徐田軍,呂天放,李自豪,張勇,劉宏偉,劉月娥,蔡萬濤,張如養,宋偉,邢錦豐,趙久然,王榮煥
不同玉米雜交種及其親本自交系耐熱性的差異比較
徐田軍,呂天放,李自豪,張勇,劉宏偉,劉月娥,蔡萬濤,張如養,宋偉,邢錦豐,趙久然,王榮煥
北京市農林科學院玉米研究所/玉米DNA指紋及分子育種北京市重點實驗室,北京 100097
【目的】近年來,我國黃淮海夏玉米區高溫熱害不利天氣頻發重發,已成為威脅玉米生產的重要不利因素。研究并明確高溫脅迫對不同基因型玉米品種雌雄穗及產量的影響,為耐高溫玉米品種培育和選擇提供參考?!痉椒ā恳脏崋?58(鄭58′昌7-2)、先玉335(PH6WC×PH4CV)、京農科728(京MC01×京2416)和MC812(京B547×京2416)及其親本自交系為供試材料,花期前后(大喇叭口期-吐絲后7 d)進行高溫脅迫處理,研究高溫脅迫對不同基因型玉米雜交種及其親本自交系雌雄穗生長發育、散粉吐絲間隔(ASI)、花粉活性、產量及其構成要素的影響?!窘Y果】(1)花期前后高溫脅迫導致參試玉米品種及其親本自交系的穗粒數減少,進而產量降低,且不同品種和自交系對高溫脅迫的響應存在顯著差異。與對照相比,高溫脅迫下,鄭單958、先玉335、京農科728和MC812的穗粒數降幅分別為22.28%、46.79%、6.13%和8.11%,產量降幅分別為9.50%、50.61%、3.18%和5.00%,其中,京農科728和MC812減產不顯著,而鄭單958和先玉335顯著減產;親本自交系中,京2416的穗行數、行粒數和產量降幅最小且不顯著,而PH6WC均顯著降低且降幅最大。(2)高溫脅迫下,參試品種及其親本自交系的雄穗分支總數、雄穗長度、總散粉量和花粉活性降低,散粉持續期縮短,ASI延長。與對照相比,高溫脅迫下,ASI延長1.6 d。雄穗長度降幅表現為鄭單958>先玉335>MC812>京農科728。鄭單958雄穗長度降幅最大,但雄穗分支數多,花粉量最大;先玉335雄穗分支少,雄穗長度降幅大,花粉量最少且活性最低;京2416總散粉量大且花粉活力強,降幅最?。▋H為4.50%和3.98%)?!窘Y論】花期前后高溫脅迫對參試玉米品種的籽粒產量和花粉活性等影響較大,京農科728和MC812的產量和花粉活性降幅顯著低于先玉335和鄭單958,耐熱性較好。通過比較參試玉米雜交種親本自交系的耐熱性,父本自交系的耐熱性要好于母本自交系。其中,京2416的雄穗分支和長度降幅小,花粉量大,花粉活性高,且花絲茸毛多,捕獲花粉能力強,單穗產量高,ASI小,耐熱性最好。因此,在耐高溫玉米品種選育過程中,要重視和加大對耐熱種質(如京2416等)的利用與改良創新,組配選育耐高溫玉米新品種。
高溫;玉米;親本自交系;耐熱性
【研究意義】玉米是我國種植面積最大、總產量最高的第一大糧食作物,對保障國家糧食安全和滿足市場需求發揮著主力軍作用[1]。氣候變暖已成為全球關注的熱點問題。近年來,我國黃淮海夏玉米區超過35 ℃的極端高溫天氣頻發重發,發生時間與夏玉米抽雄吐絲期高度重合,造成不同程度減產[2]?!厩叭搜芯窟M展】玉米生長發育包括營養生長和生殖生長2個階段[3],其中,生殖生長階段是產量形成的關鍵時期,對高溫逆境脅迫尤為敏感[4-6]。高溫脅迫主要是通過影響穗粒數、結實率和粒重等來影響作物產量[7-8]。玉米穗粒數多少取決于雌穗分化的總小花數、受精小花數和受精后成功發育成有效籽粒的小花數[9]。對玉米雄穗而言,高溫脅迫主要影響雄穗的分支數、長度、散粉量、花藥開裂、花粉活力等[10]。已有研究表明,玉米孕穗過程中當氣溫持續高于35 ℃時,雄穗分支數減少且雄穗小花退化、花藥干癟、花粉活力降低,不同年代及不同基因型品種對高溫的響應存在較大差異[11-15]?;ńz是雌穗完成受精的重要器官,高溫逆境會引起花絲生長緩慢或停止生長、花絲柱頭黏附花粉能力降低及柱頭上花粉量顯著降低,造成玉米雌雄穗發育不協調、結實性下降,進而產量降低[16-19]?!颈狙芯壳腥朦c】近年來,關于高溫脅迫對玉米生長發育的研究主要是針對雜交種耐高溫逆境能力的評價與機理方面,但針對玉米雜交種及其親本自交系的耐高溫性鑒定評價還鮮見報道?!緮M解決的關鍵問題】本研究以我國黃淮海區夏播玉米生產主推品種及其親本自交系為試驗材料,研究并明確花期前后高溫脅迫條件下雜交種及其親本自交系的耐高溫能力差異,以期為耐高溫逆境玉米自交系種質利用、新品種選育和推廣等提供參考和指導。
