代瑛姿,郭宏揚,楊志峰,王憲璞,許麗麗
葡萄轉錄因子VvERF2耐鹽功能鑒定
代瑛姿,郭宏揚,楊志峰,王憲璞,許麗麗
石河子大學農學院/特色果蔬栽培生理與種質資源利用兵團重點實驗室,新疆石河子 832003
【目的】對葡萄轉錄因子VvERF2進行蛋白質生物信息學分析,利用基因克隆、同源遺傳轉化技術,探索該轉錄因子在葡萄愈傷組織鹽脅迫下的功能,為進一步研究AP2/ERF超家族對葡萄的作用機理提供參考。【方法】借助NCBI-Blast(https://blast.ncbi.nlm.nih.gov/Blast.cgi)等在線數據庫工具對VvERF2蛋白進行生物信息學分析;以‘無核白’葡萄(L.)愈傷組織為材料,構建葡萄同源遺傳轉化體系,結合生長量、總糖、總酸等理化指標鑒定轉基因愈傷組織表型;設定不同鹽濃度梯度,通過游離脯氨酸、抗氧化酶活性等生理指標鑒定轉基因愈傷組織耐鹽功能。【結果】對VvERF2及一致性最高的7個直系同源蛋白序列進行生物信息學分析,發現編碼240個氨基酸,與番茄、無花果氨基酸序列高度相似,蛋白同源性分別為78%和67%。8種不同物種的氨基酸殘基數為240—348個,分子量為26.43—38.60 kDa,理論等電點在5.54—8.68,脂肪氨基酸指數均大于66%,均屬于不穩定性蛋白;不同物種氨基酸序列理化性質存在差異較大。此外,啟動子存在多種與脫落酸等激素及MYB等轉錄因子相關的順式作用元件。具有組織表達特異性,在愈傷組織中表達水平最低,且受外源鹽脅迫誘導顯著上調(為對照組的3倍)。轉基因結果表明,在葡萄愈傷組織中過量表達后,生長量、總酸、總酚含量及DPPH(1,1-二苯基-2-三硝基苯肼,1,1-Diphenyl-2- trinitrophenylhydrazine)等抗氧化活性均顯著升高,不同濃度外源NaCl處理后,轉基因愈傷組織總蛋白、游離脯氨酸等含量均高于野生型愈傷組織。【結論】過量表達促進葡萄愈傷組織生長量和次生代謝產物相關物如酚類物質的含量積累,從而提高葡萄耐鹽性。
葡萄;;鹽脅迫;功能鑒定
【研究意義】AP2/ERF(APETALA2/乙烯響應元件結合因子)是一類主要存在于植物體內的轉錄因子。該家族轉錄因子在植物形態發生、各種脅迫響應機制、激素信號轉導、代謝產物調控等多種生物學過程中起著重要的調節作用。對葡萄進行體外克隆、同源遺傳轉化及表達蛋白功能分析,可為此類家族基因在響應外界非生物脅迫等方面的功能研究奠定理論基礎。【前人研究進展】Licausi等[1]利用全基因組分析,共鑒定出149個葡萄AP2/ERF基因,命名為AP2/ERF超家族,并分為ERF(乙烯反應元件結合蛋白)、AP2(APETALA2)和RAV(與ABI3/VP相關)以及Soloists(少數未分類因子)4個亞家族,其中,ERF亞家族可進一步分為12個組,盡管組間基因數目在擬南芥和葡萄間存在一定差異,但ERF亞家族基因總數相同,此外,其余3個亞基因家族成員數目在兩個物種間也高度一致。其中ERF亞家族均在ERF結構域N端有3個折疊構成的堿性親水區,而第2個-折疊中第14和19位點V、E氨基酸為DREB亞族,A、D氨基酸為ERF亞族[2]。ERF亞家族成員在體外能夠特異結合GCC盒(GCC-box)等元件,GCC-box通常存在于響應乙烯、病原菌和非生物脅迫相關基因啟動子上游區域,而ERF結構域C末端易形成雙親-螺旋,可與其他轉錄因子相互作用進而提高下游基因表達調控效率和靈活性[3]。根據ERF轉錄因子與DNA作用元件互作調控的生物學過程涉及生物脅迫相關和非生物脅迫相關兩大類。當葡萄遭遇逆境脅迫時,ERF亞家族轉錄因子可與逆境相關基因啟動子順式作用元件如GCAC(A/G)N(A/T)TCCC(A/G)ANG(C/T)、GCC-box(AGCCGCC)、DRE/CRT(A/GCCGAC)等互作調節相關基因表達[4],提高葡萄對生物脅迫或非生物脅迫的適應性。此外,ERF亞家族轉錄因子在植物生長發育、初生代謝及次生代謝等過程中同樣發揮重要作用[5]。植物耐鹽基因包括離子通道蛋白基因、植物信號轉導基因、植物滲透物質合成基因和植物轉錄調控基因。研究表明,參與脯氨酸、甜菜堿、糖醇、黃酮類化合物等滲透保護物質代謝相關合成基因[6]、[7]、[8]、[9]、[10]、[11]等直接或間接參與植物耐鹽。植物信號轉導基因包括蛋白激酶類基因[12]、[13]、[14]、[15]、[16]、[17]、[18],以及參與信號感應和轉導的基因[19]、[20]、[21]、[22]等也單獨或協同調控植物耐鹽。例如,將擬南芥導入到水稻中發現其滲透調節能力顯著增強,耐鹽性也顯著增強[23]。此外,植物還可通過轉錄因子與下游基因啟動子順式作用元件或靶向蛋白相互作用,調控目標基因的表達,引起一系列應答反應,進而增強植物的抗逆能力。這類蛋白包括AP2/ERF類轉錄因子如DREB1A/CBF3[24]、DREB1B/ CBF1[25]、DREB2A[26]等;bZIP類轉錄因子如ABF2[27]、ABF3/ABF4[28]、AREB1[29]、ABP9[30]等;MYB/MYC類轉錄因子家族基因如[31]、[32]、[33]等;以及鋅指蛋白家族基因如[34]、[35]等。【本研究切入點】葡萄基因組雖已完全測序,但葡萄AP2/ERF超家族轉錄因子尚未有詳細的表達譜。截至目前,對葡萄AP2/ERF轉錄因子的研究深度較淺,處于轉錄因子功能研究的初步驗證階段,深入分子層面的研究極少。鹽脅迫是限制我國葡萄產業的主要非生物脅迫之一,在葡萄耐鹽中的功能有待深入研究。【擬解決的關鍵問題】對葡萄編碼序列及氨基酸理化性質等進行生物信息學分析,利用同源遺傳轉化技術揭示調控葡萄愈傷組織外源鹽脅迫響應特性并鑒定其耐鹽功能。
