董二偉,王媛,王勁松,劉秋霞,黃曉磊,焦曉燕
施氮量對谷子產量、氮素利用及小米品質的影響
董二偉,王媛,王勁松,劉秋霞,黃曉磊,焦曉燕
山西農業大學資源環境學院,太原 030031
【目的】明確不同施氮量下谷子產量、干物質分配和氮素累積轉運特征,分析氮用量對小米糊化特性和有益微量元素含量的影響及其與植株氮素累積的關系,探究植株氮素營養對小米品質的影響。【方法】于2020—2021年在山西省沁縣研究4個施氮水平(0、75、120和150 kg·hm-2)對春播谷子產量、氮素吸收與利用特征及小米品質的影響。【結果】施氮提高谷子收獲穗數、穗粒數和植株的干物質生產能力,增加了氮素由營養器官向籽粒的轉運率,促進了干物質及氮素向籽粒的分配,從而提高產量。施氮也提高了小米中鐵、鋅、鈣、鎂和硒的含量,其中,施氮75 kg·hm-2時上述元素含量的增幅最大,氮利用率最高。與不施氮相比,施氮75 kg·hm-2時谷子收獲穗數、穗粒數、產量、地上部生物量、收獲指數、氮素累積總量和氮素轉運率增幅最高,增幅分別可達7.5%、23.3%、31.0%、21.2%、8.6%、40.3%和9.2%,小米中鐵、鋅、鈣、鎂和硒含量的增幅分別為37.2%、43.6%、56.0%、30.5%和16.9%。過量施氮(150 kg·hm-2)不利于谷子穗粒數和收獲指數的提高及氮素由營養器官向籽粒的轉運,與施氮量75 kg·hm-2比較,兩年氮素轉運率分別降低了23.1%和28.2%;氮素施用過量也降低了小米支鏈淀粉含量,淀粉形成受限,抑制了小米粉最終黏度、回升值和峰谷黏度,影響糊化品質,同時氮肥利用率低至25%左右。谷子地上部氮吸收量與小米中鐵、鋅、鈣、鎂和硒含量呈極顯著的正相關,但與小米中支鏈淀粉含量、小米粉的最終黏度和峰谷黏度呈顯著的負相關。【結論】施氮量在75—120 kg·hm-2,能促進谷子干物質及氮素向籽粒的分配,實現籽粒產量、小米糊化品質和有益微量元素含量的同步提升。
谷子;施氮量;氮素利用;產量;糊化特性;微量元素
【研究意義】小米含有豐富的有益微量元素[1],消化率較高,具有良好的抗炎效果,同時還可降低血糖和血脂,預防癌癥[2],已成為平衡居民膳食結構的特色雜糧谷物。谷子主要種植在我國北方干旱、半干旱的丘陵山區,土壤瘠薄、缺氮現象普遍存在,但谷子根系的長重比達468.52 m·g-1[3],具有較強的耐瘠性[4]。低氮脅迫會增加谷子根系碳氮比和生物量[3],提高氮肥利用效率,其特殊的生物學特性可能會導致谷子氮素利用特點有別于其他作物。因此,探究不同施氮量對谷子的氮素累積和利用特點,分析植株氮素營養對小米品質的影響,有助于實現谷子氮高效利用和優質穩產。【前人研究進展】氮在保證植株正常生長和籽粒發育過程中發揮重要的作用[5],其在營養器官和生殖器官中的分配和累積是決定籽粒產量的重要因素[6]。適宜的氮水平通過促進作物的有效分蘗和穎花分化,提高庫容量[7],驅動營養器官中的氮素向籽粒轉運[8],增加光合產物向籽粒的分配[9],保證籽粒灌漿而提高產量。張亞琦等[10]研究發現施氮能顯著提高谷子凈光合速率、蒸騰速率和氣孔導度,通過調控谷子的光合速率也提高了水分利用效率,最終籽粒產量顯著增加。良好的植株氮營養狀況會促進根系對微量元素的吸收及其在莖部運輸,最終提升微量元素在作物籽粒中的累積[11-12]。但當土壤氮供應不足時,氮素由營養器官向籽粒的轉運率增加[13],冠層光合同化能力減弱[14],影響籽粒產量的形成[15],同時鋅和鐵元素由根向地上部的轉運和再運輸能力減弱[16],妨礙籽粒中微量元素的生物強化。NADEEM等發現,在低氮脅迫下,谷子通過改變根系吲哚乙酸、細胞分裂素和赤霉素的分泌及硝酸鹽轉運蛋白的表達,增加根表面積[3],實現氮素的高效利用。然而在我國氮肥過量投入導致作物氮素吸收利用率普遍低于50%[17],氮素的奢侈吸收會降低氮素從營養器官向籽粒的轉運率[18],影響光合產物形成與轉運,導致作物群體過大[19],源庫競爭加劇[20];過量施氮也影響谷物籽粒淀粉糊化特性和品質[21],同時對生態環境產生嚴重的風險[22-23]。為此適宜氮用量在促進干物質和氮素向籽粒轉運的基礎上,提高籽粒品質,最終獲得較高的氮素利用效率的同時,避免了盈余氮素對環境的危害。【本研究切入點】目前施氮水平對谷子氮素累積和轉運特征、植株氮素吸收對籽粒品質的影響尚不明確。【擬解決的關鍵問題】本研究連續兩年(2020和2021年)通過研究不同施氮量下谷子產量、干物質分配和氮素累積轉運特征,探究不同施氮量對谷子氮素利用特征的影響,分析小米糊化特性和有益微量元素含量與植株氮素營養的關系,明晰植株氮素營養對小米品質的影響,為高效優質的谷子生產提供理論依據和技術支撐。