以鄭單958、先玉335、京農科728、MC812及其親本自交系為試驗材料(表1)。
試驗于北京市農林科學院通州試驗基地(40°18′N,116°45′E,海拔40 m)進行。試驗田耕層土壤(0—20 cm)含有機質9.88 mg·kg-1、堿解氮91.9 mg·kg-1、速效磷28.30 mg·kg-1、速效鉀168 mg·kg-1。2019年開展預試驗,對供試材料的生育期進行了精確觀測;2020和2021年,于5月15日起分批播種,保證抽雄期基本一致。隨機區組設計,4行區,10 m行長,行距60 cm,3次重復。設置2個處理,分別為CK(對照,大田種植)和TR(花期高溫,控溫大棚)。其中,高溫處理在控溫大棚中進行,棚長50 m、寬10 m、高3.5 m、肩高3 m,棚內日最高溫度比大田最高溫度高6 ℃左右,且日最低溫度差異不大。達到高溫脅迫要求,其他條件與大田對照保持一致?;ㄆ跍囟忍幚韽拇罄瓤谄诘酵陆z后7 d。

圖1 玉米花期高溫處理期間的大氣溫度
1.3.1 生育期記載 記錄出苗期、散粉初始期、散粉結束期、吐絲期及生理成熟期。其中,玉米生育期為從出苗到生理成熟時間。散粉持續期為從散粉初始期到散粉結束期的時間間隔。
1.3.2 散粉吐絲期間隔(anthesis silking interval,ASI) 抽雄前,選取各處理生長均勻一致的10株進行標記,每天調查并記錄各株的抽雄、吐絲和初始散粉時間,單株吐絲時間與初始散粉時間間隔即ASI,10株的平均值即該處理的ASI。
1.3.3 花粉活性 采用Ampha TM Z30花粉活性分析儀(Amphays,瑞士)測定。該儀器通過分析流經電場的花粉顆粒的電阻和電抗特性,得到花粉顆粒的大小、活性等信息,以點圖形顯示花粉活性的百分比率[20]。
1.3.4 散粉量 每天下午3:00分別收集各處理4株花粉,去除花粉囊和碎片,40 ℃烘干至恒重并稱量。
1.3.5 花絲特征觀察 在吐絲后2 d,選取5株于上午9:30—10:00取新鮮花絲頂部。將花絲用KI-I試劑染色后,置黑暗處20 min,再用日本Olympus SZX7體式顯微鏡觀察并拍照。
1.3.6 雄穗特征 在高溫脅迫處理后,各處理選代表性10株取其雄穗,測量雄穗主軸和分枝的長度。以雄穗最下部的分枝基部為節點。
1.3.7 產量及產量構成因素 成熟期每個小區收獲中間2行果穗,按照標準穗重法選取20個果穗測定穗行數、行粒數、百粒重及出籽率。果穗全部脫粒后自然風干,用水分儀測定水分后,按14%含水量折合單穗產量。
采用Microsoft Excel 2007和SAS 9.0進行數據處理和分析,其中,處理間差異顯著性采用LSD法進行檢驗(α=0.05)。
由表2可知,花期前后高溫脅迫處理下參試品種及其親本自交系的生育期和散粉持續期均呈縮短趨勢。2年試驗結果表明,與對照相比,高溫脅迫處理條件下,生育期平均縮短5.6 d,其中,京2416、昌7-2和京農科728縮短幅度最?。ň鶠?.5 d),PH6WC縮短幅度最大(7.5 d);散粉持續期平均縮短2.3 d,其中,京2416和京農科728縮短1.0 d,PH4CV縮短4.5 d。

表2 花期前后高溫處理對參試品種及其親本自交系生育期和散粉持續期的影響
由圖2可知,花期前后高溫脅迫延遲了玉米雌雄穗的生長發育,致使抽雄、散粉和吐絲推遲,且雌穗吐絲時間晚于雄穗散粉時間,表現為散粉吐絲間隔期(ASI)延長。與對照相比,高溫脅迫處理下,ASI延長了1.6 d。其中,雜交種中京農科728延長幅度最小(0.5 d),其次是MC812(1.0 d),先玉335延長幅度最大(2.5 d);親本自交系中京2416、京MC01和京B547延長幅度最?。▋H為1.0 d),PH6WC延長幅度最大(3.5 d)。