試驗于2022年在石河子大學進行。
供試材料為石河子大學農學院實驗室保存的‘無核白’葡萄愈傷組織(以‘無核白’葡萄花藥為外植體誘導得到的非胚性愈傷組織)[36]。野生型葡萄愈傷組織繼代培養基:MS培養基(不含蔗糖和瓊脂)+20 g·L-1蔗糖+8 g·L-1瓊脂+0.8 g·L-1活性炭+0.59 g·L-1MES+10 mg·L-1毒莠定+2.2 mg·L-1噻苯隆;轉基因葡萄愈傷組織繼代培養基:在野生型葡萄愈傷組織培養基的基礎上添加50 mg·L-1卡那霉素。每2周繼代一次,于27℃無菌條件下暗培養,取繼代10 d愈傷組織提取RNA。表型鑒定培養基:在野生型培養基的基礎上添加20、50、70和100 mmol·L-1NaCl。
從葡萄基因組網站中下載(VIT_ 16s0013g00890)氨基酸序列,以此為模板借助Blast-protein在線工具查找蘋果、草莓、番茄等同源性高于90%的編碼蛋白氨基酸序列,利用MEGA 7軟件,采用鄰接法(neighbor-joining)和最短演化長度算法(minimal evolution),構建系統進化樹,bootstraptest設置為1 000。利用ProtParam進行蛋白質特性分析;利用SOPMA預測蛋白質二級結構;利用NetPhos 2.0 Server分析磷酸化位點;利用PlantCARE在線工具檢索啟動子順式作用元件。
利用Primer Premier 5.0軟件設計實時熒光定量PCR(quantitative real-time PCR,qRT-PCR)引物,引物合成和基因測序均由上海生工生物技術有限公司完成,qRT-PCR上游和下游引物分別來自UTR區及編碼區,序列信息見表1。選取葡萄肌動蛋白編碼基因為內參基因,采用Roche Light-Cycler480R型PCR儀檢測基因表達水平。使用2-ΔΔCT方法[37]計算基因相對表達量。

表1 qRT-PCR引物序列
利用多酚植物總RNA抽提純化試劑盒(康為世紀生物科技有限公司,江蘇)提取‘無核白’葡萄愈傷組織mRNA,并分別借助Nano Drop 2000分光光度計(Thermo Scientific,美國)和1.5%瓊脂糖凝膠電泳檢測總mRNA質量。以總mRNA為模板,利用Prime Script TM RT reagent Kit試劑盒(TaKaRa,大連)反轉錄獲得cDNA第一鏈(全長克隆,上游引物:ATGAAGGAAACCACCATGGGTGAGA;下游引物:TTACACGACCAATAATTGCTCGCC),并將其稀釋至200 ng·μL-1,-20 ℃保存備用。基因全長擴增采用Phusion高保真DNA聚合酶(ThermoFisher,上海),擴增體系為:Phusion酶0.5 μL、10×Phusion Buffer 5 μL、上下游引物各2 μL、cDNA 2 μL、dd H2O 38.5 μL。PCR反應程序:98 ℃變性10 s;56 ℃退火15 s,72 ℃延伸45 s,35個循環;72 ℃延伸 10 min;4 ℃保存。PCR產物采用試劑盒法(D2500-1,索萊寶,北京)純化回收。使用pEASY-Blunt Cloning Kit試劑盒(全式金,北京)將純化后的PCR產物連接到pEASY-Blunt載體上,反應體系為10 μL:pEASY-Blunt Vector 1 μL、膠回收產物4 μL,20—25 ℃連接5 min。連接產物轉化大腸桿菌DH5α感受態,挑取陽性克隆進行測序鑒定。
將構建到CaMV 35S啟動子驅動的pBI121-載體上,利用熱激法轉化農桿菌LBA 4404。將含有的農桿菌分別接種于5 mL含利福平和卡那霉素的液體LB培養基中,振蕩培養(28 ℃,200 r/min)10 h至OD600=0.5—0.6,然后將菌液轉移至50 mL含有相同抗生素的LB培養基中振蕩培養(28 ℃、200 r/min)5 h至OD600=0.5—0.6,5 500 r/min離心10 min,收集菌體,用10 mL重懸緩沖液(MS,5%蔗糖,0.03% Silwet L-77)懸浮菌體,重復2次,用懸浮緩沖液稀釋至OD600=0. 6。取繼代生長15 d的葡萄愈傷組織約0.5 g至懸浮液中浸泡30 min,其中每5 min搖晃1次,結束后將愈傷組織放到無菌干燥濾紙上吸干水分放到共培養基中(MS培養基),2 d后將愈傷組織轉移至篩選培養基中(MS培養基+抗生素),每20 d更換1次培養基,直至從致死愈傷組織中長出新的愈傷組織。
