999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

香豆素雜合體的抗結(jié)核活性研究進(jìn)展

2023-04-29 00:00:00蔣丹,張強(qiáng)
國外醫(yī)藥抗生素分冊 2023年5期

摘要:結(jié)核病是由結(jié)核分枝桿菌復(fù)合群引起的重大傳染性疾病,嚴(yán)重威脅人類的生命健康。其中,結(jié)核分枝桿菌是最主要的致病菌,且以感染肺部為主,故結(jié)核病又稱肺結(jié)核。一線抗結(jié)核藥物已在臨床上使用超過半個(gè)世紀(jì),盡管目前仍不可或缺,但隨著新型耐藥結(jié)核如耐多藥結(jié)核、廣泛耐藥結(jié)核和完全耐藥結(jié)核的不斷涌現(xiàn),使得一線抗結(jié)核藥物的療效逐年下降。因此,研發(fā)新的抗結(jié)核藥物一直是新藥研發(fā)領(lǐng)域的重點(diǎn)之一。藥物化學(xué)家進(jìn)行了不懈的努力,但自利福平問世以來,進(jìn)入臨床試驗(yàn)的化合物屈指可數(shù),被批準(zhǔn)上市的新藥更是少之又少。香豆素類化合物具有包括抗結(jié)核在內(nèi)的多種生物活性,其中的某些化合物對耐藥結(jié)核分枝桿菌也顯示出良好的活性,極具進(jìn)一步研究價(jià)值。本文將重點(diǎn)介紹2018年1月—2023年1月首次報(bào)道的具有抗結(jié)核活性的香豆素雜合體的最新研究進(jìn)展,并歸納其構(gòu)—效關(guān)系,以啟迪藥物化學(xué)家設(shè)計(jì)合成活性更高、毒副作用更低的抗結(jié)核候選物。

關(guān)鍵詞:香豆素;雜合體;結(jié)核;耐藥結(jié)核;構(gòu)—效關(guān)系

中圖分類號:R978.3" " " " "文獻(xiàn)標(biāo)志碼:A" " " " "文章編號:1001-8751(2023)05-0346-08

The Research Progress of Coumarin Hybrids with Anti-tubercular Potential

Jiang Dan1," "Zhang Qiang2

(1 School of Nuclear Technology and Chemical amp; Biology, Hubei University of Science and Technology, Xianning" 437000;

2 Hubei Jingmen Rehabilitation Hospital," "Jingmen" 448000 )

Abstract:Tuberculosis, an infectious disease caused by the Mycobacterium tuberculosis complex, seriously threatens human health. Among them, Mycobacterium tuberculosis is the major pathogen and mainly infects pulmonary. Thus, tuberculosis is also called pulmonary tuberculosis. First-line anti-tubercular drugs have been used clinically for more than 50 years and are still indispensable at present, but the efficacy of first-line anti-tubercular drugs has declined year by year with the continuous emergence of new drug-resistant tuberculosis such as multidrug-resistant, extensively drug-resistant and totally drug-resistant tuberculosis. Therefore, one of the first priority for new drug research and development has always been the creation of new anti-tubercular medications. However, few candidates have entered clinical trials and been approved for marketing since the introduction of rifampicin. Coumarins have a variety of biological activities, including anti-tuberculosis and some of them also possess excellent activity against drug-resistant Mycobacterium tuberculosis. Hence, coumarins are useful scaffolds for the discovery of novel anti-tubercular drugs." In order to motivate medicinal chemists to create and synthesize new candidates with higher activity and lower toxicity and side effects, this paper will concentrate on the most recent research developments of coumarin hybrids with anti-tubercular activity developed since 2018 and summarize their structure-activity relationships.

Key words:coumarin;" "hybrid;" "tuberculosis;" "drug-resistant tuberculosis;" "structure-activity relationship

1 前言

結(jié)核病(TB)主要是由一系列分枝桿菌如結(jié)核分枝桿菌(MTB)、非洲分枝桿菌、牛分枝桿菌、坎納分枝桿菌、山羊分枝桿菌、田鼠分枝桿菌和海豹分枝桿菌引起的傳染性疾病,其中前4種對人類致病[1-2]。MTB是人類最主要的致病菌,可感染全身各個(gè)器官,以肺部為主,可潛伏在宿主體內(nèi)長達(dá)數(shù)年之久[3-4]。TB是全球所必需共同面對的重大公共衛(wèi)生和社會(huì)問題,據(jù)世界衛(wèi)生組織(WHO)估計(jì),全球有三分之一的人口已感染潛伏性MTB,其中每年約5%~10%人口有罹患TB的風(fēng)險(xiǎn)[5-6]。