圖2 花期前后高溫脅迫對參試玉米品種及其親本自交系ASI的影響
由表3和圖3可知,花期前后高溫脅迫下參試玉米品種及其親本自交系的雄穗分支總數和雄穗長度呈降低趨勢,且不同基因型品種及親本間降幅差異較大。2年試驗結果表明,與對照相比,高溫脅迫處理下,雄穗分支總數平均減少了2.12個,降幅為20.36%。雜交種中,京農科728降幅最小,其次是MC812和先玉335,鄭單958降幅最大;京農科728和MC812降低不顯著,而鄭單958和先玉335顯著降低。親本自交系中,京2416和京MC01降低不顯著,并以京MC01降幅最小、昌7-2降幅最大。
與對照相比,高溫脅迫處理下雄穗長度平均降低了30.89 cm,降幅為19.63%。雜交種中,京農科728和MC812雄穗長度降低不顯著,其中,京農科728(平均166.55 cm)降幅最小(3.18%)、鄭單958(平均203.36 cm)降幅最大(32.34%);親本自交系中,京2416和京MC01雄穗長度降低不顯著,京MC01(平均68.23 cm)降幅最?。?.86%),京2416次之(6.32%),昌7-2降幅最大(23.63%)。
花期前后高溫脅迫下,參試玉米品種及其親本自交系的總散粉量呈降低趨勢(圖4),且不同基因型品種及親本自交系在高溫脅迫下較對照的降幅不同。2年試驗結果表明,與對照相比,高溫脅迫下單株玉米散粉量平均降低了0.62 g,降幅17.25%。雜交種中,京農科728和MC812散粉量降低不顯著,而鄭單958和先玉335降低顯著,京農科728總散粉量降幅最?。?.58%),其次是MC812(5.06%),先玉335降幅最大(42.91%);親本自交系中,京2416散粉量降低不顯著且降幅最?。▋H為4.50%),PH6WC降幅最大(37.03%)。

表3 花期前后高溫脅迫對參試玉米品種及其親本自交系雄穗分支總數和雄穗長度的影響
數據后不同字母表示不同處理間差異顯著(<0.05)。下同
Different letters after the data indicate significant differences between treatments (<0.05). The same as below
花期前后高溫脅迫下參試品種及其親本自交系的花粉活力呈降低趨勢(圖5),且不同基因型品種及親本自交系在高溫脅迫下較對照的降幅不同。2年試驗結果表明,與對照相比,高溫脅迫下,花粉活性平均降低了13.38%,其中,雜交種中京農科728和MC812較鄭單958和先玉335相比降幅不顯著,京農科728花粉活性(平均91.46%)降幅最小(2.18%),其次是MC812(2.63%),再者是鄭單958(11.09%)、先玉335降幅最大(25.85%);親本自交系中,京2416降幅最小且不顯著(3.98%),其次是昌7-2(8.72%),PH6WC降幅最大(34.64%)。
由圖6可知,京農科728和MC812花粉活性高且花絲茸毛多,捕獲花粉的能力強。先玉335花絲茸毛少,且幾乎全部倒伏于花絲表面,捕獲花粉能力大大減弱,對高溫較為敏感。親本自交系中京2416和昌7-2花絲茸毛多,捕獲花粉的能力強于PH6WC和鄭58。

圖3 花期前后高溫脅迫對參試玉米品種及其親本雄穗特征的影響
由表4和圖7可知,花期前后高溫脅迫顯著降低了參試品種及其親本自交系的單株籽粒產量、穗行數、行粒數和穗粒重。京農科728和MC812的產量和穗粒數降低不顯著,而鄭單958和先玉335降低顯著。與對照相比,高溫處理下,京農科728、MC812、先玉335和鄭單958產量分別降低了3.17%、5.00%、50.61%和9.50%;穗行數分別降低了3.66%、3.74%、12.94%和9.84%;行粒數分別降低了2.54%、4.55%、38.90%和13.87%;百粒重均呈降低趨勢,其中,京農科728、MC812和鄭單958降低不顯著,而先玉335顯著降低。