



摘要:耐甲氧西林金黃色葡萄球菌(MRSA)是一種高度耐藥和多重耐藥致病菌,可引起嚴(yán)重感染甚至死亡。然而,目前可供選擇的治療MRSA感染藥物屈指可數(shù)。大環(huán)內(nèi)酯類抗生素對包括MRSA在內(nèi)的多種致病菌具有廣譜活性且具有安全性高和抗菌活性強等諸多優(yōu)點。大環(huán)內(nèi)酯與其他具有抗MRSA活性的藥效團(tuán)結(jié)合所得的雜合體可同時作用于MRSA的不同靶點,具有活性更強、藥代動力學(xué)性質(zhì)更優(yōu)秀和毒副作用更低等特點。因此,合理設(shè)計大環(huán)內(nèi)酯雜合體是獲得新型抗MRSA藥物候選物的有效途徑。本文探討了大環(huán)內(nèi)酯雜合體的抗MRSA活性及構(gòu)—效關(guān)系,為進(jìn)一步研究提供參考。
關(guān)鍵詞:大環(huán)內(nèi)酯;雜合體;抗菌;耐甲氧西林金葡菌;構(gòu)—效關(guān)系
中圖分類號:R978.1" " " " 文獻(xiàn)標(biāo)志碼:A" " " " "文章編號:1001-8751(2023)05-0306-08
Progress in the Study of Macrolide Hybrids with Antibacterial Potential
Against Methicillin-resistant Staphylococcus aureus
Wang Jun," "Shi Yu-Min
(School of Nuclear Technology and Chemical amp; Biology, Hubei University of Science and Technology," "Xianning" " 437000)
Abstract:Methicillin-resistant Staphylococcus aureus (MRSA) is a highly resistant and multidrug-resistant pathogen that can lead to severe infections and even death. However, there are fairly limited treatment options for the treatment of MRSA infection. Macrolide antibiotics exhibit outstanding safety profiles, high efficacy, and broad-spectrum activity against a range of infections, including MRSA. Macrolide hybrids, novel macrolide derivatives obtained through the combination of macrolide with other anti-MRSA pharmacophores, could act on different targets of MRSA simultaneously. Hence, macrolide hybrids usually endow with higher activity, better pharmacokinetic properties and lower side effects when compared with single part. Accordingly, reasonable design of macrolide hybrids is an effective approach to developing novel anti-MRSA candidates. In this paper, the anti-MRSA potential and the structure-activity relationship of macrolide hybrids are discussed, which will provide a reference for further research.
Key words:macrolide;" "hybrid;" "antibacterial;" "MRSA;" "structure-activity relationship
1 前言