眾所周知,隨著20世紀(jì)四五十年代異煙肼(INH)、利福平(RIF)、乙胺丁醇(EMB)和吡嗪酰胺(PZA)等一線抗TB藥物的相繼問世和廣泛應(yīng)用,TB曾一度得以控制[7-8]。但近年來TB大有死灰復(fù)燃之勢,據(jù)WHO估計(jì),僅2021年全球新增TB患者1 060萬,其中140萬人因此喪命[9]。無論是發(fā)病人數(shù)還是死亡人數(shù),2021年與2020年相比均有較大增幅[9-10]。其中,新型耐藥TB (DR-TB)如耐多藥TB (MDR-TB, 對至少2種一線抗TB藥物如INH和RIF同時(shí)耐藥)、廣泛耐藥TB (XDR-TB,除了至少對2種主要一線抗結(jié)核藥物INH和RIF耐藥外,還對任何氟喹諾酮類抗生素產(chǎn)生耐藥,以及三種二線抗TB注射藥物如卷曲霉素、卡那霉素、丁胺卡那霉素等中的至少一種耐藥)和完全耐藥TB (TDR-TB,所有的傳統(tǒng)一線和二線抗TB藥物耐藥)的不斷涌現(xiàn)并廣泛傳播是目前TB疫情再次抬頭的主要因素之一[11-12]。僅2021年,全球新發(fā)45萬耐利福平TB (RR-TB)和MDR-TB患者,比2020年(43.7萬)增長了3%,死亡19.1萬[9]。特別需要指出的是,DR-TB的傳播途徑與藥敏型TB一致,進(jìn)一步加劇了TB疫情的傳播[13-16]。因此,開發(fā)新型抗TB藥物迫在眉睫。

香豆素是一類具有苯并吡喃酮母核的天然產(chǎn)物,獨(dú)特的化學(xué)結(jié)構(gòu)使其可發(fā)揮多種非共價(jià)鍵相互作用,如π-π相互作用、范德華力、疏水性、靜電相互作用和氫鍵等[17-18]。香豆素具有多種生物活性,對藥敏性和DR-TB均顯示出良好的體內(nèi)外活性,是尋找新型抗TB藥物的潛在結(jié)構(gòu)骨架[19-20]。本文將重點(diǎn)介紹2018年1月—2023年1月首次報(bào)道的具有抗TB活性的香豆素雜合體的最新研究進(jìn)展,并歸納其構(gòu)—效關(guān)系,以啟迪藥物化學(xué)家設(shè)計(jì)合成活性更高、毒副作用更低、療程更短的候選物。

2 香豆素雜合體

苯并呋喃并[3,2-c]香豆素雜合體1 [圖1; 最小抑制濃度(MIC): 0.0039~>64 μg/mL]的抗MTB H37Rv構(gòu)—效關(guān)系研究結(jié)果表明,R1位的酚羥基為高活性所必需,且向R2位引入大體積的烷基,如叔丁基對抗菌活性有利[21]。其中,代表物1a,b (MIC: 0.0039~0.0078 μg/mL和0.0010~0.0156 μg/mL)的抗MTB H37Rv、MTB V4307/DS、MDR-MTB KZN494 (對異煙肼和利福平耐藥)、XDR-MTB TF274 (對異煙肼、利福平耐藥、左氧氟沙星、氧氟沙星和卡那霉素耐藥)和XDR-MTB R506活性是異煙肼(MIC: 0.04~8.0 μg/mL)、利福平(MIC: 0.0625~>128 μg/mL)、左氧氟沙星(MIC: 0.25~2.0 μg/mL)、氧氟沙星(MIC: 0.5~8.0 μg/mL)和卡那霉素(MIC: 2.0~128 μg/mL)的10~>32820 倍。細(xì)胞毒性試驗(yàn)結(jié)果顯示,雜合體1a,b [半數(shù)抑制濃度(IC50): 40.1~>50 μmol/L和22.3~34.1 μmol/L]對人源MRC-5、HFL-1、QSG-7701和HEK-293細(xì)胞的毒性較低。穩(wěn)定性試驗(yàn)表明,雜合體1a在人肝微粒體中的穩(wěn)定性良好,半衰期(t1/2)為120 min。在感染MTB H37Rv的小鼠模型中,雜合體1a (100 mg/kg,口服給藥,血清抑制滴定法)的體內(nèi)活性是對照藥TAM16 (100 mg/kg,口服給藥)和異煙肼(10.0 mg/kg,口服給藥)的8倍??傊?,極為優(yōu)秀的體外抗藥敏型MTB、MDR-MTB和XDR-MTB活性、良好的安全性和穩(wěn)定性,加之潛在的體內(nèi)活性,使得雜合體1a可作為候選物進(jìn)行深入的臨床前研究。

香豆素—呋喃雜合體2 (MIC: 10~12 μg/mL)具有中等強(qiáng)度的抗MTB H37Rv活性,但活性遠(yuǎn)遜于對照藥異煙肼(MIC: 0.03 μg/mL)和利福平(MIC: 0.015 μg/mL)[22]。構(gòu)—效關(guān)系研究結(jié)果表明,向香豆素母核的C-7位或C-7和C-8同時(shí)引入烷氧基并不能提高活性。含有氨基硫脲結(jié)構(gòu)單元的香豆素—噻吩雜合體3 (MIC: 0.5 μg/mL)對所測的MTB H37Rv和6株MTB突變株具有優(yōu)秀的活性,但對單氧合酶ethA突變的XDR-MTB未顯示出明顯活性(MIC: >20 μg/mL),提示該雜合體可通過抑制ethA發(fā)揮抗TB活性[23]。

