸化所必需的蛋白,衰老細胞中的 GRSF1 水平因蛋白質穩定性降低而下降,GRSF1水平降低會導致線粒體應激,并導致超氧化物生成增加、DNA損傷灶增加和細胞增殖減少,并導致細胞出現衰老表型:即衰老相關β-半乳糖苷酶 (SA-β-gal) 活性上升、SASP因子IL-6的產生和分泌[65]。值得一提的是,SAMD誘導的ROS可調控SASP的產生,但SASP不可以反向介導SAMD,SASP會以旁分泌的方式將衰老效應傳遞到周圍更多組織中[66]。這表明,對于SAMD-ROS效應誘導的衰老,無法通過抑制SASP因子的產生來控制,抗氧化以及增強線粒體活性的藥物可能是對抗該效應的
良策。
衰老導致線粒體呼吸能力減弱,使細胞轉向主要依靠糖酵解來供能,并伴隨SASP產生。煙酰胺磷酸核糖基轉移酶(NAMPT)是NAD+挽救途徑的限速酶,在衰老過程中受HMGAs調控。HMGAs/NAMPT/NAD+信號軸通過增強糖酵解和線粒體呼吸調控SASP因子的釋放,該過程為:HMGAs/NAMPT通過NAD+介導的AMPK激酶抑制過程(p53介導的p38MAPK途徑抑制),增強NF-κb活性,從而促進SASP產生[67]。令人振奮的是,衰老線粒體可通過產生線粒體衍生肽(MDP,包含:人體肽、MOTS-c、SHLP2、SHLP6等)在一定程度上維持線粒體功能水平:衰老線粒體中人體肽和MOTS-c水平升高,MOTS-c通過提升脂肪酸氧化水平來增強線粒體呼吸能力,而人體肽通過JAK/STAT途徑介導少量SASP促炎因子(主要為IL-6)釋放,該SASP側重于維持衰老狀態而不是加重衰老進程[68]。
SASP的調控是多元化的,揭示了介導衰老的新機制,并伴隨了線粒體功能不同程度的損傷。重組人泛素蛋白連接酶(UBE2E3)耗竭會導致衰老,并表現出獨特的SASP:與線粒體功能障礙導致的衰老(MiDAS)不同,UBE2E3耗竭是一種線粒體網絡維護中斷的衰老方式,導致線粒體穩態失調(例如線粒體的分布、質量、對毒物易感性等),并導致IL-1β增加近6倍,而IL-10等常見SASP因子增加不甚明顯,這提示UBE2E3耗竭可能耦合了其他衰老途徑[69]。衰老細胞的細胞核中擠出的細胞質染色質片段(CCFs)也介導了細胞衰老:功能失調的線粒體會導致核編碼線粒體氧化磷酸化基因下調,并觸發ROS-JNK逆行信號通路,驅動CCF的形成,從而導致SASP因子的產生[70]。染色體數量不均(非整倍體)會以c-Jun N末端激酶 (JNK)依賴的方式介導細胞衰老,并導致ROS產生、功能失調的線粒體累積以及SASP因子的釋放[71]。此外,內質網駐留的二硫鍵還原酶ERdj5缺失會引起細胞內Ca2+失衡,并激活Drp1(一種參與線粒體裂變的胞質GTP酶),最終導致線粒體異常斷裂、細胞活力下降以及SASP因子的釋放[72]。
線粒體穩態失調介導的SASP效應可通過自分泌/旁分泌途徑引發骨組織廣泛衰老,但更特殊的是,這種SASP效應帶來的線粒體融合和分裂異常也會損害成骨能力,加強破骨細胞生成,從而加重骨質疏松的發展。在氧化應激條件下,成骨細胞中Drp1的表達及其磷酸化增加,導致線粒體出現碎片、畸形和囊泡狀[73]。并且SASP因子TNF-α可誘導Drp1高表達從而引發線粒體膜電位崩潰,導致線粒體功能降低,并抑制了成骨活性[74]。此外Drp1介導的線粒體超分裂還有利于破骨細胞增殖:在炎性狀態下廣泛生成的RANKL可通過調控Drp1及其受體蛋白Fis1、Mid49和Mid51的表達促進破骨細胞分化,從而加重骨流失[75]。
線粒體穩態失調介導的線粒體自噬減少是加重骨流失的關鍵因素。在氧化應激條件下,ROS及超氧化物累積并參與破壞線粒體結構,導致線粒體膜電位變化,從而使得PINK1無法與Parkin信號耦合以清除損傷線粒體和抑制SASP效應的傳導[76],并且有關研究發現PINK1在骨質疏松癥患者體內表達減少,這種減少導致了骨量下降,是抑制成骨分化并加重骨流失的關鍵[77]。