試驗于2020—2021年在山西省沁縣煙立村(36°36′29″N,112°38′05″E)進行,該區域屬北溫帶大陸性季風氣候,海拔916 m,年均氣溫8.9 ℃。區域內春播谷子通常在5月底播種,10月10日左右收獲,連續7年生育期(5月20日至10月15日)降水量均值為464.1 mm。2020和2021年谷子生育期日降水量和日平均溫度見圖1,兩年生育期內降水量分別為424.6和717.3 mm。該區土壤類型為褐土,土壤質地為黏壤土(各粒級體積百分比分別為:≤0.002 mm黏粒占21.5%;0.02—0.002 mm粉粒占30.8%;2—0.02 mm砂粒占47.7%)。2020和2021年播前土壤養分含量見表1。

圖1 2020—2021年谷子生育期日平均氣溫和降雨量

表1 2020和2021年耕層(0—20 cm)土壤養分含量
供試品種為沁黃2號,設0(N0)、75(N75)、120(N120)和150 kg·hm-2(N150)4個氮素處理,為與生產中輕簡化栽培相適應,氮磷鉀作為基肥一次性施入。其中,氮肥為釋放期90 d的緩釋尿素;磷、鉀肥施用量分別為磷(P2O5)60 kg·hm-2,鉀(K2O)120 kg·hm-2,以過磷酸鈣和硫酸鉀的形式供給。小區面積6 m×8 m,每個處理設3次重復,各小區間隔1 m,采用隨機區組設計。5月20日播種,6月22日定苗,留苗密度45×104株/hm2,10月10日生理成熟期收獲,其他田間管理按該品種高產田進行。
1.2.1 產量測定 于成熟期,每小區邊行(四周)去除1 m進行收獲以避免邊際效應,記錄測產面積內的穗數和穗總鮮重,按平均單穗重取代表性穗100個,脫粒風干后計產,稱取千粒重,根據單穗粒總重和千粒重計算穗粒數。
1.2.2 植株氮素測定 分別于抽穗期和成熟期在每小區選取代表性植株50株,將抽穗期的植株分為莖葉和穗兩部分,成熟期分為莖葉、穗軸和籽粒三部分,烘干分別稱重后粉碎過0.25 mm篩;采用濃H2SO4消煮、凱氏定氮儀測定各部分氮含量[24];根據谷子各部位干重和對應部位的氮含量計算谷子抽穗期和成熟期的莖葉氮累積量、成熟期籽粒氮累積量及地上部氮累積總量。
1.2.3籽粒淀粉測定 將脫殼后的小米研磨過0.178 mm篩后,采用Megazyme International Ireland Ltd.(Bray Co., Wicklow, Ireland)的試劑盒測定總淀粉含量。用85%(v/v)甲醇對小米粉脫脂后,參考MAN等[25]的方法,用分光光度計在400—900 nm范圍內掃描碘吸收光譜,在630 nm處測定碘吸收值,測定直鏈淀粉含量。支鏈淀粉含量為總淀粉和直鏈淀粉含量的差值。根據小米淀粉含量和產量即計算淀粉產量[26]。
1.2.4 籽粒糊化特性測定 采用Viscograph-E黏度糊化儀(Brabender,Germany)測定小米粉糊化特性,稱取研磨過0.178 mm篩、含水量約為14%的小米粉40 g置于420 mL蒸餾水,在75 r/min的轉速下進行測定:加熱14 min(50-92 ℃),在92 ℃保持15 min后在12.3 min內冷卻至55 ℃并保持15 min,獲取峰值黏度、谷值黏度、崩解值、最終黏度、回升值及糊化溫度。
1.2.5 籽粒微量營養元素含量 參考LIU等[27]的方法對籽粒進行前處理,消解液中的鐵、鋅、鈣、鎂和硒濃度用電感耦合等離子體質譜儀(ICP-MS,Agilent 7500a,USA)測定。
氮素轉運及利用率相關參數采用以下公式計算[18]。
氮素轉運量(nitrogen translocation, NT, kg·hm-2)=抽穗期莖葉氮總量-成熟期莖葉氮總量;
氮素轉運率(nitrogen translocation efficiency, NTE, %)=氮素轉運量/抽穗期莖葉氮總量×100;
轉運氮貢獻率(nitrogen contribution efficiency, NCE, %)=氮素轉運量/成熟期籽粒氮累積量×100;
收獲指數(harvest index, HI, %)=籽粒產量/地上部生物量×100;
氮收獲指數(nitrogen harvest index, NHI, %)=籽粒氮累積量/地上部總吸氮量×100;
氮利用率(nitrogen use efficiency, NUE, %)= (施氮區地上部氮累積量-不施氮區地上部氮累積量)/施氮量×100;
氮農學效率(nitrogen agronomic efficiency, NAE, kg·kg-1)=(施氮區產量-不施氮區產量)/施氮量;
氮表觀回收率(nitrogen apparent recovery rate, NARR, %)=地上部氮積累總量/施氮量×100。
用Excel 2021對數據進行整理,SPSS 19.0進行方差分析;采用R 4.0.1 ggplot 2和 Adobe Illustrator 2021進行繪圖。