高溫脅迫下,親本自交系中京2416的單株產量、穗行數和行粒數降幅不顯著。京2416、京MC01、京B547、PH4CV、PH6WC、鄭58和昌7-2單株產量降幅分別為3.79%、15.61%、16.08%、41.26%、53.88%、29.73%和32.55%;穗行數降幅分別為1.78%、9.08%、9.51%、13.07%、12.40%、12.56%和13.07%;行粒數降幅分別為2.67%、10.89%、8.33%、28.59%、55.96%、23.01%和7.70%。除PH6WC因穗粒數減少導致百粒重增加外,其余自交系的百粒重均呈降低趨勢。

Different letters are significantly different at P<0.05, the error bar indicates standard error(n=3). The same as below

圖6 花期前后高溫脅迫對參試玉米品種及其親本花絲性狀的影響

圖7 花期前后高溫脅迫對參試玉米品種及其親本自交系果穗的影響

表4 花期前后高溫脅迫對參試玉米品種及其親本自交系產量及產量構成要素的影響
黃淮海夏播玉米區抽雄吐絲期一般處于7月下旬到8月初的高溫期,極端高溫影響了玉米花粉的結構與功能,玉米雌穗受精率大幅下降[21],致使籽粒發育不良、果穗發育異常進而減產[22]。高溫已成為導致玉米減產的主要非生物脅迫因子之一,嚴重影響了產量的提升[23]。玉米產量與畝穗數、穗粒數和粒重密切相關,三者之間的相互協調是玉米高產的保障[24-25]。前人研究表明,高溫脅迫會導致果穗變短、穗粒數和百粒重降低[26],高溫脅迫對玉米籽粒產量的影響主要是由穗粒數減少所致[27]。本研究發現,花期前后高溫脅迫顯著降低了參試玉米品種的穗長、行粒數和穗粒數,進而導致穗粒數和產量降低,花期高溫脅迫條件下穗粒數的減少是導致玉米產量下降的主要原因,與前人研究結果一致。
玉米雄穗和雌穗發育狀況直接影響產量形成[28]。玉米在開花期高溫脅迫條件下,花藥和花絲正常發育受阻,影響了正常授粉結實,導致禿尖或籽粒缺位[29]。本研究表明,高溫脅迫條件下參試玉米品種及其親本自交系的雄穗分支總數和雄穗長度顯著降低,且不同基因型品種及親本在高溫脅迫下較對照的降幅不同,京農科728雄穗分支總數降幅最小,其次是先玉335、鄭單958最高。本研究發現,玉米自交系對花期高溫脅迫的響應各異,京農科728和MC812的父本京2416在高溫脅迫下雄穗分枝數和花粉量降幅小且不顯著,花粉量大,耐高溫能力最強,而PH4CV(先玉335父本)和昌7-2(鄭單958父本)降幅顯著。高溫脅迫不僅影響玉米雄穗的外部形態結構及發育進程,還會導致花粉活性的降低[30]。本研究表明,與對照相比,高溫脅迫下花粉活性降低了13.38%,其中雜交種以京農科728(花粉活性平均91.46%)降幅最小,其次是MC812,再者是鄭單958、先玉335降幅最大。通過比較參試玉米雜交種親本自交系的耐熱性發現,親本自交系耐熱性差異較大,父本自交系的耐熱性要好于母本自交系。其中,京2416耐熱性好于京MC01和京B547。由此我們推斷,京農科728(京MC01×京2416)和MC812(京B547×京2416)具有較好耐熱性的主要原因是其父本京2416雄穗分支和長度降幅小、花粉量大、花粉活性高且花絲茸毛多(圖7),捕獲花粉的能力強。鄭單958雄穗分枝在高溫脅迫下雖降幅較大,但花粉量足,能夠保持足量有活力的花粉完成授粉過程;先玉335雖降幅較小,但雄穗分枝少、花粉量小且花絲茸毛少,且幾乎全部倒伏于花絲表面,捕獲花粉能力大大減弱,對高溫較為敏感。玉米受精結實還需要雄穗散粉和雌穗吐絲同步并協調,但高溫脅迫往往導致玉米雌、雄穗發育異常。其中,散粉吐絲期間隔(ASI)是玉米對逆境脅迫反應較為敏感的指標,ASI加大是逆境脅迫條件下限制玉米產量的主要因素之一[31-32]。本研究表明,高溫脅迫對參試玉米品種抽雄期影響相對較小,主要是導致吐絲時間大幅延后,進而延長了ASI,高溫脅迫對先玉335和鄭單958 ASI的影響程度重于京農科728和MC812。本試驗條件下,京農科728和MC812在花期前后高溫脅迫下表現出較高的耐高溫能力,主要是雌雄穗分化能力強,ASI較小,花粉活性較高、花絲絨毛多,捕獲花粉能力強,穗行數和行粒數降幅減小,因此,高溫脅迫條件下仍具有較好的結實性,產量降幅較小。