雙香豆素—雙1,2,3-三氮唑雜合體4(MIC: 1.56~25 μg/mL)具有潛在的抗MTB H37Rv活性,但活性弱于對照藥異煙肼(MIC: 0.38 μg/mL)和利福平(MIC: 0.04 μg/mL)[24]。構(gòu)—效關(guān)系研究結(jié)果表明,向香豆素的C-6位引入氯對活性有利;兩個(gè)1,2,3-三氮唑之間的烷基連接子的碳鏈長度與活性正相關(guān),即延長碳鏈長度可提高活性[24];向兩個(gè)1,2,3-三氮唑之間插入苯并咪唑酮可在一定程度上提高抗MTB H37Rv活性,如雜合體5 (MIC: 1.56~12.5 μg/mL)也顯示出潛在的抗MTB H37Rv活性,但嘧啶二酮連接子對活性不利[25]。其中,雜合體5a~d (MIC: 1.56 μg/mL)的抗MTB H37Rv活性是吡嗪酰胺(MIC: 3.12 μg/mL)、鏈霉素(MIC: 6.25 μg/mL)和環(huán)丙沙星(MIC: 3.12 μg/mL)的2~4倍。細(xì)胞毒性試驗(yàn)結(jié)果顯示,雜合體5a~d (IC50: >940 μmol/L)對正常HEK293細(xì)胞未顯示出明顯的毒性。

香豆素—1,2,3-三氮唑-二氫喹啉酮雜合體6 (MIC: 1.6 μg/mL)具有優(yōu)秀的抗MTB H37Rv活性,且活性與異煙肼(MIC: 1.6 μg/mL)、利福平(MIC: 1.6 μg/mL)和吡嗪酰胺(MIC: 3.12 μg/mL)相當(dāng)[26]。香豆素—1,2,3-三氮唑-均三嗪雜合體7a,b (MIC: 0.01~0.02 μg/mL)具有極為優(yōu)秀的抗MTB H37Rv和牛分枝桿菌BCG活性,且二者(IC50: >100 μg/mL)對HepG2細(xì)胞未顯示出明顯的毒性[27]。進(jìn)一步研究發(fā)現(xiàn),二者(IC50: 1.34 μmol/L和0.82 μmol/L)可通過作用于MTB二氫葉酸還原酶發(fā)揮抗TB活性。香豆素—1,2,3-三氮唑-1,2,4-三氮唑酮雜合體8 (MIC: 1.6~12.5 μg/mL)具有中等到強(qiáng)的抗MTB H37Rv活性,且構(gòu)—效關(guān)系顯示,向香豆素的C-7位引入甲基或苯環(huán)對位引入甲氧基對活性有利[28]。其中,雜合體8a~e (MIC: 1.6 μg/mL)的抗MTB H37Rv活性是吡嗪酰胺(MIC: 3.12 μg/mL)的2倍。

香豆素—1,2,3-三氮唑雜合體(MIC: 32~256 μg/mL)具有潛在的抗MTB H37Rv和MDR-MTB活性,其中,代表物9 (圖 2; MIC: 50 μg/mL和32 μg/mL)盡管抗MTB H37Rv活性遠(yuǎn)遜于異煙肼(MIC: 0.05 μg/mL)和利福平(MIC: 0.39 μg/mL),但抗MDR-MTB活性優(yōu)于異煙肼(MIC: >128 μg/mL)和利福平(MIC: 64 μg/mL)[29]。香豆素—1,2,3-三氮唑—靛紅雜合體(MIC: 50~>200 μg/mL)的抗MTB H37Rv活性普遍較弱,如活性最高的雜合體10 (MIC: 50 μg/mL)僅顯示出中等強(qiáng)度的抗MTB H37Rv和恥垢分枝桿菌活性[30-32]。

香豆素—噻唑—噻唑啉酮—吲哚雜合體11a~c (MIC: 12.5~25 μg/mL)具有中等強(qiáng)度的抗MTB H37Rv活性,且構(gòu)—效關(guān)系研究結(jié)果顯示,向吲哚的C-2位引入苯環(huán)對活性有利,且香豆素的C-6位溴和吲哚C-5位的氯對活性有利[33]。其中,雜合體11a (MIC: 12.5 μg/mL)的活性最高,但活性略弱于鏈霉素(MIC: 6.25 μg/mL),故該雜合體可作為先導(dǎo)物進(jìn)一步優(yōu)化。