耐甲氧西林金黃色葡萄球菌(MRSA)是一種高度耐藥和多重耐藥致病菌,對所有的β-內(nèi)酰胺類和頭孢類藥物均耐藥,對其他抗生素如氟喹諾酮類、氨基糖苷類和四環(huán)素類抗生素的耐藥性也在不斷上升[1-2]。MRSA具有較強的致病力,可引起皮膚軟組織、血液及全身各臟器感染甚至死亡[3-4]。目前,治療MRSA感染的藥物屈指可數(shù)。其中,作為最后一道防線的萬古霉素,具有抑制細(xì)菌細(xì)胞壁的合成、改變細(xì)菌細(xì)胞膜的通透性以及阻止細(xì)菌胞漿內(nèi)RNA的合成三重殺菌機制[5-6]。然而,萬古霉素已問世60余年,而且早在2002年已出現(xiàn)耐萬古霉素金黃色葡萄球菌(VRSA)[7-8]。因此,萬古霉素對MRSA的療效不斷下降,開發(fā)新型抗MRSA藥物迫在眉睫。
大環(huán)內(nèi)酯類抗生素可通過阻斷50s核糖體中肽酰轉(zhuǎn)移酶的活性抑制細(xì)菌蛋白質(zhì)合成,進(jìn)而發(fā)揮抗菌活性[9-10]。自1952年問世以來,經(jīng)過70余年的發(fā)展,目前已研發(fā)了逾百品種大環(huán)內(nèi)酯類抗生素[11-12]。大環(huán)內(nèi)酯類抗生素具有抗菌譜廣、活性強、耐藥性低、生物利用度高、組織滲透性強和穩(wěn)定性好等優(yōu)點,對包括MRSA在內(nèi)的多種致病菌有著良好的療效[13-14]。然而,致病菌通過核糖體 RNA 靶位的改變、產(chǎn)生鈍化酶、糖基化的失活和主動外排等機制已對這類藥物產(chǎn)生了不同程度的耐藥性[15-16]。
合成雜合體策略是目前開發(fā)新藥的常用策略,這是由于雜合體分子可同時作用于細(xì)菌的多個靶點,進(jìn)而可提高藥效、拓展抗菌譜和克服耐藥性[17-18]。近年來,藥物化學(xué)家設(shè)計和合成多個系列大環(huán)內(nèi)酯雜合體,并評價了他們的體內(nèi)外抗MRSA活性。結(jié)果顯示,這類雜合體具有潛在的抗MRSA活性。本文將著重介紹2015年1月—2023年1月所開發(fā)的具有體內(nèi)外抗MRSA活性的大環(huán)內(nèi)酯雜合體的最新研究進(jìn)展,并歸納構(gòu)—效關(guān)系,為進(jìn)一步合理設(shè)計此類雜合體提供一定的理論支持。
2 大環(huán)內(nèi)酯雜合體
大環(huán)內(nèi)酯—喹諾酮雜合體1 (圖1;最小抑菌濃度/MIC: 0.25~8.0 μg/mL)對大環(huán)內(nèi)酯類—林可霉素類—鏈陽菌素耐藥B誘導(dǎo)性耐藥(i-MLSB) MRSA顯示出良好的活性[19]。構(gòu)—效關(guān)系顯示:(1)延長碳鏈連接子對活性不利;(2)炔基與喹諾酮的C-7位連接優(yōu)于C-6位;(3)喹諾酮C-3位為羧酸時優(yōu)于酰胺;(4)炔基并非高活性所必需,將炔基還原為烯基如雜合體2 (MIC: 0.5 μg/mL)或烷基如雜合體3 (MIC: 1.0 μg/mL)甚至引入哌嗪如大環(huán)內(nèi)酯—環(huán)丙沙星雜合體4 (MIC: 1.0 μg/mL)均不會降低活性。其中,雜合體1a (MIC: 0.25 μg/mL)的抗i-MLSB MRSA活性是對照藥環(huán)丙沙星(MIC: 32 μg/mL)和克拉霉素(MIC: 64 μg/mL)的128和256倍,而雜合體4 (MIC: 1.0 μg/mL)對紅霉素敏感型肺炎鏈球菌、產(chǎn)紅霉素核糖體甲基化酶(erm) 肺炎鏈球菌、外排大環(huán)內(nèi)酯(mef)肺炎鏈球菌、對大環(huán)內(nèi)酯類—林可霉素類—鏈陽菌素耐藥B結(jié)構(gòu)性耐藥(c-MLSB)化膿鏈球菌和i-MLSB MRSA的活性是環(huán)丙沙星(MIC: 0.25~32 μg/mL)和克拉霉素(MIC: 0.03~512 μg/mL)的2~4096倍。進(jìn)一步研究發(fā)現(xiàn),雜合體4 (半衰期/t1/2: 110 min)在人肝微粒體中的穩(wěn)定性優(yōu)于泰利霉素(t1/2: 32.4 min)。因此,這類雜合體極具進(jìn)一步研究的潛力。
紅霉素—喹諾酮雜合體5a,b (MIC: 0.5~1.0 μg/mL)和6a,b (MIC: 0.25~0.5 μg/mL)對所測11株紅霉素敏感型金黃色葡萄球菌、10株外排介導(dǎo)耐大環(huán)內(nèi)酯金黃色葡萄球菌和12株i-MLSB MRSA臨床分離株具有良好的活性[20]。不僅如此,雜合體5a,b (MIC: 0.125~0.5 μg/mL)和6a (MIC: 0.5 μg/mL)對7株臨床分離耐喹諾酮i-MLSB MRSA菌株也顯示出優(yōu)秀的活性,且活性是環(huán)丙沙星(MIC: 8.0~>64 μg/mL)和紅霉素(MIC: >64 μg/mL)的≥16倍。進(jìn)一步研究發(fā)現(xiàn),紅霉素與喹諾酮之間的醚連接子并非高活性所必需,將醚用胺代替所得的雜合體7 (MIC: ≤0.125 μg/mL、0.25 μg/mL和0.25 μg/mL)和8 (圖2;MIC: ≤0.125 μg/mL、0.5 μg/mL和0.5 μg/mL)對紅霉素敏感型金黃色葡萄球菌、外排介導(dǎo)耐大環(huán)內(nèi)酯金黃色葡萄球菌和i-MLSB MRSA的活性是紅霉素(MIC: 1.0 μg/mL、32 μg/mL和>64 μg/mL)的≥8倍[21]。因此,這類雜合體具有克服多重耐藥性的潛力,值得深入研究。