花期前后高溫脅迫顯著影響參試玉米品種及其親本自交系的雌雄穗發育進程、花粉活性、花絲微觀形態結構和籽粒產量。高溫脅迫條件下,ASI延長、花絲結構改變和花粉活性降低是導致玉米果穗變短、穗粒數減少和產量降低的主要原因。參試玉米品種及其親本自交系中,京農科728、MC812及其父本自交系京2416具有較好的耐高溫熱害能力。在高溫熱害頻發區域,可選擇種植京農科728等耐高溫能力強的玉米品種,以實現玉米高產穩產;在耐高溫玉米品種選育過程中,要重視和加大對耐熱種質如京2416等的利用與改良創新,組配選育耐高溫玉米新品種。
[1] 趙久然, 王榮煥. 中國玉米生產發展歷程、存在問題及對策. 中國農業科技導報, 2013, 15(3): 1-6.
ZHAO J R, WANG R H. Development process, problem and countermeasure of maize production in China. Journal of Agricultural Science and Technology, 2013, 15(3): 1-6. (in Chinese)
[2] 陳翔, 鮑楊俊, 李慶, 丁井魁, 楊明珠, 王冬陽, 曹祖航, 賀亮, 宋有洪. 黃淮海夏玉米花期高溫發生特點、危害機理與防控措施綜述. 安徽農業大學學報, 2020, 47(2): 304-308.
CHEN X, BAO Y J, LI Q, DING J K, YANG M Z, WANG D Y, CAO Z H, HE L, SONG Y H. Review on characteristics of high temperature and its damage, and prevention measures of summer maize in Huang-Huai-Hai area. Journal of Anhui Agricultural University, 2020, 47(2): 304-308. (in Chinese)
[3] Borrás L, Vitantonio-Mazzini L N. Maize reproductive development and kernel set under limited plant growth environments. Journal of Experimental Botany, 2018, 69(13): 3235-3243.
[4] Prasad P V V, Jagadish S V K. Field crops and the fear of heat stress-opportunities, challenges and future directions. Procedia Environmental Sciences, 2015, 29: 36-37.
[5] Krishna Jagadish S V. Heat stress during flowering in cereals- effects and adaptation strategies. The New Phytologist, 2020, 226(6): 1567-1572.
[6] Lizaso J I, Ruiz-Ramosa M, Rodrígueza L, Gabaldon- Lealb C, Oliveirac J A, Loriteb I J, Sáncheza D, Garcíad E, Rodrígueza A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 2018, 216: 129-140.