利用CTAB法提取轉基因和野生型葡萄愈傷組織基因組DNA,分別以兩種DNA為模板,以CaMV 35S序列中TGAGACTTTTCAACAAAGGGTAAT為上游引物,以基因編碼序列中TTACACGACCAATA ATTGCTCGCC為下游引物擴增目的PCR產物。目的條帶為1 086 bp,以1%瓊脂糖凝膠電泳檢測,條帶正確即為陽性轉化細胞系。
以繼代培養10 d且狀態正常的葡萄愈傷組織為試材,接種到含特定NaCl濃度的愈傷組織培養基中,觀察特定時間下愈傷組織狀態,測定理化指標和相關基因表達水平。
采用蒽酮比色法測定總糖含量[38];可滴定酸測定參照國家標準《水果、蔬菜制品可滴定酸度的測定》GB12293—1990,愈傷組織提取液用0.1 mol·L-1NaOH溶液進行電位滴定,以pH 8.10為滴定終點,重復5次,結果以mg·g-1酒石酸表示。用福林-酚(沒食子以酸為標準參數)分光光度法測定總酚含量[39];參考Katalini?等[40]、RE等[41]采用DPPH法測定自由基清除活性,以沒食子酸為等量物質,將起始DPPH濃度的50%記為EC50,樣品清除自由基能力單位記為1/EC50。對于ABTS和FRAP測定,樣品清除自由基活性能力表示為等量Trolox抗氧化劑能力,參照Sun等[42]的方法。
每項試驗均設置3個生物學重復并取其平均值,利用SPSS 21. 0軟件進行差異顯著性分析。
以前期鹽脅迫轉錄組數據為基礎,分析在各組織器官及外源100 mmol·L-1NaCl脅迫下的表達水平(圖1)。結果顯示,該基因在葡萄根、莖、葉及果實中表達水平無顯著差異,可能與取材樣品發育時期有關,但均顯著高于未經NaCl處理的愈傷組織,100 mmol·L-1NaCl處理愈傷組織后,該基因表達極顯著上調,相對表達量是對照組的3倍。

CT:無NaCl處理愈傷組織。采用Fisher’s LSD法進行單因素方差分析和多重比較。**代表差異達極顯著水平(P?<?0.01)。下同
利用NCBI在線工具Blast-protein,以葡萄XP_002279585.2蛋白序列為模板,搜索蘋果、梨、桃、草莓、無花果、番茄、擬南芥7個物種中相似度最高的蛋白序列,構建氨基酸序列進化樹(圖2),分析蛋白質理化性質(表2)。葡萄VvERF2與番茄SlERF1、無花果FcDREB氨基酸序列高度相似,序列一致性分別為78%和67%。8種同源蛋白質氨基酸殘基數在240—348,分子量介于26.43—38.60 kDa,理論等電點為5.54—8.68,脂肪氨基酸的指數均大于66%,均屬于不穩定性蛋白,蛋白質理化性質種間差異較大。葡萄VvERF2蛋白質理論分子式為C1166H1836N340O347S8,N-末端為甲硫氨酸,正電荷殘基總數(精氨酸+賴氨酸)為32個,負電荷殘基總數(天冬氨酸+谷氨酸)為32個。二級結構預測(圖3-A)表明,VvERF2蛋白質含22.08%-螺旋,11.25%延伸鏈,7.92%-轉角,58.75%無規則卷曲,其中無規則卷曲所占比例最高,可作為酶催化位點或功能蛋白質特異性結合位點。此外,磷酸化位點預測(圖3-B)表明,VvERF2含23個磷酸化修飾位點,絲氨酸、蘇氨酸和酪氨酸磷酸化位點數分別為16個、6個和1個。
此外,啟動子(起始密碼子ATG上游1 500 bp)順式作用元件預測(表3)表明,啟動子區含多個激素及轉錄因子相關作用元件,包括2個響應脫落酸的ABRE作用元件,4個響應茉莉酸甲酯的作用元件CGTCA;同時,正/負鏈中也存在多個MYB和MYC等轉錄因子作用元件。

圖2 不同物種ERF2編碼蛋白進化樹分析

A:VvERF2蛋白質二級結構預測(窗寬:17,相似度閾值:8,狀態數:4),橫坐標代表氨基酸序列,縱坐標表示每個二級結構的發生概率;B:VvERF2蛋白質磷酸化位點預測,橫坐標代表氨基酸序列,縱坐標表示預測的磷酸化位點

表2 8種植物ERF2蛋白質理化性質分析

表3 VvERF2啟動子順式作用元件預測
從葡萄愈傷組織中克隆(GenBank: XP_002279585.2),構建植物雙元表達載體pBI121(CaMV 35S啟動子)重組子。基因檢索結果顯示,編碼區含有一個長度為720 bp的完整開放閱讀框,編碼240個氨基酸。克隆得到的核苷酸大小與檢索結果基本一致(圖4-A),且編碼序列與NCBI發布序列基本一致。

A:VvERF2的克隆結果,M表示Marker 2K;B:轉基因細胞系(包括erf2-1、2、3)和野生型細胞系(wt)VvERF2相對表達量;C:陽性遺傳轉化細胞系PCR產物鑒定,1—5為野生型細胞系(wt)PCR擴增結果,6—10為erf2遺傳轉化細胞系PCR擴增結果。采用Fisher’s LSD法進行單因素方差分析和多重比較。下同
采用農桿菌介導法進行同源遺傳轉化,經篩選后獲得陽性穩定轉化細胞系。PCR鑒定結果顯示,轉基因愈傷組織成功擴增得到目的產物(理論目標產物大小為1 086 bp);qRT-PCR結果顯示(圖4-B),轉基因愈傷組織erf2-1、erf2-2、erf2-3的基因表達水平分別是野生型愈傷組織的8.46、8.50、8.78倍,表明在愈傷組織中成功表達,而野生型無對應條帶(圖4-C)。