8-氮雜紅霉素—喹諾酮雜合體9~11 (MIC: ≤0.125 μg/mL和0.25 μg/mL)具有極為優(yōu)秀的抗紅霉素敏感金黃色葡萄球菌和i-MLS MRSA活性,且活性是阿奇霉素(MIC: 1.0 μg/mL和>64 μg/mL)的≥8倍[22]。在感染金黃色葡萄球菌和肺炎鏈球菌的小鼠模型中,雜合體11 (口服給藥)的半數(shù)有效劑量(ED50)分別為6.0 mg/kg和4.5 mg/kg,活性與泰利霉素(ED50: 5.0 mg/kg和7.2 mg/kg)相當(dāng),優(yōu)于克拉霉素(ED50: 22.4 mg/kg和27.2 mg/kg)。進(jìn)一步研究發(fā)現(xiàn),該雜合體的口服生物利用度為41.8%。因此,雜合體11可作為候選物深入研究。
2-氟-9-肟基-3-酮大環(huán)內(nèi)酯—喹啉雜合體12 (MIC: 0.062 μg/mL)具有極為優(yōu)秀的抗MRSA PU32活性,且活性是泰利霉素(MIC: 0.125 μg/mL)的2倍,阿奇霉素(MIC: 32 μg/mL)的512倍和環(huán)丙沙星(MIC: 64 μg/mL)的1024倍[23]。構(gòu)—效關(guān)系研究表明,3-羧基喹啉母核對活性至關(guān)重要,將其用噻吩、吡啶、異喹啉或喹諾酮替代均會導(dǎo)致活性降低[23-24];將喹啉移至C-9號位也會導(dǎo)致活性的降低,如雜合體13 (MIC: 1.0 μg/mL)的抗MRSA PU32活性遠(yuǎn)遜于雜合體12[23-25];大環(huán)內(nèi)酯母核對活性亦有顯著影響,將2-氟-9-肟基-3-酮大環(huán)內(nèi)酯換做阿奇霉素也會導(dǎo)致活性降低,如雜合體14 (MIC: 1.0 μg/mL)的抗MRSA PU32活性也弱于雜合體12[26]。盡管3-酮大環(huán)內(nèi)酯—喹啉雜合體15 (MIC: 0.125 μg/mL)抗甲氧西林敏感型金黃色葡萄球菌(MSSA)的活性較高,但其抗MRSA活性(MIC: 64 μg/mL)較低,提示該雜合體與甲氧西林可能存在交叉耐藥[27]。
3-酮大環(huán)內(nèi)酯-1,2,3-三氮唑雜合體16 (圖3;MIC: 16 μg/mL和16 μg/mL)的抗MRSA和耐青霉素金黃色葡萄球菌活性優(yōu)于紅霉素(MIC: >256 μg/mL)和克拉霉素(MIC: >256 μg/mL),且構(gòu)—效關(guān)系研究表明,延長3-酮大環(huán)內(nèi)酯與1,2,3-三氮唑之間的碳鏈長度會降低雜合體的抗菌活性[28-32]。索利霉素衍生物17為2-氟-3-酮大環(huán)內(nèi)酯-1,2,3-三氮唑雜合體具有優(yōu)秀的抗野生型金黃色葡萄球菌,MIC為≤0.0625~0.25 μg/mL,且活性不亞于索利霉素(MIC: 0.06~0.12 μg/mL)[33]。其中,雜合體17a,b (MIC: 4.0~8.0 μg/mL)的抗MRSA UCN17和UCN18活性與索利霉素(MIC: 4.0 μg/mL)相當(dāng),且雜合體17a (MIC: 5.9 pg/mL)的抗耐多藥屎腸球菌活性是索利霉素(MIC: 24 ng/mL)的4 096倍。構(gòu)—效關(guān)系研究表明,將大環(huán)內(nèi)酯與1,2,3-三氮唑之間的烷基連接子用烯基連接子代替可增強抗MRSA活性,如雜合體18 (MIC: 2.5 μg/mL, 0.15 μg/mL和≤0.074 μg/mL)的抗MRSA UCN14、UCN17和UCN18活性優(yōu)于索利霉素(MIC: 9.5 μg/mL, 4.7 μg/mL和4.7 μg/mL)[34]。進(jìn)一步優(yōu)化發(fā)現(xiàn),含有惡唑烷酮的索利霉素-1,2,3-三氮唑雜合體19 (MIC: 0.8 μg/mL)的抗MRSA ATCC43300活性是索利霉素(MIC: >200 μg/mL)的>250倍,提示該雜合體與索利霉素?zé)o交叉耐藥性[34]。因此,這類雜合體具有克服多重耐藥性的潛力。
