999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

靛紅雜合體的抗菌活性研究進展

2023-04-29 00:00:00趙詩佳,周威,徐志
國外醫藥抗生素分冊 2023年5期

摘要:內源性物質靛紅廣泛存在于自然界中,具有生物活性譜廣、毒性低和可修飾位點多等優點,是生物活性物質中的常見結構骨架。靛紅類化合物可與包括DNA旋轉酶、拓撲異構酶Ⅳ、絲狀溫度敏感蛋白Z和青霉素結合蛋白在內的多個靶點結合,具有潛在的抗菌活性。其中,靛紅雜合體可同時作用于多個靶點,對克服耐藥性和拓展抗菌譜具有獨特的優勢。因此,靛紅雜合體在抗菌領域引起了藥物化學家的關注。本文將綜述2018—2022年間所發展的具有潛在抗菌活性的靛紅雜合體的最新研究進展,為進一步研究提供參考。

關鍵詞:靛紅;雜合體; 抗菌;構—效關系;耐藥;進展

中圖分類號:R978.1" " " " "文獻標志碼:A" " " " "文章編號:1001-8751(2023)05-0297-09

Current Scenario of Isatin Hybrid with Antibacterial Potential

Zhao Shi-jia1," "Zhou Wei2," "Xu Zhi2, 3

(1 School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology," "Wuhan" "430081;

2 School of Pharmacy, Guizhou Medical University," " Guiyang" "550025;

3 Guizhou Miaoaitang Health Management Co., Ltd.," "Guiyang" " "550025)

Abstract:The naturally occurring chemical isatin is a frequent structural skeleton in bioactive compounds and has a wide range of bioactivity, low toxicity, and several changeable sites. Isatin compounds could act on multiple targets including DNA gyrase, topoisomerase IV, filamentous temperature sensitive protein Z, and penicillin-binding protein. Therefore, isatin compounds have potential activities against a variety of pathogenic bacteria, including drug-resistant forms. Among them, isatin hybrids have the potential to act on multiple targets at the same time, which has unique advantages in overcoming drug resistance and expanding the antibacterial spectrum. As a result, medicinal chemists working in the field of antibacterials have been interested in isatin hybrids." In order to serve as a guide for future research, we will highlight the most recent advancements in the study of isatin hybrids that have been developed between 2018 and 2022 and may have antibacterial activity.

Key words:isatin;" "hybrid;" "antibacterial;" "structure-activity relationship;" drug resistance;" "progress

1 前言

細菌感染是致病菌或條件致病菌侵入血液循環系統并生長繁殖,產生毒素和其他代謝產物所引起的急性全身性感染,可導致多種疾病甚至死亡,嚴重威脅人類健康[1]。抗菌藥可通過抑制細菌細胞壁合成、增強細菌細胞膜通透性、干擾細菌蛋白質合成和抑制細菌核酸復制轉錄等機制發揮抗菌活性。自問世以來,抗菌藥拯救了上億人的生命,目前仍是治療細菌性感染最有效的手段之一[2]。不幸的是,抗菌藥是一把“雙刃劍”,不合理使用或濫用,不僅副作用明顯,而且會加速耐藥性的產生[3-4]。目前,全世界每年至少有70萬人死于耐藥菌,據世界衛生組織預計,如果沒有全新的治療方法,到2050年,這一數字可能會上升到1 000萬[5-6]。因此,研發新型抗菌藥勢在必行。

靛紅(圖1)又稱吲哚滿二酮,是自然界中常見的結構骨架,廣泛分布于動植物和人體內[7-8]。靛紅類化合物易透過血腦屏障,具有包括抗菌在內的多種生物活性[9-10]。作用機制研究結果表明,靛紅類化合物可與包括DNA旋轉酶、拓撲異構酶Ⅳ、絲狀溫度敏感蛋白Z和青霉素結合蛋白在內的多個靶點結合,對包括耐藥菌在內的多種致病菌具有潛在的活性[11-12]。不僅如此,靛紅可供修飾的位點較多,可向N-1,C-3,C-4,C-5和C-7位等位點引入多種官能團和藥效團[13-14]。因此,在全新骨架發現愈發困難的今天,靛紅母核愈發引起藥物化學家的關注。

將其他抗菌藥效團與靛紅相結合所得的靛紅雜合體可同時作用于細菌的多個靶點,具有提高藥效、克服耐藥性和拓展抗菌譜的潛力[15-16]。近年來,藥物化學家設計合成了多個系列靛紅雜合體,并評價了它們的抗菌活性[17-18]。結果顯示,靛紅雜合體不僅具有優秀的廣譜抗菌活性,而且對多種耐藥菌也顯示出潛在的活性。由此可見,靛紅雜合體在抗菌領域具有廣泛的應用前景。近年來發表的關于靛紅雜合體生物活性的綜述較多,但有關其抗菌活性的綜述鮮有發表。本文將著重介紹2018—2022年間具有抗菌活性的靛紅雜合體的最新研究進展,為進一步研究提供一定的理論支持。