香豆素—苯并噻唑雜合體12 (MIC: 1.6~6.25 μg/mL)具有優(yōu)秀的抗MTB H37Rv活性,且構(gòu)—效關(guān)系研究結(jié)果表明,向香豆素的C-4位引入供電子基或C-6位引入吸電子基對活性影響不大,但向C-6位引入供電子基會(huì)導(dǎo)致活性下降[34];偶氮連接子對活性有利,如硫醚連接的香豆素—苯并噻唑雜合體13a,b (MIC: 50 μg/mL)僅顯示出中等強(qiáng)度的抗MTB H37Rv活性[35]。其中,代表物12a~d (MIC: 1.6 μg/mL)的活性與異煙肼(MIC: 1.6 μg/mL)相當(dāng),而是吡嗪酰胺(MIC: 3.12 μg/mL)的2倍,可作為候選物進(jìn)一步研究。

腙連接的香豆素—噻唑雜合體14a,b (MIC: 50 μg/mL)顯示出中等強(qiáng)度的抗MTB H37Rv活性,但活性遠(yuǎn)遜于異煙肼(MIC: 0.0781 μg/mL)[36]。香豆素—噻唑雜合體15 (MIC: 31.25 μg/mL)和16a,b (MIC: 31.25 μg/mL)也顯示出潛在的抗MTB H37Rv活性,但活性弱于異煙肼(MIC: 0.98 μg/mL)和乙胺丁醇(MIC: 1.96 μg/mL)[37]。香豆素—噻唑—吡啶雜合體17 (MIC: 1.56~3.12 μg/mL)具有良好的抗MTB H37Rv活性,且構(gòu)—效關(guān)系研究結(jié)果表明,向香豆素的C-6位引入鹵素氯、溴或碘對活性有利[38]。其中,代表物17a~f (MIC: 1.56 μg/mL)的抗MTB H37Rv活性與異煙肼(MIC: 1.56 μg/mL)和吡嗪酰胺(MIC: 1.56 μg/mL)相當(dāng),而是乙硫異煙胺(MIC: 3.12 μg/mL)和丙硫異煙胺(MIC: 3.12 μg/mL)的2倍。

香豆素—噻唑—咪唑并[2,1-b]噻唑雜合體18 (MIC: 3.9 μg/mL)具有較高的抗MTB H37Rv活性,但活性弱于異煙肼(MIC: 0.12 μg/mL)[39]。香豆素—噻唑并[3,2-a]嘧啶雜合體19a,b (MIC: 12.5 μg/mL)的抗MTB H37Rv活性是環(huán)絲氨酸(MIC: 25 μg/mL)和乙胺嘧啶(MIC: 100 μg/mL)的2倍和8倍,但活性弱于異煙肼(MIC: 0.31 μg/mL)[40]。香豆素—噻嗪雜合體20a,b (MIC: 62.5 μg/mL)的抗MTB H37Rv活性與利福平(MIC: 40 μg/mL)相當(dāng),但弱于異煙肼(MIC: 0.2 μg/mL)[41]。

香豆素—1,2,4-三氮唑啉硫酮雜合體21 (圖3; MIC: 0.8 μg/mL)的具有極為優(yōu)秀的抗MTB H37Rv活性,且活性是對照藥環(huán)丙沙星(MIC: 3.12 μg/mL)、吡嗪酰胺(MIC: 3.12 μg/mL)和鏈霉素(MIC: 6.25 μg/mL)的4~8倍[42]。不僅如此,該雜合體(MIC: 0.8~1.6 μg/mL)的抗金黃色葡萄球菌、芽孢桿菌和大腸埃希菌活性也優(yōu)于環(huán)丙沙星(MIC: 2.0 μg/mL)。因此,雜合體21可作為抗TB和抗菌候選物進(jìn)行深入研究。

部分香豆素—查耳酮—吡唑雜合體22 (MIC: 3.12~6.25 μg/mL)顯示出較高的抗MTB H37Rv活性,其中,代表物22a,b (MIC: 3.12 μg/mL)略弱于乙胺丁醇(MIC: 1.56 μg/mL)[43]。香豆素—苯并咪唑雜合體23a,b (MIC: 1.6 μg/mL)的抗MTB H37Rv活性是對照藥環(huán)丙沙星(MIC: 3.12 μg/mL)、吡嗪酰胺(MIC: 3.12 μg/mL)和鏈霉素(MIC: 6.25 μg/mL)的4~8倍[44]。構(gòu)—效關(guān)系研究結(jié)果表明,苯并咪唑?qū)Ω呋钚灾陵P(guān)重要,將其用苯并噻唑、苯并惡唑和1,3,4-惡二唑替代均會(huì)導(dǎo)致活性大幅降低。