隨施氮水平的增加谷子收獲穂數、產量和地上部生物量呈先增加后趨于穩定的趨勢,N75處理下達到最高(表2)。與N0比較,2020和2021年N75處理單位面積收獲穗數分別提高了3.9%和7.5%,地上部生物量分別提高了19.6%和21.2%,產量亦分別提高了19.6%和31.0%;2020年施氮還顯著提高了籽粒的千粒重,與N0比較N75谷子千粒重提高了4.3%。N75處理的穗粒數和收獲指數亦為最高,但隨施氮量的持續增加呈降低趨勢,與N0相比較2020和2021年N75處理的谷子穗粒數分別提高了19.8%和23.3%,與N150比較則分別提高了10.6%和18.3%(表2);與N0比較,兩年中N75處理收獲指數分別提高了8.6%和8.2%,與N150處理比較則分別提高了4.6%和6.3%。

表2 施氮量對谷子產量及其構成的影響
N0、N75、N120和N150分別表示施氮量為0、75、120和150 kg·hm-2。同一年度同列數據后不同小寫字母表示不同處理間差異達0.05顯著水平。下同
N0, N75, N120 and N150 indicate the N application rate of 0, 75, 120 and 150 kg·hm-2, respectively. For each year, different lower-case letters within one column, indicate significant difference at 0.05 probability level. The same as below
施氮量顯著影響了植株氮素累積量、氮轉運率和氮收獲指數(<0.05)(表3)。與N0比較,2020和2021年N75處理氮素累積總量分別提高了40.3%和29.7%,氮轉運率分別提高了3.5%和9.2%。過量施氮不利于氮素由營養器官向籽粒的轉運,與N75處理比較,2020和2021年N150處理氮轉運率分別降低了23.1%和28.2%。與N75比較,2020年和2021年均表現出N150處理的氮收獲指數顯著降低(<0.05)。

表3 施氮量對谷子氮吸收及利用的影響
N75處理的氮利用率、氮農學效率和氮表觀回收率最高,與N120比較,2020和2021年氮利用效率分別提高了115.3%和21.0%,氮農學效率分別提高了126.1%和66.4%,氮表觀回收率分別提高了72.7%和49.0%;N150的氮利用率、氮農學效率和氮表觀回收率最低,施氮75 kg·hm-2即可獲得較高的氮素利用效率,施氮量大于75 kg·hm-2會明顯降低谷子氮素利用效率(表4)。

表4 施氮量對氮肥利用效率的影響
兩年的結果(圖2)表明,N75處理小米直鏈淀粉最高,且隨施氮量增加而降低;施氮也顯著降低了小米支鏈淀粉含量,與N0處理比較,2020和2021年N75處理小米支鏈淀粉含量分別降低了1.5%和4.6%;隨施氮量增加總淀粉含量亦呈降低的趨勢,淀粉產量則是N75處理下達到最高,2020年和2021年分別較N0處理提高了29.4%和28.8%,較N150處理提高了11.3%和17.9%。

柱上不同小寫字母代表不同處理間差異達 5%顯著水平。下同
隨施氮量的增加小米最終黏度逐步降低,高氮處理顯著降低了糊化過程的回升值、峰谷黏度和開始糊化時間(表5)。與N0處理相比較,2020和2021年N75處理下小米粉最終黏度分別降低了4.8%和5.3%,N150處理下則分別降低了8.6%和7.1%;N150處理下兩年小米粉的回升值較N0處理分別降低了6.4%和6.2%,峰谷黏度分別降低了13.9%和9.3%,開始糊化時間亦分別降低了6.1%和2.9%。施氮對峰值黏度和糊化溫度的影響年際間稍有差異,但整體表現出隨施氮量增加而降低的趨勢。

表5 施氮量對小米糊化特性的影響
地上部氮吸收量與小米支鏈淀粉含量、最終黏度和峰谷黏度呈顯著的負相關,小米支鏈淀粉含量則與總淀粉含量呈顯著的正相關(圖3)。植株氮素累積量的增加伴隨著小米中支鏈淀粉含量降低,進而影響小米粉的最終黏度和峰谷黏度。
隨施氮量增加,小米中鐵、鋅、鈣、鎂和硒含量相應提高(表6),2020和2021年N75處理下小米中鐵含量較N0處理兩年分別提高了31.9%和37.3%,鋅含量分別提高了43.6%和40.4%,鈣含量分別提高了56.0%和55.0%,鎂含量分別提高了28.8%和30.5%,硒含量亦分別提高了16.9%和5.8%。除2021年N150處理下小米中鈣含量顯著高于N75外,N150處理小米中鐵、鋅、鈣、鎂和硒的含量與N75基本相當。谷子地上部氮吸收量與小米中鐵、鋅、鈣、鎂和硒含量呈極顯著的正相關。說明提升谷子地上部氮累積量有助于小米中鐵、鋅、鈣、鎂和硒含量的增加。小米中鐵、鋅、鈣、鎂和硒含量之間亦呈顯著正相關(圖4)。

NAM:收獲時地上部氮累積量;ALC:籽粒直鏈淀粉含量;ALPC:籽粒支鏈淀粉含量;SC:籽粒淀粉含量;FV:最終黏度;SB:回升值;TV:峰谷黏度;SPT:開始糊化時間;Y:年份。*、**和***表示 0.05 和 0.01 水平顯著相關

表6 施氮量對小米鐵、鋅、鈣、鎂和硒含量的影響

NAM:收獲時地上部氮累積量;Fe:籽粒鐵含量;Zn:籽粒鋅含量;Ca:籽粒鈣含量;Mg:籽粒鎂含量;Se:籽粒硒含量;Y:年份。*、**和***表示在0.05 和 0.01 水平顯著相關