在線粒體穩態調節中OPA發揮著極為重要的作用,并將線粒體功能與SASP效應的傳導和糖代謝聯系起來。OPA1以長形式(L-OPA1)和短形式 (S-OPA1)調節線粒體的分裂與融合[78],在氧化應激條件下,L-OPA1裂解為S-OPA1,并顯著降低線粒體功能并誘導成骨細胞凋亡[79]。而OPA過表達會激活p38MARK通路,使線粒體ATP生成減少并促進骨髓細胞凋亡[80],從而加速骨質疏松發生。而p38MARK的激活則伴隨了大量SASP的釋放,從而在骨組織擴大了這種效應。并且,在病理性高血糖狀態下,晚期糖基化終末產物(AGE)累積,從而增強了S-OPA1并抑制L-OPA1表達、加快ROS的生成并誘導了成骨細胞凋亡[81],從而將異常的糖代謝、線粒體穩態失調與骨質疏松聯系起來。
3.2 葡萄糖代謝異常與SASP
糖代謝異常介導血糖病理性升高以及晚期糖基化終末產物蓄積,這極大危害了骨骼系統的穩定。SASP觀點認為:高血糖狀態介導慢性炎癥發生,誘發細胞衰老,并產生大量促炎性SASP因子,在炎性骨微環境下,骨代謝由骨生成轉向骨吸收。
胰島B細胞衰老誘導病理性血糖升高、并產生大量SASP因子,從而以高糖、高炎刺激破壞成骨微環境。衰老胰島B細胞分泌CCL2、IL-1a、IL-6和TNF-α等核心SASP因子,并通過旁分泌途徑誘導相鄰未衰老胰島B細胞Cdkn2a基因表達,從而導致廣泛的胰島B細胞耗竭[82]——胰島B細胞質量降低導致胰島素分泌不足,從而加重了高血糖狀態。值得注意的是,衰老胰島B細胞這種旁分泌效應也會擾亂胰島A細胞功能,導致胰高血糖素分泌障礙,進而減少胰島素的分泌[83]。衰老會損害成體胰島B細胞的增殖和響應生長刺激的能力,p16Ink4a表達增強啟動了胰島B細胞的衰老進程,并降低其增殖能力、導致SASP因子大量釋放[84]。
病理性高血糖狀態會誘發低度炎癥,內皮細胞和巨噬細胞是介導SASP效應的主要傳播細胞,并在糖尿病性低度炎癥的傳播中起著極為重要的作用[85]。此外,又有研究表明:GLUT1可作為巨噬細胞中具有代表性和促進性的葡萄糖轉運蛋白,并與SASP效應的介導密不可分:在高葡萄糖環境下,骨髓源性巨噬細胞(BMDM)顯示出強烈的GLUT1 mRNA反應,驅動葡萄糖攝取升高,并觸發mTOR磷酸化從而引發p16/p21介導的SASP因子釋放[86];不止于此,高葡萄糖狀態還通過NLRC4磷酸化誘導巨噬細胞衰老和SASP因子分泌,進而以IRF8依賴性途徑刺激NF-κB/Caspase-1級聯反應從而導致更廣泛的SASP效應[87],在多重調控機制下炎性骨流失加重,衰老骨細胞得以累積。
3.3 脂質代謝紊亂與SASP
脂代謝紊亂導致脂肪蓄積,是細胞衰老進行性加重的關鍵因素。SASP觀點認為:脂肪蓄積誘導細胞衰老并引發SASP效應,并伴隨低度炎癥的形成,在這種炎性組織微環境下成骨作用減弱,骨吸收增強,BMSC的成骨分化轉向成脂分化。
衰老細胞在肥胖患者脂肪組織中累積,并介導SASP效應和炎癥的形成。肥胖個體脂肪組織中記憶B細胞生成頻率增加,而幼稚B細胞生成頻率減少,并且成熟B細胞(記憶B)表現出高代謝活性并伴隨IL-6、IL-8、TNF-α等大量炎性SASP因子釋放,從而加重了全身炎性狀態[88]。肥胖狀態也誘導了衰老巨噬細胞累積:衰老巨噬細胞表現為低吞噬、高分泌活性,其中CD9+巨噬細胞通過分泌骨橋蛋白、PDGF-BB協同促進脂肪祖細胞表達PDGFRα和PDGFRβ,從而通過促進細胞外沉積以及纖維化過程來抑制脂肪組織的生成,這是難得的抗衰老過程[89]。此外,肥胖還導致衰老脂肪祖細胞累積,并激活NOTCH通路導致SASP因子SFRP4和INHBA釋放,從而將脂肪生成轉化為纖維生成,起到抑制肥胖的作用[90]。不僅于此,衰老的脂肪祖細胞還可通過JAK通路表達SASP,從而介導全身炎癥反應[91]。此外,又有研究發現,脂肪祖細胞中SPRY1可通過抑制MAPK活性來抑制轉錄因子NF-κB和C/EBPβ活性從而減少SASP因子IL-6等的釋放[92]。