香豆素—胸腺嘧啶雜合體24 (MIC: 0.012~0.464 μg/mL)具有極為優(yōu)秀的抗MTB H37Rv活性[45]。其中,代表物24a,b (MIC: 0.014 μg/mL和0.012 μg/mL)的活性與異煙肼(MIC: 0.011 μg/mL)相當(dāng)。進(jìn)一步研究發(fā)現(xiàn),這類雜合體能夠跨越脂質(zhì)膜屏障并作用于靶細(xì)胞。香豆素—茶堿雜合體(MIC: 0.12~3.9 μg/mL)的抗MTB H37Rv構(gòu)—效關(guān)系研究顯示,香豆素C-6位的烷基對活性有利[46]。其中,雜合體25 (MIC: 0.12 μg/mL)的活性略弱于異煙肼(MIC: 0.06 μg/mL)。進(jìn)一步研究發(fā)現(xiàn),將香豆素與茶堿之間的亞甲基連接子用醚連接子代替并不能提高抗MTB H37Rv活性,如雜合體26 (MIC: 0.39 μg/mL)的活性為異煙肼(MIC: 0.1 μg/mL)的四分之一[47]。雜合體27a,b (MIC: 1.6 μg/mL)的抗MTB H37Rv活性是環(huán)丙沙星(MIC: 3.12 μg/mL)、吡嗪酰胺(MIC: 3.12 μg/mL)和鏈霉素(MIC: 6.25 μg/mL)的2~4倍,且構(gòu)—效關(guān)系研究結(jié)果表明,C-5位為溴是高活性所必需[48]。香豆素—喹喔啉雜合體28 (MIC: >200 μg/mL)則未顯示出任何抗MTB H37Rv活性,提示喹喔啉對活性不利[49]。

香豆素—肟雜合體29 (MIC: 0.04~3.12 μg/mL)的抗MTB H37Rv構(gòu)—效關(guān)系研究顯示,向香豆素母核引入供電子基尤其是二甲基對活性有利[50]。其中,代表物29a,b (MIC: 0.04 μg/mL和0.09 μg/mL)的活性僅略弱于異煙肼(MIC: 0.02 μg/mL)。進(jìn)一步研究發(fā)現(xiàn),也可向肟片段再引入一個(gè)腙,如香豆素—肟—腙雜合體30 (MIC: 0.78 μg/mL)的抗MTB H37Rv活性略優(yōu)于利福平(MIC: 0.8 μg/mL)[51]。細(xì)胞毒性試驗(yàn)研究表明,雜合體30 (IC50: >7.8 μg/mL)對正常VERO細(xì)胞的毒性較低。

香豆素—亞胺雜合體(MIC: 0.09~1.56 μg/mL)具有良好的抗MTB H37Rv活性,且代表物31 (MIC: 0.09 μg/mL)的活性略弱于異煙肼(MIC: 0.05 μg/mL)[52]。香豆素并四氫吡喃32 (MIC: 15.6~31.2 μg/mL)對所測的MTB H37Rv和7株MDR-MTB臨床分離株具有潛在的抗菌活性,提示該雜合體具有克服耐藥性的潛力[53]。

3 結(jié)論

目前,TB仍是嚴(yán)重威脅人類生命健康的高傳染性疾病。隨著DR-TB的不斷涌現(xiàn)并廣泛傳播使得TB疫情進(jìn)一步惡化。因此,研發(fā)具有全新作用機(jī)制、起效快、耐受性良好、毒性低、療程短和對DR-TB均有效的新型抗TB藥物刻不容緩。

香豆素可通各種非共價(jià)鍵作用與各種藥物靶點(diǎn)結(jié)合,具有多種生物活性,對藥敏性和DR-TB均顯示出良好的體內(nèi)外活性。因此,香豆素是尋找新型抗TB藥物的潛在結(jié)構(gòu)骨架。其中,香豆素雜合體可同時(shí)作用于MTB的不同靶點(diǎn),具有克服耐藥性和提高抗TB的活性?;诖?,香豆素雜合體引起了藥物化學(xué)家的廣泛關(guān)注。本文重點(diǎn)介紹了近五年(2018年1月—2023年1月)首次報(bào)道的香豆素雜合體在抗TB領(lǐng)域的最新研究進(jìn)展,并歸納其構(gòu)—效關(guān)系,以啟迪藥物化學(xué)家設(shè)計(jì)合成起效更快、毒副作用更低和對MDR-TB、XDR-TB乃至TDR-TB活性更高的候選物。

未來幾年,相關(guān)科研人員可從以下幾個(gè)方面對香豆素雜合體進(jìn)行研究:(1) 將香豆素與更多的抗TB藥效團(tuán)結(jié)合,合成更多的結(jié)構(gòu)新穎、作用機(jī)制獨(dú)特的香豆素雜合體;(2) 進(jìn)一步對現(xiàn)有的具有潛在抗TB活性的香豆素雜合體進(jìn)行結(jié)構(gòu)修飾,以獲得活性更高的候選物;(3) 對現(xiàn)有的具有優(yōu)秀體內(nèi)外抗TB活性的香豆素雜合體進(jìn)行深入的評價(jià),以期能夠早日發(fā)現(xiàn)新型香豆素類抗TB藥物。

參 考 文 獻(xiàn)

[1]Pallett S, Houston A. Tuberculosis[J]. Medicine, 2021, 49(12): 751-755.