2.4.1對葡萄愈傷組織生長量的影響 分別將野生型(wt)與轉基因葡萄愈傷組織(erf2-1、erf2-2、erf2-3)接種在繼代培養基(0 mmol?L-1NaCl)中,觀察愈傷組織形態(圖5),分別測定愈傷組織生長量、總糖、總酸、總酚含量及抗氧化能力。結果顯示,25 d后,過表達愈傷組織生長量顯著升高,其中erf2-1生長量最高,為野生型wt的1.25倍;除總糖變化表現無顯著差異外,其他指標均表現顯著差異,其中轉基因愈傷組織總酸含量顯著降低,erf2-2總酸含量僅為wt的57%,erf2-1、3分別降低21%和29%;總酚含量顯著積累,其中erf2-2、3總酚含量均升高了約38%。DPPH、ABTS和FRAP抗氧化能力測定結果表明,erf2轉基因愈傷組織抗氧化能力顯著高于野生型(表4),并與較高水平的總酸和總酚積累結果相一致。

所有培養皿中間白線左側為野生型愈傷組織,右側為轉基因愈傷組織

表4 葡萄愈傷組織生長量、總糖、總酸、總酚含量及抗氧化水平測定
*:差異顯著(<?0.05);**:差異極顯著(<?0.01)。下同
*: Significant difference (<?0.05); **: Extremely significant difference (<?0.01). The same as below
2.4.2 過量表達對葡萄愈傷組織耐鹽性的影響 由圖5、6可知,不同濃度NaCl處理抑制了大部分愈傷組織的生長,隨著脅迫濃度增加,抑制作用加劇。erf2-2愈傷組織在低濃度NaCl脅迫下的抗性指標顯著高于wt愈傷組織,與不添加NaCl的對照組相比,20 mmol·L-1NaCl處理后生長量幾乎不受影響;而wt愈傷組織的生長量顯著降低至82%,且隨著鹽脅迫濃度增加,生長量保持相對穩定。
當鹽濃度為50 mmol·L-1時,erf2愈傷組織生長量降低,但仍顯著高于wt愈傷組織。erf2愈傷組織總蛋白含量在100 mmol·L-1NaCl脅迫下明顯降低,而wt愈傷組織總蛋白含量在脅迫濃度為50 mmol·L-1時即顯著下降(<0.05),脅迫濃度為70 mmol·L-1時的總蛋白含量降低了37.5%。
此外,SOD、POD、CAT酶活性數據表明(圖6),erf2愈傷組織在各個濃度鹽處理下的酶活性幾乎均高于野生型,其中SOD、POD酶活性均在50 mmol·L-1時分別增加了37%與56%,差異達極顯著水平(<0.01)。CAT酶活性隨著鹽濃度的增加而逐漸減弱,且在兩種愈傷組織中表現趨勢基本一致。20 mmol·L-1鹽濃度處理后,erf2愈傷組織中CAT酶活性為56.41 U·mg-1FW,是wt愈傷組織的2.04倍,差異達極顯著水平(<0.01)。
進一步探究鹽脅迫對愈傷組織細胞滲透調節物質的影響。未受鹽脅迫時,erf2愈傷組織游離脯氨酸含量為14.43 mg/100 g,是wt愈傷組織的1.84倍。當細胞受到較低濃度鹽脅迫時,兩者游離脯氨酸均顯著上升;同時,erf2愈傷組織游離脯氨酸含量顯著高于野生型,隨著脅迫濃度的增加,游離脯氨酸的含量逐漸降低。wt與erf2愈傷組織丙二醛含量無顯著差異,不同鹽脅迫下變化趨勢基本一致,均在70 mmol·L-1NaCl脅迫下達到峰值,表明此時細胞可能受脅迫傷害反應最大(圖6)。
AP2/ERF轉錄因子廣泛存在于植物中,參與植物次生代謝物質合成、逆境脅迫響應等多種生物學過程[1-3]。截至目前,針對AP2/ERF基因家族功能研究多集中在擬南芥、番茄及水稻等模式植物上,在葡萄等園藝植物中研究相對較少。葡萄AP2/ERF基因家族包括149個成員,分為ERF、RAV及AP2三個亞族[1],基于VvERF2蛋白質理化性質預測(圖1),VvERF2具有單個AP2/ERF結構域,屬于ERF亞族。研究證實,ERF亞族基因對植物生長發育、高鹽、高溫、干旱誘導較敏感。同源轉化后提高了番茄植株對干旱和鹽脅迫的耐受性[43],參與番茄果實成熟和代謝物質的變化[44]。本研究中,葡萄VvERF2與番茄中SiERF1蛋白質序列一致性較高,進化樹分析顯示親緣關系較近,暗示二者在植物生長發育和響應脅迫過程中具有相似的生物學功能。此外,八倍體草莓ERF家族全基因組分析發現,和是調控草莓果實成熟的潛在相關基因[45];過表達的蘋果愈傷組織對低溫、干旱、鹽度和脫落酸的敏感性低于野生型[46];受冷、鹽、堿、干旱脅迫誘導,其在根系中的表達量較高,對低溫脅迫更為敏感,超表達后增強了水稻對過量H2O2的去除能力[47];大豆的異源表達增強了轉基因煙草抗逆性[48];冷、鹽和干旱誘導在大豆植株中表達上調,轉基因煙草耐鹽性強、抗旱能力高[49]。然而,和的過表達使擬南芥對干旱脅迫更敏感,抗鹽能力下降[50];過表達降低了水稻對鹽脅迫的耐受性:鹽脅迫下,促使水稻幼苗中Na+/K+比值增加,而RNAi植株中Na+/K+比值降低[51];轉擬南芥在萌發期和幼苗期對鹽脅迫的耐性降低[52];沉默可提高馬鈴薯葉片對病蟲的抗性,提高植株對鹽脅迫耐受性,并激活防御相關基因(、和)[53]。花椰菜BraERF023a轉錄因子促進遺傳轉化株系的生長發育,正調控植物對鹽和干旱脅迫水平[54]。因此,不同物種ERF亞族基因對逆境的響應各異,可能存在不同的調控途徑。由本研究可知,同源轉化超表達后,不僅促進葡萄愈傷組織的生長,提高轉基因愈傷組織總酸、總酚的積累及抗氧化能力,且通過調控活性氧代謝平衡和滲透調節物質水平進一步增強了鹽脅迫下的植物抗性。