含有吡啶基團(tuán)的大環(huán)內(nèi)酯-1,2,3-三氮唑雜合體20a,b (MIC: ≤0.03~0.06 μg/mL)對包括2株藥敏型金黃色葡萄球菌和MRSA NRS384在內(nèi)的8株革蘭陽性菌顯示出極為優(yōu)秀的抗菌活性,抗MRSA NRS384活性(MIC: 0.06 μg/mL)是索利霉素(MIC: 0.25 μg/mL)、紅霉素(MIC: 64 μg/mL)和阿奇霉素(MIC: 128 μg/mL)的4~1024倍[35]。構(gòu)—效關(guān)系研究表明,吡啶為高活性所必需的基團(tuán),將其用苯環(huán)、噻吩或喹啉代替將導(dǎo)致活性降低。
酰肼連接的阿奇霉素-1,2,3-三氮唑雜合體21 (MIC: 2.0~128 μg/mL)具有潛在的抗野生型金黃色葡萄球菌、耐青霉素金黃色葡萄球菌和MRSA活性,且構(gòu)—效關(guān)系研究結(jié)果表明,向苯環(huán)的對位引入直鏈烷基對活性有利[36-37]。其中,代表物21a,b (MIC: 2.0 μg/mL和4.0 μg/mL)對MRSA和耐青霉素金黃色葡萄球菌的活性是阿奇霉素(MIC: >128 μg/mL)和克拉霉素(MIC: >128 μg/mL)的>32倍。進(jìn)一步研究發(fā)現(xiàn),雜合體21a具有良好的穩(wěn)定性,在人肝微粒體中的半衰期為28.9 min。酰肼連接的克拉霉素-1,2,3-三氮唑雜合體22 (圖4;MIC: 2.0~256 μg/mL)對所測的野生型金黃色葡萄球菌、耐青霉素金黃色葡萄球菌和MRSA也顯示出一定的活性,其中,雜合體22a~d (MIC: 2.0~4.0 μg/mL) 的抗MRSA和耐青霉素金黃色葡萄球菌的活性是阿奇霉素(MIC: >256 μg/mL)和克拉霉素(MIC: >256 μg/mL)的>64倍[38]。由此可見,此類雜合體可同時克服β-內(nèi)酰胺類和大環(huán)內(nèi)酯類抗生素的耐藥性。
阿奇霉素-1,2,3-三氮唑雜合體23a~c (MIC: 8.0 μg/mL)具有中等強度的抗MRSA活性,但活性弱于阿奇霉素(MIC: 1.0 μg/mL)和克拉霉素(MIC: 0.25 μg/mL)[39]。氮雜克拉霉素-1,2,3-三氮唑雜合體24 (MIC: 4.0 μg/mL)及其同分異構(gòu)體25 (MIC: 4.0 μg/mL)的抗MRSA活性是阿奇霉素(MIC: >256 μg/mL)和克拉霉素(MIC: >256 μg/mL)的>64倍[40-41]。雜合體24 (MIC: 4.0 μg/mL)對耐青霉素金黃色葡萄球菌也顯示出較高的活性,且活性是阿奇霉素(MIC: >256 μg/mL)和克拉霉素(MIC: >256 μg/mL)的>64倍。不僅如此,雜合體24對細(xì)菌的增殖顯示出時間和劑量依賴性。
含有肟基的大環(huán)內(nèi)酯—雙吡啶雜合體26a,b (MIC: 0.25 μg/mL和0.5 μg/mL)具有極為優(yōu)秀的抗MRSA PU32活性,且活性是克拉霉素(MIC: 32 μg/mL)的128倍和64倍[42]。構(gòu)—效關(guān)系研究結(jié)果表明,大環(huán)內(nèi)酯C-9位肟上的炔基并非高活性所必需,將其替換為烯基所得的雜合體27 (MIC: 0.5 μg/mL)也具有良好的抗MRSA PU32活性[42];C-9位的肟基對活性有較大影響,將其用酮替代對活性不利[43]。
除上述雜合體外,某些大環(huán)內(nèi)酯雜合體對MSSA也具有良好的抗菌活性,但抗MRSA活性較弱甚至消失[44],如大環(huán)內(nèi)酯—氨基甲酸酯雜合體28 (MIC: 0.25 μg/mL和64 μg/mL)具有強抗MSSA 11B122活性,但抗MRSA 11B117活性較弱,仍需進(jìn)一步結(jié)構(gòu)優(yōu)化。
3 總結(jié)
大環(huán)內(nèi)酯類抗生素具有抗菌譜廣、活性高、耐藥性低、組織滲透性強和穩(wěn)定性好等優(yōu)點,對包括MRSA在內(nèi)的多種致病菌顯示出良好的活性。值得一提的是,大環(huán)內(nèi)酯雜合體可同時作用于細(xì)菌的多個靶點,具有改善藥動學(xué)性質(zhì)、降低毒副作用、提高藥效、拓展抗菌譜和克服耐藥性的潛力。近年來,藥物化學(xué)家設(shè)計合成了多個系列大環(huán)內(nèi)酯雜合體,并從中篩選出多個具有良好抗MRSA的候選物。不僅如此,這些研究還豐富了構(gòu)—效關(guān)系,為未來的結(jié)構(gòu)優(yōu)化研究提供了一定的理論參考。
未來幾年的研究可集中在:(1)向大環(huán)內(nèi)酯母核引入更多的抗MRSA藥效團(tuán),以獲得更多的先導(dǎo)物或候選物,為后續(xù)研究提供量的保障;(2)對現(xiàn)有的具有潛在抗MRSA活性的大環(huán)內(nèi)酯雜合體進(jìn)行深入的結(jié)構(gòu)優(yōu)化,以進(jìn)一步提高其活性,為進(jìn)行體內(nèi)活性評價提供更多優(yōu)質(zhì)候選物。