[2]Koegelenberg C F N, Schoch O D, Lange C. Tuberculosis: The past, the present and the future[J]. Respiration, 2021, 100(7): 553-556.

[3]Rahlwes K C, Dias B R S, Campos P C, et al. Pathogenicity and virulence of Mycobacterium tuberculosis[J]. Virulence, 2023, 14(1): e2150449.

[4]Sundararajan S, Muniyan R. Latent tuberculosis: Interaction of virulence factors in Mycobacterium tuberculosis[J]. Mol Biol Rep, 2021, 48(8): 6181-6196.

[5]Koegelenberg C F N, Schoch O D, Lange C. Tuberculosis: The Past, the Present and the Future [J]. Respiration, 2021, 100(7): 553-556.

[6]Boom H, Schaible U E, Achkar J M. The knowns and unknowns of latent Mycobacterium tuberculosis infection[J]. J Clin Invest, 2021, 131(3): e136222.

[7]王洪建, 馮連順. 劉明亮. 抗耐多藥結(jié)核病新藥的研發(fā)進(jìn)展[J]. 國外醫(yī)藥抗生素分冊, 2017, 38(5): 193-200.

[8]王彬, 王秀珍, 徐志. 具有潛在抗耐多藥結(jié)核活性化合物的研究進(jìn)展[J]. 國外醫(yī)藥抗生素分冊, 2018, 39(4): 251-257.

[9]World Health Organization. Global Tuberculosis Report 2022[R/OL]. [2023-01-01]. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022.

[10]World Health Organization. Global Tuberculosis Report 2021[R/OL]. [2023-01-01]. https://www.who.int/publications/i/item/9789240037021.

[11]Jones R M, Adams K N, Eldesouky H E, et al. The evolving biology of Mycobacterium tuberculosis drug resistance[J]. Front Cell Infect Microbiol, 2022, 12: e1027394.

[12]Borah P, Deb P K, Venugopala K N, et al. Tuberculosis: An update on pathophysiology, molecular mechanisms of drug resistance, newer anti-tb drugs, treatment regimens and host- directed therapies[J]. Curr Top Med Chem, 2021, 21(6): 547-570.

[13]Singh S, Gaharwar S P, Meena U S, et al. Recent updates on drug resistance in Mycobacterium tuberculosis[J]. J Appl Microbiol, 2020, 128(6): 1547-1567.

[14]Perveen S, Kumari D, Singh K, et al. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance[J]. Eur J Med Chem, 2022, 229: e114066.

[15]Stephanie F, Saragih M, Tambunan U S F. Recent progress and challenges for drug-resistant tuberculosis treatment[J]. Pharmaceutics, 2021, 13(5): e592.

[16]Tetali S R, Kunapaeddi E, Mailavaram R P, et al. Current advances in the clinical development of anti-tubercular agents[J]. Tuberculosis, 2020, 125: e101989.

[17]Redd D S, Kongot M, Kumar A. Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity[J]. Tuberculosis, 2021, 127: e102050.

[18]Cheke R S, Patel H M, Patil V M, et al. Molecular insights into coumarin analogues as antimicrobial agents: Recent developments in drug discovery[J]. Antibiot, 2022, 11(5): e566.

[19]Mujeeb S, Singh K, Yogi B, et al. A review on coumarin derivatives as potent anti-tuberculosis agents[J]. Mini-Rev Med Chem, 2022, 22(7): 1064-1080.

[20]張姝, 任青成, 徐磊, 等. 香豆素衍生物及其抗結(jié)核活性[J]. 國外醫(yī)藥抗生素分冊, 2017, 38(5): S4-S10.

[21]Zhang W, Lun S C, Liu L L, et al. Identification of novel coumestan derivatives as polyketide synthase 13 inhibitors against Mycobacterium tuberculosis. Part II[J]. J Med Chem, 2019, 62(7): 3575-3589.

[22]Singh A, Bimal D, Kumar R, et al. Synthesis and antitubercular activity evaluation of 4-furano-coumarins and 3-furano-chromones[J]. Synth Commun, 2018, 48(18): 2339-2346.

[23]Farjallah A, Chiarelli L R, Forbak M, et al. A coumarin-based analogue of thiacetazone as dual covalent inhibitor and potential fluorescent label of HadA in Mycobacterium tuberculosis[J]. ACS Infect Dis, 2021, 7: 552-565.

[24]Ashok D, Gundu S, Aamate V K, et al. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents[J]. J Mol Struct, 2018, 1157: 312-321.

[25]Khanapurmath N, Kulkarni M V, Joshi S D, et al. A click chemistry approach for the synthesis of cyclic ureido tethered coumarinyl and 1-aza coumarinyl 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis H37Rv and their in silico studies[J]. Bioorg Med Chem, 2019, 27(20): e115054.