施氮有效維持了單位面積小麥的收獲穗數[28-29],促進作物產量、生物量和地上部氮素累積總量的提高,但隨著施氮量的持續增加,增幅逐漸變小,趨于穩定[18]。本研究表明,施氮75 kg·hm-2能大幅增加谷子收獲穗數、籽粒產量、生物量(表2)和氮吸收量(表3),但隨著施氮量增加收獲穗數、籽粒產量、生物量和氮吸收量基本保持穩定。提高植株生物量并促進干物質向籽粒中分配和提高籽粒產量是養分管理的重要目標之一,合理施氮有助于促進作物干物質的累積和籽粒的分配,過量施氮導致氮素奢侈吸收和營養生長階段養分的過度消耗,最終不利于灌漿期植株碳、氮代謝[19,30],使更多的糖發生酵解轉化為有機酸,影響光合產物向籽粒轉移[31],從而降低收獲指數。這可能是施氮量從75 kg·hm-2增加至150 kg·hm-2降低了谷子的收獲指數的緣故(表2)。
在生長過程中氮以同化產物的形式在植物體內積累,其在籽粒中的積累與碳水化合物的轉運密切相關[32]。作物生長進入花期,營養器官中67%的氮被轉運到籽粒保證產量的形成,為此促進氮素從營養器官向籽粒的轉運是獲得高產的重要途徑[33]。蔡瑞國等[34]研究表明,施氮明顯提高了小麥花前營養器官的氮素累積量、花前貯存氮素的轉運量和轉運率。本研究也表明,施氮 75 kg·hm-2有利于提高氮素的轉運量和轉運率。在小麥上過量施氮降低氮素收獲指數[35],本研究2021年施氮量從75 kg·hm-2增加至150 kg·hm-2谷子氮收獲指數明顯降低,即高氮在降低干物質向籽粒分配的同時也降低氮素在籽粒中的分配。過量施氮不僅降低氮收獲指數,也會提高秸稈氮素累積量和土壤氮素的淋失[36]。為此,在實際生產中可通過施氮促進氮素由營養器官向籽粒的轉運,但要避免過量施氮影響氮素轉運和土壤盈余氮素造成的環境風險。
氮利用率(NUE)反映了植株對氮素吸收和利用的情況,而氮農學效率可評價氮肥施用后的增產效果。前人研究發現過量施氮降低氮利用率和氮農學效率[37],本研究發現N120和N150處理降低了氮利用率。適當提高氮肥利用率,既可以降低過量施氮帶來的環境風險,又能提高實際生產中產投比。朱兆良等[17]在總結782個田間試驗數據的基礎上,認為我國主要糧食作物的氮肥利用率為28%—41%,平均為35%。本研究中,施氮150 kg·hm-2時2020和2021年的氮肥利用率分別為25.8%和25.4%,故認為施氮量為75—120 kg·hm-2既能夠保證預期產量,又能提高氮肥利用率。
氮利用率并不是越高越好,而是在維持較高目標產量及實現土壤作物生產體系氮輸入和輸出基本平衡時才有意義[37],氮表觀回收率反映了植株氮素吸收和氮肥施用量之間的平衡狀況。2020和2021年施氮75 kg·hm-2,氮表觀回收率和氮利用率的差值為167%和179%,氮表觀回收率分別為234.9%和231.8%(表4),土壤氮庫消耗風險較大;施氮120 kg·hm-2,氮表觀回收率和氮利用率的差值分別為104%和112%,氮表觀回收率分別為135%和155%(表4),表明該施氮水平谷子的基本生長需求得以滿足,土壤氮庫接近平衡狀態,同時在考慮環境氮補給情況下[38],谷子施氮量可考慮在75—120 kg·hm-2之間。因此,在谷子實際生產中施用75 kg·hm-2即可獲得較高的氮肥利用率,但考慮到土壤氮庫的消耗,可考慮適當增加施氮量,但不宜超過120 kg·hm-2。
直鏈淀粉和支鏈淀粉相互協調控制著谷物的糊化品質[21],施氮促進了水稻籽粒蛋白質含量的提升,卻降低了直鏈淀粉[39]和支鏈淀粉的含量[40]。葉片中的硝酸鹽調節硝酸還原酶活性, 能使更多的糖發生酵解轉化為有機酸,影響淀粉累積[31],較高水平的硝酸鹽也導致硝酸還原酶對ADP-葡萄糖焦磷酸酶亞基的抑制而不利于淀粉合成[41]。本研究亦發現施氮顯著降低了支鏈淀粉含量(圖2),且谷子地上部氮吸收量與小米支鏈淀粉含量呈顯著的負相關(圖3);不施氮和高氮處理均不利于單位面積淀粉產量的形成(圖2),這與施氮導致單位面積谷子產量的提升及小米總淀粉含量的降低有關。
糊化特性是評價谷物食品品質的重要指標之一[42],易受基因型、環境及其互作的影響[43],GAO等[44]研究表明施氮顯著改變了谷物淀粉基的糊化特性;施氮也影響了小米的最終黏度、峰谷黏度和回升值(表5),回升值為最終黏度與峰谷黏度的差值,反映了冷卻過程中浸出的直鏈淀粉重排引起粉基糊的易老化程度。高氮水平降低了回升值,說明在蒸煮過程中粉基不易老化,最終易導致峰谷黏度和最終黏度的降低[45]。此外,谷子地上部氮吸收量與小米粉的最終黏度和峰谷黏度呈顯著的負相關(圖3),這可能是由于植株氮積累量的提高,相應地小米蛋白質含量亦較高,抑制了淀粉與水的結合[46]。糊化性能也受淀粉含量、其分支結構和淀粉粒大小的影響[47],且支鏈淀粉在該過程中主要起膨脹作用[46]。隨著施氮水平的增加,支鏈淀粉含量降低,淀粉表面變得不均勻,淀粉粒變小,相對結晶度增加,淀粉吸水速度減慢,溶脹度降低,最終黏度不斷降低[44,48]。