肥胖誘導MSC出現衰老狀態,并降低其增殖分化能力,這對于骨重塑是不利的。肥胖誘導脂肪來源MSC下調PPAR-γ、上調p16和p53水平,并促進炎癥SASP因子IL-6、MCP-1等表達從而抑制脂肪形成能力并傳遞衰老效應[93]。并且,長期暴露于SASP環境中也會導致脂肪來源MSC血管生成潛力減弱,從而不利于血管化骨再生[94]。此外,又有研究將SASP因子IL-6確定為在肥胖期間誘導骨流失的關鍵炎癥遞質:IL-6通過激活BMSC中STAT3表達,并通過p53/p21途徑誘導BMSC衰老,并出現SASP;利用抗體拮抗IL-6有助于維持骨髓成骨和脂肪生成之間的平衡,并抑制肥胖誘導的骨質流失中BMSC衰老[95]。而另一重要SASP因子TNF-α則主要通過將炎癥效應傳導到健康脂肪細胞,從而擴大衰老效應[96]。此外,肥胖介導的炎性SASP信號還可通過調控骨髓脂肪組織(BMAT)的含量來干預脂肪來源BMSC的分化進程。在肥胖誘導的骨質疏松模型中BMAT體積的增加,顯著增加了骨折風險,并使BMSC由成脂分化轉向成骨分化[97-98]。此外,長期施加糖皮質激素也會誘導BMAT累積:糖皮質激素通過增加15d-PGJ2等氧化脂質的合成,以激活PPAR-γ。PPAR-γ刺激關鍵SASP基因的表達,也促進骨髓脂肪細胞中氧化脂質的合成,形成正反饋循環,從而誘導糖皮質激素性骨質疏松的形成[99]。具體機制見圖2。
4 討論
SASP效應的發生證明了人體細胞經受超量損傷可以將其“翻譯”為衰老,這種衰老效應不僅與年齡相關,還與氧化應激、炎癥等組織微環境急劇變化有關,這為臨床從更深刻的角度探討骨質疏松的形成機制提供了契機。SASP相關觀點認為,骨質疏松狀態的形成由以下幾方面因素驅動:(1)骨來源不足:與SASP效應在衰老骨組織、組織微環境、BMSC之間傳遞有關,其核心因素是BMSC衰老成骨能力不足。(2)骨轉化抑制:與SASP效應在衰老組織、免疫細胞之間傳遞有關,其核心驅動因素是免疫細胞衰老形成炎性SASP加重骨流失。(3)骨代謝受損:與線粒體損傷、脂代謝紊亂(肥胖)、糖代謝失調(糖尿病病理性高血糖)介導的SASP效應在組織間傳遞有關,其核心因素是代謝紊亂帶來的病理產物蓄積(如晚期糖基化終末產物、BMAT等)和炎性骨微環境形成有關。因此,可以利用SASP效應廣泛調控骨微環境并介導炎癥的特點設計抗SASP策略,對骨質疏松的治療進行優化。
作者貢獻:楊超富負責收集文獻并撰寫論文;譚國慶、徐展望負責對論文提供建設性意見并提供基金支持。楊超富和譚國慶對稿件整體負責。
本文無利益沖突。
參考文獻
WANG L H,YU W,YIN X J,et al. Prevalence of osteoporosis and fracture in China:the China osteoporosis prevalence study[J]. JAMA Netw Open,2021,4(8):e2121106. DOI:10.1001/jamanetworkopen.2021.21106.
CONTI V,RUSSOMANNO G,CORBI G,et al. A polymorphism at the translation start site of the vitamin D receptor gene is associated with the response to anti-osteoporotic therapy in postmenopausal women from southern Italy[J]. Int J Mol Sci,2015,16(3):5452-5466. DOI:10.3390/ijms16035452.