圖6 不同鹽脅迫濃度對葡萄愈傷組織生長量、活性氧清除相關酶活性及蛋白質和滲透調節物質含量的影響
AP2/ERF轉錄因子調控植物逆境脅迫應答的機制極其復雜,有時可以直接與目標基因啟動子上順式作用元件結合調控其轉錄水平,有時則需要與其他蛋白協同作用調控下游基因的表達來適應各種生物與非生物脅迫。比如通過與啟動子GCC-box結合直接調控、、、等致病相關基因(pathogenesis- related gene,PR)的表達[55]。Sun等[56]發現VaERF092可通過與啟動子GCC-box結合來調控的表達,從而增強了其對冷脅迫的耐受性。在煙草中,ERF轉錄因子Tsil與一個鋅指蛋白Tsipl在體內互作,同時過表達Tsil和Tsipl顯著提高了轉基因植株抗鹽能力,這說明Tsil和Tsipl蛋白的相互作用加強了Tsipl介導的轉錄激活[57]。在大麥中,轉錄因子HvDRFI能夠和bZIP轉錄因子HvABIS相互作用,促進下游基因的表達[58]。在玉米中,DBF1與DIP1蛋白質的相互作用可提高啟動子的活性進而調控目的基因的表達以應答逆境脅迫[59]。AP2/ERF轉錄因子SiANT1可能通過正調控下游耐鹽相關基因和的表達提高谷子的耐鹽性[60]。啟動子存在多種ABA、Me-JA激素相關順式作用元件,以及多種MBY轉錄因子作用元件,暗示可能通過參與多種激素相互作用過程及與MYB、MYC等轉錄因子協同調控植物逆境脅迫抗性。
不同物種ERF2直系同源蛋白理化性質存在一定差異,葡萄與番茄、無花果ERF2蛋白序列相似度較高;具有組織表達特異性,其表達調控涉及多種激素及MYB、MYC等轉錄因子逆境脅迫響應過程,在葡萄愈傷組織中表達水平較低且受鹽脅迫誘導顯著上調;過表達促進葡萄愈傷組織多酚等次生代謝物質積累,維持活性氧代謝平衡,提高細胞抗氧化水平,增強細胞膜滲透調節能力,從而提高葡萄愈傷組織耐鹽性。
[1] LICAUSI F, GIORGI F M, ZENONI S, OSTI F, PEZZOTTI M, PERATA P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in. BMC Genomics, 2010, 11(1): 1-16.
[2] NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H. Genome-wide analysis of thegene family inand rice. Plant Physiology, 2006, 140(2): 411-432.
[3] JOFUKU K D, DEN BOER B G, VAN MONTAGU M, OKAMURO J K. Control offlower and seed development by the homeotic gene. The Plant Cell, 1994, 6(9): 1211-1225.
[4] FENG K, HOU X L, XING G M, LIU J X, DUAN A Q, XU Z S, LI M Y, ZHUANG J, XIONG A S. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 2020, 40(6): 750-776.
[5] OH S J, SONG S I, KIM Y S, JANG H J, KIM S Y, KIM M, KIM Y K, NAHM B H, KIM J K.CBF3/DREB1A and ABF3in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 2005, 138(1): 341-351.
[6] MAGHSOUDI K, EMAM Y, NIAZI A, PESSARAKLI M, ARVIN M J.expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 2018, 13(1): 461-471.
[7] BANDURSKA H, BRE? W, ZIELEZI?SKA M, MIELOSZYK E. Does potassium modify the response of(jacq.) to long-term salinity? Plants, 2023, 12(7): 1439.
[8] 呂笑言, 王宇光, 金英. 甜菜BvM14-CMO、BvM14-BADH基因的克隆、鹽脅迫表達及生物信息學分析. 黑龍江大學自然科學學報, 2018, 35(1): 79-84.