[7] 于康珂, 劉源, 李亞明, 孫寧寧, 詹靜, 尤東玲, 牛麗, 李潮海, 劉天學. 玉米花期耐高溫品種的篩選與綜合評價. 玉米科學, 2016, 24(2): 62-71.
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L LI C H, LIU T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage. Journal of Maize Sciences, 2016, 24(2): 62-71. (in Chinese)
[8] RATTALINO EDREIRA J I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: A novel approach for assessing sources of kernel loss in field conditions. Field Crops Research, 2013, 142: 58-67.
[9] HATFIELD J L, PRUEGER J H. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 2015, 10: 4-10.
[10] WANG Y Y, TAO H B, TIAN B J, SHENG D C, XU C C, ZHOU H M, HUANG S B, WANG P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 2019, 158: 80-88.
[11] 劉偉華, 羅紅兵, 邱博. 玉米雄穗發育及其分枝數的QTL定位研究進展. 作物研究, 2015, 29(6): 667-671.
LIU W H, LUO H B, QIU B. Advances in maize tassel for development and QTL mapping of primary branch number. Crop Research, 2015, 29(6): 667-671. (in Chinese)
[12] 馮曄, 張建華, 包額爾敦嘎, 王東, 李淑蘭, 張桂華, 高玉華, 高麗輝, 楊鳳玲, 王春雷. 高溫、干旱對玉米的影響及相應的預防措施. 內蒙古農業科技, 2008, 36(6): 38-39, 44.
FENG Y, ZHANG J H, BAOEER D G, WANG D, LI S L, ZHANG G H, GAO Y H, GAO L H, YANG F L, WANG C L. Effect of high temperature and drought on maize and its prevention measures. Inner Mongolia Agricultural Science and Technology, 2008, 36(6): 38-39, 44. (in Chinese)
[13] GIORNO F, WOLTERS-ARTS M, MARIANI C, RIEU I. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants, 2013, 2(3): 489-506.
[14] Kakani V G, REDDY K R, KOTI S, WALLACE T P, PRASAD P V V, REDDY V R, ZHAO D. Differencespollen germination and pollen tube growth of cotton cultivars in response to high temperature. Annals of Botany, 2005, 96(1): 59-67.
[15] VARA Prasad P V, Craufurd P Q, Kakani V G, Wheeler T R, Boote K J. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Functional Plant Biology, 2001, 28(3): 233.
[16] DUPUIS I, DUMAS C. Influence of temperature stress onfertilization and heat shock protein synthesis in maize (L.) reproductive tissues. Plant Physiology, 1990, 94(2): 665-670.
[17] 于康珂. 玉米穗發育對高溫脅迫的響應[D]. 鄭州: 河南農業大學, 2016.
YU K K. Responses of reproductive organs development in maize (L.) to high temperature stress[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese)
[18] Young L W, Wilen R W, Bonham-SMITH P C. High temperature stress ofduring flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 2004, 55(396): 485-495.
[19] 張桂蓮, 張順堂, 肖浪濤, 唐文幫, 肖應輝, 陳立云. 抽穗開花期高溫脅迫對水稻花藥、花粉粒及柱頭生理特性的影響. 中國水稻科學, 2014, 28(2): 155-166.
ZHANG G L, ZHANG S T, XIAO L T, TANG W B, XIAO Y H, CHEN L Y. Effect of high temperature stress on physiological characteristics of anther, pollen and stigma of rice during heading- flowering stage. Chinese Journal of Rice Science, 2014, 28(2): 155-166. (in Chinese)
[20] 李川, 喬江方, 朱衛紅, 代書桃, 黃璐, 張美微, 劉京寶. 玉米自交系響應花粒期高溫脅迫差異表達基因的分析. 華北農學報, 2019, 34(1): 1-11.
LI C, QIAO J F, ZHU W H, DAI S T, HUANG L, ZHANG M W, LIU J B. Differential expression of high temperature stress in anthesis stage related genes of maize inbred lines. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 1-11. (in Chinese)
[21] VOGLER A, BERTOSSA M, AULINGER-LEIPNER I, STAMP P. Weather effects on cross-pollination in maize. Crop Science, 2010, 50(2): 713-717.
[22] 李余良, 劉建華, 鄭錦榮, 胡建廣. 高溫脅迫下甜玉米雌穗發育基因差異表達譜分析. 作物學報, 2013, 39(2): 269-279.