參 考 文 獻(xiàn)
[1]Lee A S, Huttner B D, Catho G, et al. Methicillin-resistant Staphylococcus aureus: An update on prevention and control in acute care settings[J]. Infect Dis Clin N Am, 2021, 35(4): 931-952.
[2]Liu W T, Chen E Z, Yang L, et al. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review[J]. Microb Pathogen, 2021, 156: e104915.
[3]Gajdács M. The continuing threat of methicillin-resistant Staphylococcus aureus[J]. Antibiot, 2019, 8(2): e52.
[4] Cheung G Y C, Bae J S, Otto M, et al. Pathogenicity and virulence of Staphylococcus aureus[J]. Virulence, 2021, 12(1): 547-569.
[5]Nandhini P, Kumar P, Mickymaray S, et al. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review[J]. Antibiot, 2022, 11(5): e606.
[6]Liu F, Rajabi S, Shi C H, et al. Antibacterial activity of recently approved antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) strains: A systematic review and meta-analysis[J]. Ann Clin Microbiol Antimicrob, 2022, 21(1): e37.
[7]Cong Y G, Yang S J, Rao X C. Vancomycin-resistant Staphylococcus aureus infections: A review of case updating and clinical features[J]. J Adv Res, 2020, 21: 169-176.
[8]Rose W, Volk C, Dilworth T J, et al. Approaching 65 years: Is it time to consider retirement of vancomycin for treating methicillin-resistant Staphylococcus aureus endovascular infections?[J]. Open Forum Infect Dis, 2022, 9(5): OFAC137.
[9]Janas A, Przybylski P. 14- and 15-membered lactone macrolides and their analogues and hybrids: structure, molecular mechanism of action and biological activity[J]. Eur J Med Chem, 2019, 182: e111662.
[10]Buxeraud J, Faure S. Macrolides and related products[J]. Actual Pharm, 2022, 61(618): 23-26.
[11]Paljetak H ?, Toma?kovi? L, Matija?i? M, et al. Macrolide hybrid compounds: Drug discovery opportunities in antiinfective and anti-inflammatory area[J]. Curr Top Med Chem, 2017, 17(8): 919-940.
[12]Arsic B, Barber J, ?iko? A, et al. 16-Membered macrolide antibiotics: A review[J]. Int J Antimicrob Agents, 2018, 51(3): 283-298.