Lü X Y, WANG Y G, JIN Y. Cloning, salt stress expression and bioinformatics analysis of BvM14-CMO and BvM14-genes in sugarbeet. Journal of Natural Science of Heilongjiang University, 2018, 35(1): 79-84. (in Chinese)
[9] SEKULA B, DAUTER Z. Spermidine synthase (SPDS) undergoes concerted structural rearrangements upon ligand binding - A case study of the two SPDS isoforms from. Frontiers in Plant Science, 2019, 10: 555.
[10] CHITNIS M V, MUNRO C A, BROWN A J P, GOODAY G W, GOW N A R, DESHPANDE M V. The zygomycetous fungus,contains a large family of differentially regulated chitin synthase genes. Fungal Genetics and Biology, 2002, 36(3): 215-223.
[11] MILLER E N, INGRAM L O. Sucrose and overexpression of trehalose biosynthetic genes () increase desiccation tolerance of recombinant. Biotechnology Letters, 2008, 30(3): 503-508.
[12] 王鐳, 才華, 柏錫, 李麗文, 李勇, 朱延明. 轉基因水稻的培育與耐鹽性分析. 遺傳, 2008, 30(8): 1051-1055.
WANG L, CAI H, BAI X, LI L W, LI Y, ZHU Y M. Cultivation of transgenic rice plants withgene and its salt tolerance. Hereditas, 2008, 30(8): 1051-1055. (in Chinese)
[13] FU S F, CHOU W C, HUANG D D, HUANG H J. Transcriptional regulation of a rice mitogen-activated protein kinase gene,, in response to environmental stresses. Plant and Cell Physiology, 2002, 43(8): 958-963.
[14] PIAO H L, LIM J H, KIM S J, CHEONG G W, HWANG I. Constitutive over-expression ofinduces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in. The Plant Journal, 2001, 27(4): 305-314.
[15] SHOU H X, BORDALLO P, WANG K. Expression of theprotein kinase (NPK1) enhanced drought tolerance in transgenic maize. Journal of Experimental Botany, 2004, 55(399): 1013-1019.
[16] ZHOU Y B, LIU C, TANG D Y, YAN L, WANG D, YANG Y Z, GUI J S, ZHAO X Y, LI L G, TANG X D, YU F, LI J L, LIU L L, ZHU Y H, LIN J Z, LIU X M. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2homeostasis and improving salt tolerance in rice. The Plant Cell, 2018, 30(5): 1100-1118.
[17] UMEZAWA T, YOSHIDA R, MARUYAMA K, YAMAGUCHI- SHINOZAKI K, SHINOZAKI K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(49): 17306-17311.
[18] ZHU J Q, ZHANG J T, TANG R J, LV Q D, WANG Q Q, YANG L, ZHANG H X. Molecular characterization of, an inositol polyphosphate kinase gene homolog fromhalophila, and its heterologous expression to improve abiotic stress tolerance in. Physiologia Plantarum, 2009, 136(4): 407-425.
[19] 蘇倩, 杜文宣, 馬琳, 夏亞迎, 李雪, 祁智, 龐永珍. 紫花苜蓿的克隆及功能分析. 中國農業科學, 2022, 55(19): 3697-3709.doi: 10.3864/j.issn.0578-1752.2022.19.002.
SU Q, DU W X, MA L, XIA Y Y, LI X, QI Z, PANG Y Z. Cloning and functional analyses of. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709. doi: 10.3864/j.issn. 0578-1752.2022.19.002. (in Chinese)
[20] LATZ A, MEHLMER N, ZAPF S, MUELLER T D, WURZINGER B, PFISTER B, CSASZAR E, HEDRICH R, TEIGE M, BECKER D. Salt stress triggers phosphorylation of thevacuolar K+channel TPK1 by calcium-dependent protein kinases (CDPKs). Molecular Plant, 2013, 6(4): 1274-1289.
[21] DUTILLEUL C, RIBEIRO I, BLANC N, NEZAMES C D, DENG X W, ZGLOBICKI P, PALACIO BARRERA A M, ATEHORTùA L, COURTOIS M, LABAS V, GIGLIOLI-GUIVARC'H N, DUCOS E. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in. Plant, Cell & Environment, 2016, 39(1): 185-198.
[22] ZHOU X Y, LI J F, WANG Y Q, LIANG X Y, ZHANG M, LU M H, GUO Y, QIN F, JIANG C F. The classical SOS pathway confers natural variation of salt tolerance in maize. The New Phytologist, 2022, 236(2): 479-494.
[23] 潘曉雪, 胡明瑜, 蔣曉英, 白文欽, 官玲, 吳紅, 雷開榮. 過量表達鹽芥TsIPK2基因增強轉基因水稻耐鹽性. 植物營養與肥料學報, 2019, 25(5): 741-747.
PAN X X, HU M Y, JIANG X Y, BAI W Q, GUAN L, WU H, LEI K R. Overexpression of thesalsuginea TsIPK2 gene enhances salt tolerance of transgenic rice. Plant Nutrition and Fertilizer Science, 2019, 25(5): 741-747. (in Chinese)
[24] SHI H Z, KIM Y, GUO Y, STEVENSON B, ZHU J K. TheSOS5locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. The Plant Cell, 2003, 15(1): 19-32.
[25] DOU M Z, CHENG S, ZHAO B T, XUAN Y H, SHAO M L. The indeterminate domain protein ROC1 regulates chilling tolerance via activation of DREB1B/CBF1in rice. International Journal of Molecular Sciences, 2016, 17(3): 233.
[26] MARUYAMA K, TAKEDA M, KIDOKORO S, YAMADA K, SAKUMA Y, URANO K, FUJITA M, YOSHIWARA K, MATSUKURA S, MORISHITA Y, SASAKI R, SUZUKI H, SAITO K, SHIBATA D, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiology, 2009, 150(4): 1972-1980.