LI Y L, LIU J H, ZHENG J R, HU J G. Gene expression profile of sweet corn ears under heat stress. Acta Agronomica Sinica, 2013, 39(2): 269-279. (in Chinese)
[23] 陶志強, 陳源泉, 隋鵬, 袁淑芬, 高旺盛. 華北春玉米高溫脅迫影響機理及其技術應對探討. 中國農業大學學報, 2013, 18(4): 20-27.
TAO Z Q, CHEN Y Q, SUI P, YUAN S F, GAO W S. Effects of high temperature stress on spring maize and its technologic solutions in north China plain. Journal of China Agricultural University, 2013, 18(4): 20-27. (in Chinese)
[24] 高英波, 張慧, 單晶, 薛艷芳, 錢欣, 代紅翠, 劉開昌, 李宗新. 吐絲前高溫脅迫對不同耐熱型夏玉米產量及穗發育特征的影響. 中國農業科學, 2020, 53(19): 3954-3963.doi: 10.3864/j.issn.0578- 1752.2020.19.009.
GAO Y B, ZHANG H, SHAN J, XUE Y F, QIAN X, DAI H C, LIU K C, LI Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963. doi: 10.3864/j.issn.0578-1752.2020.19.009. (in Chinese)
[25] 周祥利, 陶洪斌, 李梁, 王璞. 花后水分虧缺對玉米葉綠素熒光動力學參數及產量的影響. 華北農學報, 2010, 25(6): 187-190.
ZHOU X L, TAO H B, LI L, WANG P. Effects of post-anthesis water deficit on the kinetic parameters of chlorophylⅡfluorescence and grain yield of maize (L.). Acta Agriculturae Boreali-Sinica, 2010, 25(6): 187-190. (in Chinese)
[26] 王海梅. 高溫脅迫對河套灌區玉米生理指標及產量構成要素的影響. 干旱氣象, 2015, 33(1): 59-62.
WANG H M. Influence of high temperature stress on physiological indexes and yield components of maize in Hetao irrigation district. Journal of Arid Meteorology, 2015, 33(1): 59-62. (in Chinese)
[27] Hall A J, Vilella F, Trapani N, Chimenti C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Research, 1982, 5: 349-363.
[28] 張鳳路, 陳景堂, G.O. Edmeades. 玉米雌雄穗開花間隔影響穗粒數的潛在原因研究. 玉米科學, 2002(2): 53-55.
ZHANG F L, CHEN J T, Edmeades G O. Studies on the underlying causes of the relationship between anthesis-silking interval and grain number. Journal of Maize Sciences, 2002, 10(2): 53-55. (in Chinese)
[29] 宋方威, 吳鵬, 邢吉敏, 周小英, 崔筱然, 于秀萍, 王進. 高溫脅迫對玉米自交系父本花粉生活力的影響. 玉米科學, 2014, 22(3): 153-158.
SONG F W, WU P, XING J M, ZHOU X Y, CUI X R, YU X P, WANG J. Influences of high temperature stress on viability of pollen grain inbred lines of male parent. Journal of Maize Sciences, 2014, 22(3): 153-158. (in Chinese)
[30] 降志兵, 陶洪斌, 吳拓, 王璞, 宋慶芳. 高溫對玉米花粉活力的影響. 中國農業大學學報, 2016, 21(3): 25-29.
JIANG Z B, TAO H B, WU T, WANG P, SONG Q F. Effects of high temperature on maize pollen viability. Journal of China Agricultural University, 2016, 21(3): 25-29. (in Chinese)
[31] RATTALINO Edreira J I, BUDAKLI Carpici E, Sammarro D, Otegui M E. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 2011, 123(2): 62-73.
[32] Alam M A, Seetharam K, Zaidi P H, Dinesh A, Vinayan M T, Nath U K. Dissecting heat stress tolerance in tropical maize (L.). Field Crops Research, 2017, 204: 110-119.