谷物籽粒中有益微量礦質元素含量的高低不僅直接關系到植株的生長發育,亦與人類健康密切相關[49]。與前人在水稻和小麥的研究結果一致[50-53],施氮顯著提高了小米中鐵、鋅和硒的含量(表6)。施氮能提高根系細胞膜上的Zn和Fe轉運蛋白的表達水平[54],并通過影響植物轉運載體與木質部轉運蛋白的螯合程度,促進鋅和鐵從根至地上部的轉運[55],提高了籽粒鋅和鐵的含量[56]。此外,根系對鐵、鋅和硒的吸收及其收獲后籽粒中的含量均依賴于植株體內氮的有效性[50-51],谷子地上部氮吸收量與小米中鐵、鋅、鈣、鎂和硒含量呈極顯著的正相關(圖4)。綜上,施氮促進了谷子氮素累積,進而提高了小米中微量元素鐵、鋅、鈣、鎂和硒的含量。
施氮有助于保持單位面積收獲穗數,提高谷子干物質和氮素的累積量,使二者更多的用于籽粒的形成,最終增加了籽粒產量;施氮還提升了小米中有益微量元素鐵、鋅、鈣、鎂和硒的含量。施氮75—120 kg·hm-2有利于保證谷子產量、提高氮肥利用率,強化小米有益微量元素含量和提升糊化品質。
[1] MAL B, PADULOSI S, RAVI S B. Minor millets in South Asia: Learnings from IFAD-NUS project in India and Nepal. MS Swaminathan Research Foundation, 1-185.
[2] BHATT D, FAIROS M, MAZUMDAR A. Millets: Nutritional composition, production and significance: A review. Journal of Pharmaceutical Innovation, 2022, 11:1577-1582.
[3] NADEEM F, AHMAD Z, WANG R F, HAN J N, SHEN Q, CHANG F R, DIAO X M, ZHANG F S, LI X X. Foxtail millet [(L.) beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Frontiers in Plant Science, 2018, 9: 205.
[4] HAN J N, WANG L F, ZHENG H Y, PAN X Y, LI H Y, CHEN F J, LI X X. ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015, 242(4): 935-949.
[5] XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63: 153-182.
[6] JIANG L G, DAI T B, JIANG D, CAO W X, GAN X Q, WEI S Q. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research, 2004, 88(2/3): 239-250.
[7] 王夏雯, 王紹華, 李剛華, 王強盛, 劉正輝, 余翔, 丁艷鋒. 氮素穗肥對水稻幼穗細胞分裂素和生長素濃度的影響及其與穎花發育的關系. 作物學報, 2008, 34(12): 2184-2189.
WANG X W, WANG S H, LI G H, WANG Q S, LIU Z H, YU X, DING Y F. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicles ofrice and its relation with spikelet development. Acta Agronomica Sinica, 2008, 34(12): 2184-2189. (in Chinese)
[8] LI G H, HU Q Q, SHI Y G, CUI K H, NIE L X, HUANG J L, PENG S B. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Frontiers in Plant Science, 2018, 9: 1128.
[9] LIU X M, GU W R, LI C F, LI J, WEI S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China. Journal of Integrative Agriculture, 2021, 20(2): 511-526.
[10] 張亞琦, 李淑文, 付巍, 宏達. 施氮對雜交谷子產量與光合特性及水分利用效率的影響. 植物營養與肥料學報, 2014, 20(5): 1119-1126.