[27] KIM S, KANG J Y, CHO D I, PARK J H, KIM S Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. The Plant Journal, 2004, 40(1): 75-87.
[28] HWANG K, SUSILA H, NASIM Z, JUNG J Y, AHN J H.ABF3and ABF4transcription factors act with the NF-YC complex to regulateexpression and mediate drought-accelerated flowering. Molecular Plant, 2019, 12(4): 489-505.
[29] YOSHIDA T, FUJITA Y, SAYAMA H, KIDOKORO S, MARUYAMA K, MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AREB1, AREB2, and ABF3are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal, 2010, 61(4): 672-685.
[30] WANG C L, LU G Q, HAO Y Q, GUO H M, GUO Y, ZHAO J, CHENG H M. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta, 2017, 246(3): 453-469.
[31] VERMA D, JALMI S K, BHAGAT P K, VERMA N, SINHA A K. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in. The FEBS Journal, 2020, 287(12): 2560-2576.
[32] YOO J H, PARK C Y, KIM J C, DO HEO W, CHEONG M S, PARK H C, KIM M C, MOON B C, CHOI M S, KANG Y H, LEE J H, KIM H S, LEE S M, YOON H W, LIM C O, YUN D J, LEE S Y, CHUNG W S, CHO M J. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in. Journal of Biological Chemistry, 2005, 280(5): 3697-3706.
[33] OH J E, KWON Y, KIM J H, NOH H, HONG S W, LEE H. A dual role for MYB60 in stomatal regulation and root growth ofunder drought stress. Plant Molecular Biology, 2011, 77(1/2): 91-103.
[34] SUGANO S, KAMINAKA H, RYBKA Z, CATALA R, SALINAS J, MATSUI K, OHME-TAKAGI M, TAKATSUJI H. Stress-responsive zinc finger geneplays a role in drought tolerance in petunia. The Plant Journal, 2003, 36(6): 830-841.
[35] KIM S H, HONG J K, LEE S C, SOHN K H, JUNG H W, HWANG B K. CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in. Plant Molecular Biology, 2004, 55(6): 883-904.
[36] GAMBINO G, RUFFA P, VALLANIA R, GRIBAUDO I. Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (spp.). Plant Cell, Tissue and Organ Culture, 2007, 90(1): 79-83.
[37] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.
[38] LI X L, WANG C R, LI X Y, YAO Y X, HAO Y J. Modifications of Kyoho grape berry quality under long-term NaCl treatment. Food Chemistry, 2013, 139: 931-937.
[39] XU L L, YUE Q Y, BIAN F E, SUN H, ZHAI H, YAO Y X. Melatonin enhances phenolics accumulation partially via ethylene signaling and resulted in high antioxidant capacity in grape berries. Frontiers in Plant Science, 2017, 8: 1426.
[40] KATALINI? V, MO?INA S S, SKROZA D, GENERALI? I, ABRAMOVI? H, MILO? M, LJUBENKOV I, PISKERNIK S, PEZO I, TERPINC P, BOBAN M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14varieties grown in Dalmatia (Croatia). Food Chemistry, 2010, 119(2): 715-723.
[41] RE R, PELLEGRINI N, PROTEGGENTE A, PANNALA A, YANG M, RICE-EVANS C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 1999, 26(9/10): 1231-1237.
[42] SUN B S, NEVES A C, FERNANDES T A, FERNANDES A L, MATEUS N, DE FREITAS V, LEANDRO C, SPRANGER M I. Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6550-6557.
[43] LI Z J, TIAN Y S, XU J, FU X Y, GAO J J, WANG B, HAN H J, WANG L J, PENG R H, YAO Q H. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity againstpv.DC3000. Plant Physiology and Biochemistry, 2018, 132: 683-695.
[44] YOU S J, WU Y, LI W, LIU X F, TANG Q L, HUANG F K, LI Y, WANG H, LIU M C, ZHANG Y. SlERF.G3-Like mediates a hierarchical transcriptional cascade to regulate ripening and metabolic changes in tomato fruit. Plant Biotechnology Journal, 2023: 10.1111/ pbi.14177.
[45] ZHANG Y T, GUO C H, DENG M Y, LI S L, CHEN Y Y, GU X J, TANG G H, LIN Y X, WANG Y, HE W, LI M Y, ZHANG Y, LUO Y, WANG X R, CHEN Q, TANG H R. Genome-wide analysis of the ERF family and identification of potential genes involved in fruit ripening in octoploid strawberry. International Journal of Molecular Sciences, 2022, 23(18): 10550.
[46] RUI L, ZHU Z Q, YANG Y Y, WANG D R, LIU H F, ZHENG P F, LI H L, LIU G D, LIU R X, WANG X F, ZHANG S, YOU C X. Functional characterization of
[47] ZHANG X M, JIANG J W, MA Z W, YANG Y P, MENG L D, XIE F C, CUI G W, YIN X J. Cloning ofgene from Caucasian clover and its functional analysis responding to low-temperature stress. Frontiers in Plant Science, 2022, 13: 968965.
[48] ZHANG G Y, CHEN M, LI L C, XU Z S, CHEN X P, GUO J M, MA Y Z. Overexpression of the soybeanGmERFgene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 2009, 60(13): 3781-3796.
[49] ZHANG G Y, CHEN M, CHEN X P, XU Z S, LI L C, GUO J M, MA Y Z. Isolation and characterization of a novel EAR-motif-containing geneGmERFfrom soybean (L.). Molecular Biology Reports, 2010, 37(2): 809-818.