Comparison of Heat Tolerance of Maize Hybrids and Their Parental Inbreds with Different Genotypes
XU TianJun, Lü TianFang, LI ZiHao, ZHANG Yong, LIU HongWei, LIU YueE, CAI WanTao, ZHANG RuYang, SONG Wei, XING JinFeng, ZHAO JiuRan, WANG RongHuan
Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
【Objective】In recent years, the adverse weather of high temperature and heat damage in the Huang-Huai-Hai maize region of China occurred frequently, which has become an important adverse factor threatening maize production. Study and clarify the effects of high temperature stress on male and female ear characteristics and yield of maize can provide useful guidance for the cultivation and selection of high temperature tolerant maize varieties. 【Method】The variety of Zhengdan958 (Zheng58×Chang7-2), Xianyu335 (PH6WC×PH4CV), Jingnongke728 (JingMC01×Jing2416), MC812 (JingB547×Jing2416), and their parents were used as the test materials. High temperature stress before and after flowering (from V12 stage to 7 d after silking) were conducted. The effects of high temperature stress on the growth and development of male and female panicles, ASI, pollen activity, yield and yield components of different genotypes of maize hybrids and their parents were studied. 【Result】High temperature stress before and after anthesis significantly reduced the ear length, rows per ear and grains per row of the tested maize varieties and their parents, and then resulted significant decrease in yield. Compared with the control, the grain number per spike of Zhengdan958, Xianyu335, Jingnongke728 and MC812 decreased by 22.28%, 47.69%, 6.13% and 8.11% respectively under high temperature stress, resulting yield decrease of 9.50%, 50.61%, 3.17% and 5.00% respectively. Among the parental materials, the decrease of rows per panicle, grains per row and yield of Jing2416 under high temperature treatment was the smallest and not significant, while the decrease of PH6WC was the largest. Under high temperature stress, the total number of tassel branches, the length of tassel, the total amount of loose pollen and pollen activity decreased significantly, the silking period of loose pollen was prolonged, and the duration of loose pollen was shortened. Among them, Jingnongke728 had the smallest decline, followed by MC812, showing good heat resistance, while Zhengdan958 had the largest decline in the length of tassel, but the amount of pollen was the largest due to the large number of tassel branches. Xianyu335 has fewer male panicle branches, a large decrease in male panicle length, the least amount of pollen and low activity. Among the parental materials, Jing2416 had a large amount of total loose pollen and strong pollen vitality under high temperature treatment, with the smallest decline, only 4.50 and 3.98 percentage points. Compared with the control, the interval of loose pollen silking (ASI) was prolonged by 1.6d under high temperature stress. The decrease in male spike length is manifested as Zhengdan958>Xianyu335>MC812>Jingnongke728. Zhengdan958 had the largest decrease in male spike length, but had more branches and the largest pollen yield; Xianyu335 has fewer branches of male spikes, a significant decrease in male spike length, the least pollen quantity, and the lowest activity; Jing 2416 has a large amount of loose pollen and strong pollen vitality, with the smallest decrease (only 4.50% and 3.98%). 【Conclusion】High temperature stress before and after anthesis has a significant impact on the grain yield, male and female ear development process, pollen activity and filament microstructure of the tested maize varieties. Under high temperature stress at this stage, the decline of yield and pollen activity of Jingnongke728 and MC812 is significantly less than Xianyu335, showing higher single ear yield and heat tolerance. By comparing the heat resistance of the parental inbred lines of the tested maize hybrids, it was found that the heat resistance of the paternal inbred lines was better than that of the maternal inbred lines. The male panicle branch and length of the parent material Jing2416 decreased slightly, the amount of pollen was large, the pollen activity was high, the filaments were hairy, the ability to capture pollen was strong, the single panicle yield was high, and the heat resistance was the best. Therefore, in the planting area with frequent high temperature and heat damage, selecting maize varieties such as Jingnongke728 can achieve stable and high yield; and during the maize breeding process, we should pay more attention to the utilizing of the higher temperature resistant inbred such an Jing2416 and then combination higher temperature maize varieties.
high temperature; maize; parental inbred lines; heat resistance

10.3864/j.issn.0578-1752.2024.02.014
2023-05-28;
2023-07-31
國家重點研發計劃課題任務(2021YFD1200701-8)、北京市農林科學院青年科研基金(QNJJ202236)
徐田軍,E-mail:xtjxtjbb@163.com。呂天放,E-mail:314565358@qq.com。徐田軍和呂天放為同等貢獻作者。通信作者趙久然,E-mail:maizezhao@126.com。通信作者王榮煥,E-mail:ronghuanwang@126.com
(責任編輯 李莉)