[13]馮凱, 辛杰, 田俊, 等. 天然抗生素結(jié)構(gòu)與構(gòu)效關(guān)系研究進(jìn)展[J]. 中國抗生素雜志, 2021, 46(09): 809-820.
[14]李喆宇, 崔玉彬, 張靜霞, 等. 大環(huán)內(nèi)酯類抗生素的研究新進(jìn)展[J]. 國外醫(yī)藥抗生素分冊, 2013, 34(1): 6-15.
[15]Miklasińska-Majdanik M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus[J]. Antibiot, 2021, 10(11): e1406
[16]Dinos G P. The macrolide antibiotic renaissance[J]. Br J Pharm, 2017, 174(18), 2967-2983.
[17]Kumar H M S, Herrmann L, Tsogoeva S B. Structural hybridization as a facile approach to new drug candidates[J]. Bioorg Med Chem Lett, 2020, 30(23): e127514.
[18]Vasiv V, Albertini C, Gon?alves A E, et al." Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases[J]. Curr Top Med Chem, 2019, 19(19): 1694-1711.
[19]Liu X P, Lv W, Zhao F, et al. Design and synthesis of novel macrolones bridged with linkers from 11,12-positions of macrolides[J]. Bioorg Med Chem Lett, 2022, 68: e128761.
[20]Paljetak H ?, Verbanac D, Padovan J, et al. Macrolones are a novel class of macrolide antibiotics active against key resistant respiratory pathogens in vitro and in vivo[J]. Antimicrob Agents Chemother, 2016, 60(9): 5337-5348.
[21]Pavlovi? D, Mutak S. Synthesis and antibacterial evaluation of novel 4'-glycyl linked quinolyl-azithromycins with potent activity against macrolide-resistant pathogens[J]. Bioorg Med Chem, 2016, 24(6): 1255-1267.
[22]Pavlovi? D, Kimmins S, Mutak S. Synthesis of novel 15-membered 8a-azahomoerythromycin A acylides: Consequences of structural modification at the C-3 and C-6 position on antibacterial activity[J]. Eur J Med Chem, 2017, 125: 210-224.
[23]Ma C X, Lv W, Li Y X, et al. Design, synthesis and structure-activity relationships of novel macrolones: Hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens[J]. Eur J Med Chem, 2019, 169: 1-20.
[24]Li X M, Lv W, Guo S Y, et al. Synthesis and structure-bactericidal activity relationships of non-ketolides: 9-Oxime clarithromycin 11,12-cyclic carbonate featured with three-to eight-atom-length spacers at 3-OH[J]. Eur J Med Chem, 2019, 171: 235-254.
[25]Tian J C, Han X, Lv W, et al. Design, synthesis and structure-bactericidal activity relationships of novel 9-oxime ketolides and reductive epimers of acylides[J]. Bioorg Med Chem Lett, 2017, 27(7): 1513-1524.
[26]Fan B Z, Hiasa H, Lv W, et al. Design, synthesis and structure-activity relationships of novel 15-membered macrolides: Quinolone/quinoline-containing sidechains tethered to the C-6 position of azithromycin acylides[J]. Eur J Med Chem, 2020, 193: e112222.
[27]Zhao Z H, Zhang X X, Jin L L, et al. Synthesis and antibacterial activity of novel ketolides with 11,12-quinoylalkyl side chains[J]. Bioorg Med Chem Lett, 2018, 28(14): 2358-2363.
[28]Bai B F, Bi F C, Qin Y H, et al. Design, synthesis and antibacterial evaluation of novel C-11, C-9 or C-2’-substituted 3-O-descladinosyl-3-ketoclarithromycin derivatives[J]. Bioorg Med Chem Lett, 2021, 43: e128110.
[29]Teng Y T, Qin Y H, Song D, et al. A novel series of 11-O-carbamoyl-3-O-descladinosyl clarithromycin derivatives bearing 1,2,3-triazole group: Design, synthesis and antibacterial evaluation[J]. Bioorg Med Chem Lett, 2020, 30(2), e126850.
[30]Jin X, Daher S S, Lee M, et al. Ribosome-templated azide-alkyne cycloadditions using resistant bacteria as reaction vessels: In cellulo click chemistry[J]. ACS Med Chem Lett, 2018, 9(9): 907-911.