COPP? J P,PATIL C K,RODIER F,et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol,2008,6(12):2853-2868. DOI:10.1371/journal.pbio.0060301.
ZHAO R L,JIN X Y,LI A,et al. Precise diabetic wound therapy:PLS nanospheres eliminate senescent cells via DPP4 targeting and PARP1 activation[J]. Adv Sci,2022,9(1):e2104128. DOI:10.1002/advs.202104128.
JIN W N,SHI K B,HE W Y,et al. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition[J]. Nat Neurosci,2021,24(1):61-73. DOI:10.1038/s41593-020-00745-w.
HU L F,YIN C,ZHAO F,et al. Mesenchymal stem cells:cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment[J]. Int J Mol Sci,2018,19(2):360. DOI:10.3390/ijms19020360.
DING P,GAO C,GAO Y S,et al. Osteocytes regulate senescence of bone and bone marrow[J]. eLife,2022,11:e81480. DOI:10.7554/eLife.81480.
SINHA S,SINHA A,DONGRE P,et al. Organelle dysfunction upon asrij depletion causes aging-like changes in mouse hematopoietic stem cells[J]. Aging Cell,2022,21(4):e13570. DOI:10.1111/acel.13570.
TRESGUERRES F G F,TORRES J,L?PEZ-QUILES J,et al. The osteocyte:a multifunctional cell within the bone[J]. Ann Anat,2020,227:151422. DOI:10.1016/j.aanat.2019.151422.
BLOCK T J,MARINKOVIC M,TRAN O N,et al. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies[J]. Stem Cell Res Ther,2017,8(1):239. DOI:10.1186/s13287-017-0688-x.
ZHUANG Y,LI D,FU J Q,et al. Comparison of biological properties of umbilical cord-derived mesenchymal stem cells from early and late passages:immunomodulatory ability is enhanced in aged cells[J]. Mol Med Rep,2015,11(1):166-174. DOI:10.3892/mmr.2014.2755.
WANG L P,ZHANG H,XIAO X,et al. Small extracellular vesicles maintain homeostasis of senescent mesenchymal stem cells at least through excreting harmful lipids[J]. Stem Cells Dev,2023,32(17/18):565-579. DOI:10.1089/scd.2023.0079.
KIM M,BAE Y K,UM S,et al. A small-sized population of human umbilical cord blood-derived mesenchymal stem cells shows high stemness properties and therapeutic benefit[J]. Stem Cells Int,2020,2020:5924983. DOI:10.1155/2020/5924983.
LUNYAK V V,AMARO-ORTIZ A,GAUR M. Mesenchymal stem cells secretory responses:senescence messaging secretome and immunomodulation perspective[J]. Front Genet,2017,8:220. DOI:10.3389/fgene.2017.00220.
KWON J H,KIM M,UM S,et al. Senescence-associated secretory phenotype suppression mediated by small-sized mesenchymal stem cells delays cellular senescence through TLR2 and TLR5 signaling[J]. Cells,2021,10(1):63. DOI:10.3390/cells10010063.
CHOU L Y,HO C T,HUNG S C. Paracrine senescence of mesenchymal stromal cells involves inflammatory cytokines and the NF-κB pathway[J]. Cells,2022,11(20):3324. DOI:10.3390/cells11203324.
LEHMANN J,NARCISI R,FRANCESCHINI N,et al. WNT/beta-catenin signalling interrupts a senescence-induction cascade in human mesenchymal stem cells that restricts their expansion[J]. Cell Mol Life Sci,2022,79(2):82. DOI:10.1007/s00018-021-04035-x.
VOSKAMP C,ANDERSON L A,KOEVOET W J,et al. TWIST1 controls cellular senescence and energy metabolism in mesenchymal stem cells[J]. Eur Cell Mater,2021,42:401-414. DOI:10.22203/eCM.v042a25.
LEE J Y,YU K R,LEE B C,et al. GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging[J]. Exp Mol Med,2018,
50(5):1-12. DOI:10.1038/s12276-018-0092-3.
ZHENG X L,WANG Q X,XIE Z,et al. The elevated level of IL-1α in the bone marrow of aged mice leads to MSC senescence partly by down-regulating Bmi-1[J]. Exp Gerontol,2021,148:111313. DOI:10.1016/j.exger.2021.111313.
SHANG J,YAO Y,FAN X,et al. MiR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways[J]. Biochim Biophys Acta,2016,1863(4):520-532. DOI:10.1016/j.bbamcr.2016.01.005.