ZHANG Y Q, LI S W, FU W, HONG D. Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1119-1126. (in Chinese)
[11] CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 2018, 69(1): 172-180.
[12] CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. REVIEW: biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20.
[13] TRIBOI E, TRIBOI-BLONDEL A M. Productivity and grain or seed composition: a new approach to an old problem—invited paper. European Journal of Agronomy, 2002, 16(3): 163-186.
[14] MUCHOW R C, SINCLAIR T R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and. Crop Science, 1994, 34(3): 721-727.
[15] OOKAWA T, NARUOKA Y, SAYAMA A, HIRASAWA T. Cytokinin effects on ribulose-1, 5-bisphosphate carboxylase/ oxygenase and nitrogen partitioning in rice during ripening. Crop Science, 2004, 44(6): 2107-2115.
[16] ERENOGLU E B, KUTMAN U B, CEYLAN Y, YILDIZ B, CAKMAK I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 2011, 189(2): 438-448.
[17] 朱兆良, 文啟孝. 中國土壤氮素. 南京: 江蘇科學技術出版社, 1992.
ZHU Z L, WEN Q X. Nitrogen in Soils of China. Nanjing: Jiangshu Science and Technology Press, 1992. (in Chinese)
[18] 晏娟, 沈其榮, 尹斌. 施氮量對氮高效水稻種質4007的氮素吸收、轉運和利用的影響. 土壤學報, 2010, 47(1): 107-114.
YAN J, SHEN Q R, YIN B. Effects of nitrogen application rate on uptake, translocation and use of nitrogen by rice germ plasm 4007 high in nitrogen use efficiency. Acta Pedologica Sinica, 2010, 47(1): 107-114. (in Chinese)
[19] OSAKI M, IYODA M, TADANO T. Ontogenetic changes in the contents of ribulose-1, 5-bisphosphate carboxylase/oxygenase, phosphopyruvate carboxylase, and chlorophyll in individual leaves of maize. Soil Science and Plant Nutrition, 1995, 41(2): 285-293.
[20] GUO Y F, GAN S S. Translational researches on leaf senescence for enhancing plant productivity and quality. Journal of Experimental Botany, 2014, 65(14): 3901-3913.
[21] ZHU D W, ZHANG H C, GUO B W, XU K, DAI Q G, WEI C X, ZHOU G S, HUO Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocolloids, 2017, 63: 525-532.
[22] LIANG B, ZHAO W, YANG X Y, ZHOU J B. Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat–maize experiment. Field Crops Research, 2013, 144: 126-134.
[23] 戴健, 王朝輝, 李強, 李孟華, 李富翠. 氮肥用量對旱地冬小麥產量及夏閑期土壤硝態氮變化的影響. 土壤學報, 2013, 50(5): 956-965.
DAI J, WANG Z H, LI Q, LI M H, LI F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedologica Sinica, 2013, 50(5): 956-965. (in Chinese)
[24] 魯如坤. 土壤農業化學分析方法. 北京: 中國農業科技出版社, 1999.
LU R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999.(in Chinese)
[25] MAN J M, YANG Y, ZHANG C Q, ZHOU X H, DONG Y, ZHANG F M, LIU Q Q, WEI C X. Structural changes of high-amylose rice starch residues followinganddigestion. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9332-9341.
[26] 依兵. 高粱子粒淀粉積累與合成相關酶活性研究[D]. 沈陽: 沈陽農業大學, 2014.
YI B. Study on the activities of enzymes related to starch accumulation and synthesis inseeds[D]. Shenyang: Shenyang Agricultural University, 2014. (in Chinese)
[27] LIU H, WANG Z H, LI F C, LI K Y, YANG N, YANG Y E, HUANG D L, LIANG D L, ZHAO H B, MAO H, LIU J S, QIU W H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Research, 2014, 156: 151-160.
[28] 劉朋召, 周棟, 郭星宇, 于琦, 張元紅, 李昊昱, 張琦, 王旭敏, 王小利, 王瑞, 李軍. 不同降雨年型旱地冬小麥水分利用及產量對施氮量的響應. 中國農業科學, 2021, 54(14): 3065-3076. doi: 10.3864/j.issn.0578-1752.2021.14.012.
LIU P Z, ZHOU D, GUO X Y, YU Q, ZHANG Y H, LI H Y, ZHANG Q, WANG X M, WANG X L, WANG R, LI J. Response of water use and yield of dryland winter wheat to nitrogen application under different rainfall patterns. Scientia Agricultura Sinica, 2021, 54(14): 3065-3076. doi: 10.3864/j.issn.0578-1752.2021.14.012. (in Chinese)
[29] 呂廣德, 亓曉蕾, 張繼波, 牟秋煥, 吳科, 錢兆國. 中、高產型小麥干物質和氮素累積轉運對水氮的響應. 植物營養與肥料學報, 2021, 27(9): 1534-1547.
Lü G D, QI X L, ZHANG J B, MU Q H, WU K, QIAN Z G. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1534-1547. (in Chinese)
[30] ZHOU Y, HOOPER P, COVENTRY D, DENTON M D. Strategic nitrogen supply alters canopy development and improves nitrogen use efficiency in dryland wheat. Agronomy Journal, 2017, 109(3): 1072-1081.