[26]Hebbar N U, Patil A R, Gudimani P, et al. Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of Mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies[J]. J Mol Struct, 2022, 1269: e133795.

[27]Yang X, Wedajo W, Yamada Y, et al. 1,3,5-Triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity[J]. Eur J Med Chem, 2018, 144: 262-276.

[28]Somagond S M, Kamble R R, Bayannavar P K, et al. Click chemistry based regioselective one-pot synthesis of coumarin-3-yl-methyl-1,2,3-triazolyl-1,2,4-triazol-3(4H)-ones as newer potent antitubercular agents[J]. Arch Pharm, 2019, 352(10): e1900013.

[29]Gao T, Zeng Z G, Wang G Q, et al. Synthesis of ethylene tethered isatin-coumarin hybrids and evaluation of their in vitro antimycobacterial activities[J]. J Heterocyclic Chem, 2018, 55(6): 1484-1488.

[30]Liu B, Hu G W, Tang X Q, et al. 1H-1,2,3-Triazole-tethered isatin-coumarin hybrids: Design, synthesis and in vitro anti-mycobacterial evaluation[J]. J Heterocyclic Chem, 2018, 55(3): 775-780.

[31]Huang G C, Xu Y, Xu Z, et al. Propylene-1H-1,2,3-triazole-4-methylene-tethered isatin-coumarin hybrids: Design, synthesis, and in vitro anti-tubercular evaluation[J]. J Heterocyclic Chem, 2018, 55(4): 830-835.

[32]Xu Y, Dang R, Guan J G, et al. Isatin-(thio)semicarbazide/oxime-1H-1,2,3-triazole-coumarin hybrids: Design, synthesis, and in vitro anti-mycobacterial evaluation[J]. J Heterocyclic Chem, 2018, 55(4): 1069-1073.

[33]Rathod A S, Godipurge S S, Biradar J S. Microwave assisted, solvent-free, “Green” synthesis of novel indole analogs as potent antitubercular and antimicrobial agents and their molecular docking studies[J]. Russ J Gen Chem, 2018, 88(6): 1238-1246.

[34]Manjunatha B, Bodke Y D, Nagaraju O, et al. Coumarin-benzothiazole based azo dyes: Synthesis, characterization, computational, photophysical and biological studies[J]. J Mol Struct, 2021, 1246: e131170.

[35]Kadam P R, Bodke Y D, Manjunatha B, et al. Synthesis, characterization, DFT and biological study of new methylene thio-linked coumarin derivatives[J]. J Mol Struct, 2023, 1278: e134918.

[36]Yusufzai S K, Osman H, Khan M S, et al. Synthesis, X-ray crystallographic study, pharmacology and docking of hydrazinyl thiazolyl coumarins as dengue virus NS2B/NS3 serine protease inhibitors[J]. Med Chem Res, 2018, 27(6): 1647-1665.

[37]Nural Y. Synthesis, antimycobacterial activity, and acid dissociation constants of polyfunctionalized 3-[2-(pyrrolidin-1-yl)thiazole-5-carbonyl]-2H-chromen-2-one derivatives[J]. Monatsh Chem, 2018, 149(10): 1905-1918.

[38]Imran M. Ethionamide and prothionamide based coumarinyl-thiazole derivatives: Synthesis, antitubercular activity, toxicity investigations and molecular docking studies[J]. Pharm Chem J, 2022, 56(9): 1215-1225.

[39]Mahmoud H K, Sayed A R, Abdel-Aziz M M, et al. Synthesis of new thiazole clubbed imidazo[2,1-b]thiazole hybrid as antimycobacterial agents[J]. Med Chem, 2022, 18(10): 1100-1108.

[40]Ahsan M J, Ali M A, Alsayari A, et al. Synthesis and evaluation of coumarin hybrids as antimycobacterial agents[J]. Acta Pol Pharm, 2019, 76(6): 1029-1036.

[41]Chauhan N B, Patel N B, Patel V M, et al. Synthesis and biological evaluation of coumarin clubbed thiazines scaffolds as antimicrobial and antioxidant[J]. Med Chem Res, 2018, 27(9): 2141-2149.

[42]Shaikh F, Shastri S L, Naik N S, et al. Synthesis, antitubercular and antimicrobial activity of ,2,4-triazolidine-3-thione functionalized coumarin and phenyl derivatives and molecular docking studies[J]. Chemistry Select, 2019, 4(1): 105-115.

[43]Kumar G, Krishna V S, Sriram D, et al. Pyrazole-coumarin and pyrazole-quinoline chalcones as potential antitubercular agents[J]. Arch Pharm, 2020, 353: e2000077.

[44]Bodke Y D, Kumaraswamy H M, Manjunatha B, et al. Synthesis, computational, hepatoprotective, antituberculosis and molecular docking studies of some coumarin derivatives[J]. J Mol Struct, 2022, 1254: e132410.