WEILNER S,SCHRAML E,WIESER M,et al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells[J]. Aging Cell,2016,15(4):744-754. DOI:10.1111/acel.12484.
TOM? M,SEP?LVEDA J C,DELGADO M,et al. MiR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity[J]. Stem Cells,2014,32(8):2229-2244. DOI:10.1002/stem.1699.
MATO-BASALO R,MORENTE-L?PEZ M,ARNTZ O J,et al. Therapeutic potential for regulation of the nuclear factor kappa-B transcription factor p65 to prevent cellular senescence and activation of pro-inflammatory in mesenchymal stem cells[J]. Int J Mol Sci,2021,22(7):3367. DOI:10.3390/ijms22073367.
SORIANI A,IANNITTO M L,RICCI B,et al. Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1[J]. J Immunol,2014,193(2):950-960. DOI:10.4049/jimmunol.1400271.
SHARMA C,WANG H X,LI Q L,et al. Protein acyltransferase DHHC3 regulates breast tumor growth,oxidative stress,and senescence[J]. Cancer Res,2017,77(24):6880-6890. DOI:10.1158/0008-5472.CAN-17-1536.
LEF?VRE L,IACOVONI J S,MARTINI H,et al. Kidney inflammaging is promoted by CCR2+ macrophages and tissue-derived micro-environmental factors[J]. Cell Mol Life Sci,2021,78(7):3485-3501. DOI:10.1007/s00018-020-03719-0.
FUJIU K,MANABE I,NAGAI R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice[J]. J Clin Investig,2011,121(9):3425-3441. DOI:10.1172/JCI57582.
HEARPS A C,MARTIN G E,ANGELOVICH T A,et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function[J]. Aging Cell,2012,
11(5):867-875. DOI:10.1111/j.1474-9726.2012.00851.x.
ZHANG B,BAILEY W M,BRAUN K J,et al. Age decreases macrophage IL-10 expression:implications for functional recovery and tissue repair in spinal cord injury[J]. Exp Neurol,2015,273:83-91. DOI:10.1016/j.expneurol.2015.08.001.
HOLT D J,GRAINGER D W. Senescence and quiescence induced compromised function in cultured macrophages[J]. Biomaterials,2012,33(30):7497-7507. DOI:10.1016/j.biomaterials.2012.06.099.
BOADA-ROMERO E,MARTINEZ J,HECKMANN B L,et al. The clearance of dead cells by efferocytosis[J]. Nat Rev Mol Cell Biol,2020,21(7):398-414. DOI:10.1038/s41580-020-0232-1.
DORAN A C,YURDAGUL A Jr,TABAS I. Efferocytosis in health and disease[J]. Nat Rev Immunol,2020,20(4):254-267. DOI:10.1038/s41577-019-0240-6.
MORIOKA S,MAUER?DER C,RAVICHANDRAN K S. Living on the edge:efferocytosis at the interface of homeostasis and pathology[J]. Immunity,2019,50(5):1149-1162. DOI:10.1016/j.immuni.2019.04.018.
SCHLOESSER D,LINDENTHAL L,SAUER J,et al. Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47-QPCT/L axis[J]. J Cell Biol,2023,222(2):e202207097. DOI:10.1083/jcb.202207097.
ORECCHIONI M,GHOSHEH Y,PRAMOD A B,et al. Macrophage polarization:different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Front Immunol,2019,10:1084. DOI:10.3389/fimmu.2019.01084.
MONTANARO M,MELONI M,ANEMONA L,et al. Macrophage activation and M2 polarization in wound bed of diabetic patients treated by dermal/epidermal substitute nevelia[J]. Int J Low Extrem Wounds,2022,21(4):377-383. DOI:10.1177/1534734620945559.
TAMAKI S,KUROSHIMA S,HAYANO H,et al. Dynamic polarization shifting from M1 to M2 macrophages in reduced osteonecrosis of the jaw-like lesions by cessation of anti-RANKL antibody in mice[J]. Bone,2020,141:115560. DOI:10.1016/j.bone.2020.115560.
KOHNO K,KOYA-MIYATA S,HARASHIMA A,et al. Inflammatory M1-like macrophages polarized by NK-4 undergo enhanced phenotypic switching to an anti-inflammatory M2-like phenotype upon co-culture with apoptotic cells[J]. J Inflamm,2021,18(1):2. DOI:10.1186/s12950-020-00267-z.
DING L,YUAN X Y,YAN J H,et al. Nrf2 exerts mixed inflammation and glucose metabolism regulatory effects on murine RAW264.7 macrophages[J]. Int Immunopharmacol,2019,71:198-204. DOI:10.1016/j.intimp.2019.03.023.