[31]Daher S S, Lee M, Jin X, et al. Synthesis, biological evaluation, and computational analysis of biaryl side-chain analogs of solithromycin[J]. Chem Med Chem, 2021, 16(21): 3368-3373.
[32]Glassford I, Teijaro C N, Daher S S, et al. Ribosome-templated azide-alkyne cycloadditions: Synthesis of potent macrolide antibiotics by in situ click chemistry[J]. J Am Chem Soc, 2016, 138(9): 3136-3144.
[33]Daher S S, Jin X, Patel J, et al. Synthesis and biological evaluation of solithromycin analogs against multidrug resistant pathogens[J]. Bioorg Med Chem Lett, 2019, 29(11): 1386-1389.
[34]Daher S S, Lee M, Jin X, et al. Alternative approaches utilizing click chemistry to develop next-generation analogs of solithromycin[J]. Eur J Med Chem, 2022, 233: e114213.
[35]Seiple I B, Zhang Z, Jakubec P, et al. A platform for the discovery of new macrolide antibiotics[J]. Nature, 2016, 533: 338-345.
[36]Yan M, Xu L, Wang Y, et al. Synthesis and antibacterial activity of 11,12-cyclic carbonate 4\"-O-aralkylacetylhydrazineacyl azithromycin derivatives[J]. Bioorg Chem, 2020, 94: e103475.
[37]Qin Y, Xu L, Teng Y, et al. Design, synthesis and antibacterial evaluation of novel 3-O-substituted 15-membered azalides possessing 1,2,3-triazole side chains[J]. Bioorg Med Chem Lett, 2021, 49: e128330.
[38]Qin Y, Sun M, Zhang N, et al. Synthesis and biological evaluation of antibacterial activity of novel clarithromycin derivatives incorporating 1,2,3-triazole moieties at the 4\"- and 11-OH positions[J]. Bioorg Chem, 2022, 127: e106020.
[39]Wang Y, Cong C, Chai W C, et al. Synthesis and antibacterial activity of novel 4\"-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs[J]. Bioorg Med Chem Lett, 2017, 27: 3872-3877.
[40]Qin Y, Song D, Teng Y, et al. Design, synthesis and structure-activity relationships of novel N11-, C12- and C13-substituted 15-membered homo-aza-clarithromycin derivatives against various resistant bacteria[J]. Bioorg Chem, 2021, 113: e104992.
[41]Qin Y, Teng Y, Ma R, et al. Design, synthesis and antibacterial evaluation of novel 15-membered 11a-azahomoclarithromycin derivatives with the 1,2,3-triazole side chain[J]. Eur J Med Chem, 2019, 180: 321-339.
[42]Han X, Lv W, Guo S Y, et al. Synthesis and structure-activity relationships of novel 9-oxime acylides with improved bactericidal activity[J]. Bioorg Med Chem, 2015, 23(19): 6437-6453.
[43]Li J, Wang Y, Wang Y, et al. Synthesis and antibacterial evaluation of novel 11-O-aralkylcarbamoyl-3-O-descladinosyl clarithromycin derivatives[J]. Bioorg Med Chem Lett, 2018, 28: 2471-2476.
[44]Zheng Z, Du D, Cao L, et al. Synthesis and antibacterial activity of novel 11-[3-[(arylcarbamoyl)oxy]propylamino]-11-deoxy-6-O-methyl-3-oxoerythromycin A 11-N,12-O-cyclic carbamate derivatives[J]. J Antibiot, 2016, 69(11): 811-817.
[45]Zhao Z H, Zhu D, Zhang X X, et al. Synthesis and antibacterial activity of novel 4’’-O-desosaminyl clarithromycin derivatives with 11, 12-arylalkyl side chains[J]. J Asian Nat Prod Res, 2019, 21(7): 610-618.
[46]Zhao Z H, Wang A P, Zhang X X, et al. Antibacterial activities of a series of novel 5-O- (4’, 6’-O-dimodified)-mycaminose 14-membered ketolides[J]. Asian Nat Prod Res, 2019, 21(5): 456-461.
[47]Anwar H F, Andrei M, Undheim K. Synthesis of clarithromycin ketolides chemically modified at the unreactive C10-methyl group[J]. Bioorg Med Chem, 2017, 25(8): 2313-2326.
[48]Yan M, Ma R, Jia L, et al. Synthesis and antibacterial activity of novel 3-O-descladinosylazithromycin derivatives[J]. Eur J Med Chem, 2017, 127: 874-884.