[31] STITT M, MüLLER C, MATT P, GIBON Y, CARILLO P, MORCUENDE R, SCHEIBLE W, KRAPP A. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany, 2002, 53(370): 959-970.
[32] 張經廷, 呂麗華, 張麗華, 董志強, 姚艷榮, 姚海坡, 申海平, 賈秀領. 作物水肥耦合類型量化方法在華北冬小麥水氮配置中的應用. 中國農業科學, 2019, 52(17): 2997-3007. doi: 10.3864/j.issn.0578-1752.2019.17.008.
ZHANG J T,Lü L H, ZHANG LH, DONG ZQ, YAO YR, YAO HP, SHEN HP, JIA XL. A novel method for quantitating water and fertilizer coupling types and its application in optimizing water and nitrogen combination in winter wheat in the North China plain. Scientia Agricultura Sinica, 2019, 52(17): 2997-3007. doi: 10.3864/j.issn.0578-1752.2019.17.008.(in Chinese)
[33] NTANOS D A, KOUTROUBAS S D. Dry matter and N accumulation and translocation forandrice under Mediterranean conditions. Field Crops Research, 2002, 74(1): 93-101.
[34] 蔡瑞國, 李亞華, 張敏, 郭良海, 王文頗, 周印富. 雨養與灌溉條件下施氮對小麥花后氮素累積與轉運的影響. 麥類作物學報, 2014, 34(3): 351-357.
CAI R G, LI Y H, ZHANG M, GUO L H, WANG W P, ZHOU Y F. Effects of nitrogen fertilizer rates on nitrogen accumulation and translocation after anthesis in wheat under rain-fed and irrigated conditions. Journal of Triticeae Crops, 2014, 34(3): 351-357. (in Chinese)
[35] EHDAIE B, WAINES J G. Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in bread and durum wheat. Field Crops Research, 2001, 73(1): 47-61.
[36] THOMAS H, OUGHAM H. The stay-green trait. Journal of Experimental Botany, 2014, 65(14): 3889-3900.
[37] 巨曉棠. 氮肥有效率的概念及意義: 兼論對傳統氮肥利用率的理解誤區. 土壤學報, 2014, 51(5): 921-933.
JU X T. The concept and significance of nitrogen fertilizer efficiency—also on the misunderstanding of traditional nitrogen fertilizer efficiency. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese)
[38] 劉平, 劉學軍, 駱曉聲, 吳慶華, 劉恩科, 韓彥龍, 李麗君, 白光潔, 武文麗, 張強. 山西北部農村區域大氣活性氮沉降特征. 生態學報, 2016, 36(17): 5353-5359.
LIU P, LIU X J, LUO X S, WU Q H, LIU E K, HAN Y L, LI L J, BAI G J, WU W L, ZHANG Q. The atmospheric deposition characteristics of reactive nitrogen(Nr) species in Shuozhou area. Acta Ecologica Sinica, 2016, 36(17): 5353-5359. (in Chinese)
[39] DONG M H, SANG D Z, WANG P, WANG X M, YANG J C. Changes in cooking and nutrition qualities of grains at different positions in a rice panicle under different nitrogen levels. Rice Science, 2007, 14(2): 141-148.
[40] YANG X Y, BI J G, GILBERT R G, LI G H, LIU Z H, WANG S H, DING Y F. Amylopectin chain length distribution in grains ofas affected by nitrogen fertilizer and genotype. Journal of Cereal Science, 2016, 71: 230-238.
[41] SCHEIBLE W R. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell, 1997, 9(5): 783-798.
[42] 馮偉, 李曉, 郭天財, 朱云集, 王晨陽. 水氮運籌對兩種穗型冬小麥品種淀粉糊化特性的影響. 水土保持學報, 2005, 19(5): 186-190.
FENG W, LI X, GUO T C, ZHU Y J, WANG C Y. Effects of strategy of irrigation and nitrogen on paste properties of starch of two spike-type wheat cultivars. Journal of Soil Water Conservation, 2005, 19(5): 186-190. (in Chinese)
[43] 張美微, 王晨陽, 賀德先, 馬冬云. 環境和氮磷肥對強筋小麥品種鄭麥9023淀粉糊化特性的影響. 麥類作物學報, 2010, 30(5): 905-909, 987.
ZHANG M W, WANG C Y, HE D X, MA D Y. Effects of location and different ratios of nitrogen and phosphorus fertilizers on starch pasting properties of strong-gluten wheat cultivar Zhengmai 9023. Journal of Triticeae Crops, 2010, 30(5): 905-909, 987. (in Chinese)
[44] GAO L C, BAI W M, XIA M J, WAN C X, WANG M, WANG P K, GAO X L, GAO J F. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. International Journal of Biological Macromolecules, 2021, 179: 542-549.
[45] UARROTA V G, AMANTE E R, DEMIATE I M, VIEIRA F, DELGADILLO I, MARASCHIN M. Physicochemical, thermal, and pasting properties of flours and starches of eight Brazilian maize landraces (L.). Food Hydrocolloids, 2013, 30(2): 614-624.