SPRANGERS S,DE VRIES T J,EVERTS V. Monocyte heterogeneity:consequences for monocyte-derived immune cells[J]. J Immunol Res,2016,2016:1475435. DOI:10.1155/2016/1475435.
GEBRAAD A,KORNILOV R,KAUR S,et al. Monocyte-derived extracellular vesicles stimulate cytokinesecretion and gene expression of matrixmetalloproteinases by mesenchymal stem/stromal cells[J]. FEBS J,2018,285(12):2337-2359. DOI:10.1111/febs.14485.
ONG S M,HADADI E,DANG T M,et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence[J]. Cell Death Dis,2018,9(3):266. DOI:10.1038/s41419-018-0327-1.
PENCE B D,YARBRO J R,EMMONS R S. Growth differentiation factor-15 is associated with age-related monocyte dysfunction[J]. Aging Med,2021,4(1):47-52. DOI:10.1002/agm2.12128.
TSUKASAKI M,KOMATSU N,NAGASHIMA K,et al. Host defense against oral microbiota by bone-damaging T cells[J]. Nat Commun,2018,9(1):701. DOI:10.1038/s41467-018-03147-6.
GARLET G P,CARDOSO C R,MARIANO F S,et al. Regulatory T cells attenuate experimental periodontitis progression in mice[J]. J Clin Periodontol,2010,37(7):591-600. DOI:10.1111/j.1600-051X.2010.01586.x.
KOMATSU N,TAKAYANAGI H. Immune-bone interplay in the structural damage in rheumatoid arthritis[J]. Clin Exp Immunol,2018,194(1):1-8. DOI:10.1111/cei.13188.
JANG H M,PARK J Y,LEE Y J,et al. TLR2 and the NLRP3 inflammasome mediate IL-1β production in Prevotella nigrescens-infected dendritic cells[J]. Int J Med Sci,2021,18(2):432-440. DOI:10.7150/ijms.47197.
ELSAYED R,ELASHIRY M,LIU Y T,et al. Porphyromonas gingivalis provokes exosome secretion and paracrine immune senescence in bystander dendritic cells[J]. Front Cell Infect Microbiol,2021,11:669989. DOI:10.3389/fcimb.2021.669989.
S?DERSTR?M K,STEIN E,COLMENERO P,et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis[J]. Proc Natl Acad Sci U S A,2010,107(29):13028-13033. DOI:10.1073/pnas.1000546107.
ZANG J F,YE J,ZHANG C,et al. Senescent hepatocytes enhance natural killer cell activity via the CXCL-10/CXCR3 axis[J]. Exp Ther Med,2019,18(5):3845-3852. DOI:10.3892/etm.2019.8037.
RAJAGOPALAN S,LEE E C,DUPRIE M L,et al. TNFR-associated factor 6 and TGF-β-activated kinase 1 control signals for a senescence response by an endosomal NK cell receptor[J]. J Immunol,2014,192(2):714-721. DOI:10.4049/jimmunol.1302384.
RAJAGOPALAN S,LONG E O. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling[J]. Proc Natl Acad Sci U S A,2012,109(50):20596-20601. DOI:10.1073/pnas.1208248109.
DAR H Y,SINGH A,SHUKLA P,et al. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice[J]. Sci Rep,2018,8(1):2503. DOI:10.1038/s41598-018-20896-y.
DAR H Y,SHUKLA P,MISHRA P K,et al. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance[J]. Bone Rep,2018,8:46-56. DOI:10.1016/j.bonr.2018.02.001.
SHASHKOVA E V,TRIVEDI J,CLINE-SMITH A B,et al. Osteoclast-primed Foxp3+ CD8 T cells induce T-bet,eomesodermin,and IFN-γ to regulate bone resorption[J]. J Immunol,2016,197(3):726-735. DOI:10.4049/jimmunol.1600253.
FUKUSHIMA Y,MINATO N,HATTORI M. The impact of senescence-associated T cells on immunosenescence and age-related disorders[J]. Inflamm Regen,2018,38:24. DOI:10.1186/s41232-018-0082-9.
CALLENDER L A,CARROLL E C,BEAL R W J,et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK[J]. Aging Cell,2018,
17(1):e12675. DOI:10.1111/acel.12675.
FRASCA D,DIAZ A,ROMERO M,et al. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways[J]. Exp Gerontol,2017,87(Pt A):113-120. DOI:10.1016/j.exger.2016.12.001.