[45]Reddy D S, Sinha A, Kurjogi M, et al. Design, synthesis, molecular docking, and biological evaluation of coumarin-thymidine analogs as potent anti-TB agents[J]. Arch Pharm, 2023, 356(5): e2200633.

[46]Mangasuli S N, Hosamani K M, Davarajegowda H C, et al. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents[J]. Eur J Med Chem, 2018, 146: 747-756.

[47]Managutti P B, Mangasuli S N, Malaganvi S S. Synthesis, crystal structure, electronic structure, and anti-tubercular properties of two new coumarin derivatives bearing theophylline moiety[J]. J Mol Struct, 2023, 1277: e134888.

[48]Dige N C, Mahajan P G, Pore D M. Serendipitous formation of novel class of dichromeno pyrano pyrimidinone derivatives possessing anti-tubercular activity against M. Tuberculosis H37Rv[J]. Med Chem Res, 2018, 27(1): 224-233.

[49]Patel H M, Palkar M, Karpoormath R. Exploring MDR-TB inhibitory potential of 4-aminoquinazolines as Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmUMTB) inhibitors[J]. Chem Biodiversity, 2020, 17(8):" e2000237.

[50]Reddy D S, Kongot M, Netalkar S P, et al. Synthesis and evaluation of novel coumarin-oxime ethers as potential anti-tubercular agents: Their DNA cleavage ability and BSA interaction study[J]. Eur J Med Chem, 2018, 150: 864-875.

[51]Akki M, Reddy D S, Katagi K S, et al. Coumarin hydrazone oxime scaffolds as potent anti-tubercular agents: Synthesis, X-ray crystal and molecular docking studies[J]. Chemistry Select, 2022, 7(46):" e202203260.

[52]Kumbar S S, Hosamani K M, Gouripur G C, et al. Functionalization of 3-chloroformylcoumarin to coumarin Schiff bases using reusable catalyst: An approach to molecular docking and biological studies[J]. Roy Soc Open Sci, 2018, 5(5): e172416.

[53]Pires C T A, Scodro R B L, Cortez D A G, et al. Structure-activity relationship of natural and synthetic coumarin derivatives against Mycobacterium tuberculosis[J]. Future Med Chem, 2020, 12(17): 1533-1546.

主站蜘蛛池模板: 亚洲成人黄色在线观看| 啪啪永久免费av| 夜夜操天天摸| 国产a v无码专区亚洲av| 狠狠综合久久| 久久综合亚洲色一区二区三区| 亚洲综合经典在线一区二区| 99久久国产自偷自偷免费一区| 黄色网在线| 欧美在线国产| 亚洲无码电影| 国产精品污污在线观看网站| 国产精品太粉嫩高中在线观看| 1769国产精品视频免费观看| 免费激情网址| 成人自拍视频在线观看| 亚洲91在线精品| 91外围女在线观看| 99久久精品美女高潮喷水| 亚洲成人高清在线观看| 亚洲永久免费网站| 99热国产这里只有精品9九 | 啦啦啦网站在线观看a毛片| 亚洲一区第一页| 免费国产小视频在线观看| 亚洲天堂网2014| 国产99免费视频| 国产日韩欧美精品区性色| 国产亚洲欧美在线人成aaaa| 亚洲综合狠狠| 国产成人艳妇AA视频在线| 夜色爽爽影院18禁妓女影院| 91香蕉国产亚洲一二三区| 欧美成人精品一区二区 | 青青青草国产| 精品国产成人三级在线观看| 热久久综合这里只有精品电影| 久久伊人久久亚洲综合| 尤物亚洲最大AV无码网站| 亚洲侵犯无码网址在线观看| 久久国产亚洲偷自| 中文字幕佐山爱一区二区免费| 欧洲日本亚洲中文字幕| 久久五月视频| 成人一区在线| 久久国语对白| 欧美国产精品不卡在线观看| 亚洲青涩在线| 色综合成人| 无码视频国产精品一区二区| 日韩无码视频专区| 国产在线高清一级毛片| 国产在线小视频| 呦视频在线一区二区三区| 国产精品永久久久久| 亚洲IV视频免费在线光看| 无码精品一区二区久久久| 免费在线成人网| 在线精品视频成人网| 亚洲精品自在线拍| 久久超级碰| 国产精品免费久久久久影院无码| 中国一级特黄视频| 国产精品午夜电影| 奇米精品一区二区三区在线观看| 国产亚洲精品精品精品| 亚洲最大福利网站| 亚洲永久色| 色婷婷亚洲综合五月| 在线观看国产小视频| 欧美日韩精品一区二区视频| 在线另类稀缺国产呦| 欧美专区日韩专区| 国产精品污视频| 久久久久人妻一区精品| 天堂网亚洲综合在线| 狠狠色婷婷丁香综合久久韩国| 欧洲免费精品视频在线| 国产欧美视频综合二区| 国产亚洲精品97在线观看| 亚洲第一视频免费在线| 国产青榴视频|