[50] YANG Z, TIAN L N, LATOSZEK-GREEN M, BROWN D, WU K Q.ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology, 2005, 58(4): 585-596.
[51] LIU D F, CHEN X J, LIU J Q, YE J C, GUO Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance toand salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911.
[52] ZHUANG J, JIANG H H, WANG F, PENG R H, YAO Q H, XIONG A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic. Plant Molecular Biology Reporter, 2013, 31(6): 1336-1345.
[53] TIAN Z D, HE Q, WANG H X, LIU Y, ZHANG Y, SHAO F, XIE C H. The potato ERF transcription factor StERF3negatively regulates resistance toand salt tolerance in potato. Plant and Cell Physiology, 2015, 56(5): 992-1005.
[54] 李慧, 韓占品, 賀麗霞, 楊亞苓, 尤書燕, 鄧琳, 王春國. 花椰菜的克隆及在響應鹽和干旱脅迫中的功能. 中國農業科學, 2021, 54(1): 152-163. doi: 10.3864/j.issn.0578-1752.2021.01.011.
LI H, HAN Z P, HE L X, YANG Y L, YOU S Y, DENG L, WANG C G. Cloning and functional analysis ofunder salt and drought stresses in cauliflower (L. var. botrytis). Scientia Agricultura Sinica, 2021, 54(1): 152-163. doi: 10.3864/j.issn. 0578-1752.2021.01.011. (in Chinese)
[55] GUTTERSON N, REUBER T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7(4): 465-471.
[56] SUN X M, ZHANG L L, WONG D C J, WANG Y, ZHU Z F, XU G Z, WANG Q F, LI S H, LIANG Z C, XIN H P. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. The Plant Journal, 2019, 99(5): 988-1002.
[57] TRAN L S P, NAKASHIMA K, SAKUMA Y, OSAKABE Y, QIN F, SIMPSON S D, MARUYAMA K, FUJITA Y, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of thegene in. The Plant Journal, 2007, 49(1): 46-63.
[58] XUE G P, LOVERIDGE C W.is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. The Plant Journal, 2004, 37(3): 326-339.
[59] SALEH A, LUMBRERAS V, LOPEZ C, KIZIS E D P D, PAGèS M. Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1activity in stress responses. The Plant Journal, 2006, 46(5): 747-757.
[60] 寧蕾, 王曙光, 琚鵬舉, 柏星軒, 葛林豪, 齊欣, 姜奇彥, 孫現軍, 陳明, 孫黛珍. 過表達谷子對水稻耐鹽性的影響. 中國農業科學, 2018, 51(10): 1830-1841. doi: 10.3864/j.issn.0578-1752.2018. 10.002.
NING L, WANG S G, JU P J, BAI X X, GE L H, QI X, JIANG Q Y, SUN X J, CHEN M, SUN D Z. Rice overexpression of milletgene increases salt tolerance. Scientia Agricultura Sinica, 2018, 51(10): 1830-1841. doi: 10.3864/j.issn.0578-1752.2018.10.002. (in Chinese)
Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2
DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi
College of Agronomy, Shihezi University/Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
【Objective】In order to give references for future study on the mechanism of the AP2/ERF superfamily on grapes, the protein bioinformatics analysis of grape transcription factor VvERF2 was performed. Additionally, the procedures of gene cloning and homologous genetic transformation were employed for exploring the function of VvERF2 under salt stress in grape callus. 【Method】For the bioinformatics analysis of the VvERF2 protein, the NCBI Blast database (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and additional online resources were utilized. The Thompson seedless (L.) callus was used as the material, and the grape homologous genetic transformation system ofwere constructed. The transgenic callus phenotype was determined by growth volume, total sugar, total acid, and other factors. Free proline, antioxidant enzyme activity, and other indices were used to assess the salt tolerance of transgenic callus. 【Result】Based on the bioinformatical analysis of VvERF2 and the 7 most homologous orthologous protein sequences, thegene encoded 240 amino acids, which were quite similar to those of tomatoes and figs, with protein homology percentages of 78% and 67%, respectively. The amino acid residues in eight species varied from 240 to 348, their molecular weights from 26.43 to 38.60 kDa, their theoretical isoelectric points from 5.54 to 8.68, and their index of fatty amino acids were all belonged to unstable proteins, which was higher than 66%. The physicochemical properties of amino acid sequences in different species were quite different. In addition, the promoter ofgene had a variety of cis-acting element related to abscisic acid and other transcription factors, such as MYB. Particularly,expressed specificity in different tissues, with callus exhibiting the lowest level of expression. Following salt stress, however,gene expression increased to three times that of the control group. Transgenic results showed that after overexpression ofgene in grape callus, growth amount, total acid, total phenol content and antioxidant activity of DPPH (1, 1-diphenyl-2-trinitrophenylhydrazine) were significantly increased. The content of total protein and free proline in transgenic callus were almost higher than those in wild-type callus treated with different concentrations of NaCl. 【Conclusion】The overexpression ofpromoted callus growth and accumulation of secondary metabolites, such as phenolic substances, and improved salt tolerance of grape.
grape;;salt stress; functional identification

10.3864/j.issn.0578-1752.2024.02.009
2023-06-16;
2023-11-09
國家自然科學基金(32260722)、石河子大學青年創新培育人才支持計劃(KX03090305)、石河子大學高層次人才科研啟動項目(2022ZK014)
代瑛姿,E-mail:2388874188@qq.com。通信作者王憲璞,E-mail:waxp2011@163.com。通信作者許麗麗,E-mail:1156075993@qq.com
(責任編輯 趙伶俐)