[46] MARTIN M, FITZGERALD M A. Proteins in rice grains influence cooking properties!. Journal of Cereal Science, 2002, 36(3): 285-294.
[47] SINGH S, SINGH N, ISONO N, NODA T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. Journal of Agricultural and Food Chemistry, 2010, 58(2): 1180-1188.
[48] SIMI C K, ABRAHAM T E. Physicochemical rheological and thermal properties of njavara rice () starch. Journal of Agricultural and Food Chemistry, 2008, 56(24): 12105-12113.
[49] HUANG Y, TONG C, XU F F, CHEN Y L, ZHANG C Y, BAO J S. Variation in mineral elements in grains of 20 brown rice accessions in two environments. Food Chemistry, 2016, 192: 873-878.
[50] CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. Review: biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20.
[51] REIS H P G, DE QUEIROZ BARCELOS J P, SILVA V M, SANTOS E F, TAVANTI R F R, PUTTI F F, YOUNG S D, BROADLEY M R, WHITE P J, DOS REIS A R. Agronomic biofortification with selenium impacts storage proteins in grains of upland rice. Journal of the Science of Food and Agriculture, 2020, 100(5): 1990-1997.
[52] WANG Z X, ZHANG F F, XIAO F, TAO Y, LIU Z H, LI G H, WANG S H, DING Y F. Contribution of mineral nutrients from source to sink organs in rice under different nitrogen fertilization. Plant Growth Regulation, 2018, 86(2): 159-167.
[53] REIS H P G, DE QUEIROZ BARCELOS J P, JUNIOR E F, SANTOS E F, SILVA V M, MORAES M F, PUTTI F F, DOS REIS A R. Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. Journal of Cereal Science, 2018, 79: 508-515.
[54] GROTZ N, GUERINOT M L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006, 1763(7): 595-608.
[55] CURIE C, CASSIN G, COUCH D, DIVOL F, HIGUCHI K, LE JEAN M, MISSON J, SCHIKORA A, CZERNIC P, MARI S. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009, 103(1): 1-11.
[56] RAMESH S A, CHOIMES S, SCHACHTMAN D P. Over-expression of anzinc transporter inincreases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Molecular Biology, 2004, 54(3): 373-385.
Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet
DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan
College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031
【Objective】To provide the theoretical basis for rational nitrogen (N) application and promoting high yield and high quality of foxtail millet ((L.) Beauv.), this study aimed to clarify the effects of different N application rates on plant N utilization characteristics, grain yield and grain quality of foxtail millet. 【Method】To investigate the effects of different N application levels on plant N accumulation, transfer and utilization characteristics, grain yield and its components, grain micronutrients content and pasting properties, a 2-year field experiment (2020-2021) was performed with different N fertilization application at four levels (0, 75, 120, and 150 kg·hm-2, represented as N0, N75, N120, and N150, respectively) in the Qinxian County of Shanxi Province, located in the spring sowing region of China.【Result】Compared with N0, N application increased panicle number per unit area at harvest, grain number per panicle and plant productivity of foxtail millet. N application also significantly enhanced N translocation and promoted the distribution of both dry matter and N in grains. As a consequence, an enhanced grain yield was obtained when subjected to N application. Further, among all treatments, the highest values of panicle number per unit area at harvest, grain number per panicle, both grain yield and biomass, harvest index, total N accumulation and N translocation efficiency were obtained when 75 kg·hm-2was supplied; compared with the values produced by N0, the increased rate reached 7.5%, 23.3%, 31.0%, 21.2%, 8.6%, 40.3% and 9.2% by N75, respectively. Compared with N0 treatment, the content of Fe, Zn, Ca, Mg and Se in foxtail millet grains under N75 treatment were increased by 37.3%, 43.6%, 56.0%, 30.5% and 16.9% at most, respectively. Excessive N application (N 150) decreased grain number, harvest index and N translocation efficiency compared with N75 treatment. More than 75 kg·hm-2application resulted in diminished N translocation efficiency, by 23.1% and 28.1%, in 2020 and 2021, respectively. The content of amylopectin and starch yield were also limited by excessive N. Over-use N fertilizer also significantly decreased final viscosity, setback and trough viscosity.Pearson correlation coefficients demonstrated a strong positive relationship between plant N accumulation and the content of Fe, Zn, Ca, Mg and Se in foxtail millet grains, and a significant negative relationship between plant N accumulation and the content of amylopectin, final viscosity and trough viscosity in foxtail millet grains.【Conclusion】The N application at 75-120 kg·hm-2could promoted the allocation of dry matter and N in grain, which was relative to the enhanced N transfer from vegetative organs to grains. Also the reasonable pasting properties and biofortification of beneficial trace elements of Fe, Zn, Ca, Mg and Se was produced by such N dose in this study area.
foxtail millet ((L.) Beauv.); nitrogen application rate; nitrogen utilization characteristics; grain yield; pasting properties; micronutrients

10.3864/j.issn.0578-1752.2024.02.007
2023-02-28;
2023-05-06
國家現代農業產業技術體系建設專項(CARS-06-14.5-A20)
董二偉,E-mail:erwei_dong@163.com。通信作者焦曉燕,E-mail:xiaoyan_jiao@126.com
(責任編輯 李云霞)