LI Y,TERAUCHI M,VIKULINA T,et al. B cell production of both OPG and RANKL is significantly increased in aged mice[J]. Open Bone J,2014,6:8-17. DOI:10.2174/1876525401406010008.
ZHANG Z,YUAN W,DENG J J,et al. Granulocyte colony stimulating factor (G-CSF) regulates neutrophils infiltration and periodontal tissue destruction in an experimental periodontitis[J]. Mol Immunol,2020,117:110-121. DOI:10.1016/j.molimm.2019.11.003.
BREUIL V,TICCHIONI M,TESTA J,et al. Immune changes in post-menopausal osteoporosis:the Immunos study[J]. Osteoporos Int,2010,21(5):805-814. DOI:10.1007/s00198-009-1018-7.
BHAUMIK D,SCOTT G K,SCHOKRPUR S,et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8[J]. Aging,2009,1(4):402-411. DOI:10.18632/aging.100042.
LANG A,GRETHER-BECK S,SINGH M,et al. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4[J]. Aging,2016,8(3):484-505. DOI:10.18632/aging.100905.
NOH J H,KIM K M,IDDA M L,et al. GRSF1 suppresses cell senescence[J]. Aging,2018,10(8):1856-1866. DOI:10.18632/aging.101516.
NELSON G,KUCHERYAVENKO O,WORDSWORTH J,et al. The senescent bystander effect is caused by ROS-activated NF-κB signalling[J]. Mech Ageing Dev,2018,170:30-36. DOI:10.1016/j.mad.2017.08.005.
NACARELLI T,LAU L,FUKUMOTO T,et al. NAD+ metabolism governs the proinflammatory senescence-associated secretome[J]. Nat Cell Biol,2019,21(3):397-407. DOI:10.1038/s41556-019-0287-4.
KIM S J,MEHTA H H,WAN J X,et al. Mitochondrial peptides modulate mitochondrial function during cellular senescence[J]. Aging,2018,10(6):1239-1256. DOI:10.18632/aging.101463.
PLAFKER K S,ZYLA K,BERRY W,et al. Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence[J]. Redox Biol,2018,17:411-422. DOI:10.1016/j.redox.2018.05.008.
VIZIOLI M G,LIU T H,MILLER K N,et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence[J]. Genes Dev,2020,34(5/6):428-445. DOI:10.1101/gad.331272.119.
JOY J,BARRIO L,SANTOS-TAPIA C,et al. Proteostasis failure and mitochondrial dysfunction leads to aneuploidy-induced senescence[J]. Dev Cell,2021,56(14):2043-2058.e7. DOI:10.1016/j.devcel.2021.06.009.
YAMASHITA R,FUJII S,USHIODA R,et al. Ca2+ imbalance caused by ERdj5 deletion affects mitochondrial fragmentation[J]. Sci Rep,2021,11(1):20772. DOI:10.1038/s41598-021-99980-9.
GAN X Q,HUANG S B,YU Q,et al. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction[J]. Biochem Biophys Res Commun,2015,468(4):719-725. DOI:10.1016/j.bbrc.2015.11.022.
ZHANG L,GAN X Q,HE Y T,et al. Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species[J]. PLoS One,2017,12(4):e0175262. DOI:10.1371/journal.pone.0175262.
JEONG S,SEONG J H,KANG J H,et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss[J]. FEBS Lett,2021,595(1):58-67. DOI:10.1002/1873-3468.13963.
BADER V,WINKLHOFER K F. PINK1 and Parkin:team players in stress-induced mitophagy[J]. Biol Chem,2020,401(6/7):891-899. DOI:10.1515/hsz-2020-0135.
LEE S Y,AN H J,KIM J M,et al. PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis[J]. Stem Cell Res Ther,2021,12(1):589. DOI:10.1186/s13287-021-02656-4.
WANG X,LI H,ZHENG A,et al. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration:preventative effect of hydroxytyrosol acetate[J]. Cell Death Dis,2014,5(11):e1521. DOI:10.1038/cddis.2014.473.
CAI W J,CHEN Y,SHI L X,et al. AKT-GSK3 β signaling pathway regulates mitochondrial dysfunction-associated OPA1 cleavage contributing to osteoblast apoptosis:preventative effects of hydroxytyrosol[J]. Oxid Med Cell Longev,2019,2019:4101738. DOI:10.1155/2019/4101738.
MAO Y X,CAI W J,SUN X Y,et al. RAGE-dependent mitochondria pathway:a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products[J]. Cell Death Dis,2018,9(6):674. DOI:10.1038/s41419-018-0718-3.
WANG W D,KANG W B,ZHOU X Q,et al. Mitochondrial protein OPA mediates osteoporosis induced by radiation through the P38 signaling pathway[J]. Eur Rev Med Pharmacol Sci,2018,22(23):8091-8097. DOI:10.26355/eurrev_201812_16499.
MIDHA A,PAN H,ABARCA C,et al. Unique human and mouse β-cell senescence-associated secretory phenotype (SASP) reveal conserved signaling pathways and heterogeneous factors[J]. Diabetes,2021,70(5):1098-1116. DOI:10.2337/db20-0553.
BRAWERMAN G,NTRANOS V,THOMPSON P J. Alpha cell dysfunction in type 1 diabetes is independent of a senescence program[J]. Front Endocrinol,2022,13:932516. DOI:10.3389/fendo.2022.932516.
BAHOUR N,BLEICHMAR L,ABARCA C,et al. Clearance of p16Ink4a-positive cells in a mouse transgenic model does not change β-cell mass and has limited effects on their proliferative capacity[J]. Aging,2023,15(2):441-458. DOI:10.18632/aging.204483.
PRATTICHIZZO F,DE NIGRIS V,MANCUSO E,et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages[J]. Redox Biol,2018,15:170-181. DOI:10.1016/j.redox.2017.12.001.
WANG Q,NIE L,ZHAO P F,et al. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging[J]. Int J Oral Sci,2021,13(1):11. DOI:10.1038/s41368-021-00116-6.
ZHANG P,WANG Q,NIE L,et al. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation[J]. J Biol Chem,2019,294(49):18807-18819. DOI:10.1074/jbc.RA119.010648.
FRASCA D,ROMERO M,DIAZ A,et al. B cells with a senescent-associated secretory phenotype accumulate in the adipose tissue of individuals with obesity[J]. Int J Mol Sci,2021,22(4):1839. DOI:10.3390/ijms22041839.
RABHI N,DESEVIN K,BELKINA A C,et al. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors[J]. Life Sci Alliance,2022,5(5):e202101286. DOI:10.26508/lsa.202101286.
BOULET N,BRIOT A,JARGAUD V,et al. Notch activation shifts the fate decision of senescent progenitors toward myofibrogenesis in human adipose tissue[J]. Aging Cell,2023,22(3):e13776. DOI:10.1111/acel.13776.
XU M,TCHKONIA T,DING H S,et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age[J]. Proc Natl Acad Sci U S A,2015,112(46):E6301-E6310. DOI:10.1073/pnas.1515386112.
MANDL M,WAGNER S A,HATZMANN F M,et al. Sprouty1 prevents cellular senescence maintaining proliferation and differentiation capacity of human adipose stem/progenitor cells[J]. J Gerontol A Biol Sci Med Sci,2020,75(12):2308-2319. DOI:10.1093/gerona/glaa098.
CONLEY S M,HICKSON L J,KELLOGG T A,et al. Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells[J]. Front Cell Dev Biol,2020,8:197. DOI:10.3389/fcell.2020.00197.
RATUSHNYY A,EZDAKOVA M,BURAVKOVA L. Secretome of senescent adipose-derived mesenchymal stem cells negatively regulates angiogenesis[J]. Int J Mol Sci,2020,21(5):1802. DOI:10.3390/ijms21051802.
LI Y J,LU L Y,XIE Y,et al. Interleukin-6 knockout inhibits senescence of bone mesenchymal stem cells in high-fat diet-induced bone loss[J]. Front Endocrinol,2020,11:622950. DOI:10.3389/fendo.2020.622950.
VALVERDE M,S?NCHEZ-BRITO A. Sustained activation of TNFα-induced DNA damage response in newly differentiated adipocytes[J]. Int J Mol Sci,2021,22(19):10548. DOI:10.3390/ijms221910548.
VELDHUIS-VLUG A G,ROSEN C J. Clinical implications of bone marrow adiposity[J]. J Intern Med,2018,283(2):121-139. DOI:10.1111/joim.12718.
TENCEROVA M,FIGEAC F,DITZEL N,et al. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice[J]. J Bone Miner Res,2018,33(6):1154-1165. DOI:10.1002/jbmr.3408.
LIU X N,GU Y R,KUMAR S,et al. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow[J]. Cell Metab,2023,35(4):667-684.e6. DOI:10.1016/j.cmet.2023.03.005.
(收稿日期:2023-09-25;修回日期:2024-01-20)
(本文編輯:趙躍翠)