2 靛紅—腙/酰腙雜合體

靛紅—酰腙雜合體1 [圖2;最小抑菌濃度(MIC): 3.1~50 μg/mL]顯示出潛在的抗金黃色葡萄球菌、蠟狀芽孢桿菌和耐甲氧西林金黃色葡萄球菌的活性,且活性不弱于對照藥諾氟沙星(MIC: 7.5~391.4 μg/mL)[19-20]。構—效關系顯示,向靛紅的C-5位引入甲氧基或向C-4、C-5或C-6位引入溴原子對活性有利,如雜合體1a~d (MIC: 3.1~23.4 μg/mL)比其他雜合體顯示出更高的活性[19-20];然而,向靛紅的N-1位引入雜環則會導致活性消失[21]。其中,代表物1a (MIC: 3.2~13.0 μg/mL)對所測4株致病菌的活性是對照藥諾氟沙星(MIC: 7.5~391.4 μg/mL)的2.3~30.1倍,而雜合體1b (MIC: 3.1~6.2 μg/mL)對金黃色葡萄球菌和耐甲氧西林金黃色葡萄球菌(MRSA)則顯示出優秀的活性。特別值得一提的是,雜合體1a [半數溶血值(HC50): 144 μmol/L; 半數抑制濃度(IC50): 217 μmol/L]具有低溶血活性和低細胞毒性[人類正常的肝細胞株(Chang liver cells)],安全性好。作用機制研究表明,這類雜合體的抗菌活性可能與破壞細菌細胞膜的完整性有關。進一步研究發現,雜合體末端的二乙基甲胺基可被其他堿性基團替代,如雜合體2a [最小殺菌濃度(MBC): 15.6 μg/mL]的抗蠟狀芽孢桿菌活性是氯霉素(MBC: 62.5 μg/mL)的4倍,而雜合體2b (MIC: 3.9 μg/mL)的抗金黃色葡萄球菌活性則是氯霉素(MBC: 62.5 μg/mL)的16倍[22-24]。

靛紅—酰腙雜合體3a~c (MIC: 0.052~0.23 μg/mL)不僅對甲氧西林敏感的金黃色葡萄球菌(MSSA)和MRSA的活性是新生霉素(MIC: 0.48 μg/mL)的2~8倍,而且對耐喹諾酮金黃色葡萄球菌(QRSA)和銅綠假單胞菌也具有良好的活性(MIC: 0.52~5.6 μg/mL),且活性優于新生霉素(MIC: 23.5 μg/mL和29.7 μg/mL)[25]。進一步研究發現,雜合體3a~c (IC50: ≥195 μmol/L)對正常293T細胞未顯示出明顯毒性,說明安全性良好。作用機制研究顯示,這類雜合體可通過抑制細菌促旋酶和脂肪酸合成酶(FabH)發揮抗菌活性,可作為雙重抑制劑進一步開發。

絕大多數含有吡啶結構片段的靛紅—酰腙雜合體4 (MIC: 0.24~7.81 μg/mL)對引起支氣管炎的致病菌(肺炎克雷伯菌、肺炎鏈球菌、肺炎支原體、流感嗜血桿菌、卡他莫拉菌和百日咳桿菌)顯示出良好的活性[26]。構—效關系顯示,靛紅C-5位的溴對高活性至關重要,而向吡啶引入取代基會導致活性大幅降低。其中,代表物4a,4b (MIC: 0.24~3.90 μg/mL)對所測的6株致病菌的活性與阿奇霉素(MIC: 0.49~7.81 μg/mL)相當或更優。細胞毒性試驗結果表明,雜合體4a,4b (IC50: 60.95 μg/mL和54.01 μg/mL)對正常WI-38細胞的毒性較低,安全性較高。

雙靛紅—雙酰腙雜合體5 (MIC: 1.99 μg/mL和7.99 μg/mL)不僅抗金黃色葡萄球菌和大腸埃希菌活性與環丙沙星(MIC: 4.71 μg/mL和2.35 μg/mL)相當,而且抗真菌(白色念珠菌)活性(MIC: 1.99 μg/mL)高于氟康唑(MIC: 3.77 μg/mL)、抗腫瘤(HepG2)活性(IC50: 9.7 μg/mL)與5-氟尿嘧啶相當(IC50: 7.9 μg/mL)[27]。因此,該雜合體可作為抗細菌、抗真菌和抗腫瘤先導物進行深入研究。靛紅—腙雜合體6a,b (MIC: 7.81 μg/mL)對化膿性鏈球菌和流感嗜血桿菌具有潛在的活性,且活性是卡那霉素(MIC: 31.25 μg/mL和62.50 μg/mL)的4倍和8倍[28]。某些靛紅—酰腙/腙金屬絡合物也顯示出一定的抗菌活性,但活性遠弱于對照藥,仍需進一步結構優化[29-31]。

3 靛紅—唑雜合體

靛紅—噻唑烷酮—噻唑雜合體7 (圖3;MIC: 0.49~7.81 μg/mL)具有良好的抗金黃色葡萄球菌、銅綠假單胞菌和大腸埃希菌活性,且活性不弱于對照藥環丙沙星(MIC: 1.95~3.90 μg/mL)[32]。構—效關系研究發現,向靛紅N-1位引入烷基或芐基或向C-5位引入氯可在一定程度上提高活性[32];噻唑結構對活性至關重要,移除噻唑結構或用1,3,4-噻二唑替換將導致活性大幅降低甚至消失[33-34]。其中,代表物7a~d (MIC: 0.49~0.98 μg/mL)對所測3株致病菌的活性是環丙沙星的2~4倍,且化合物7c (MIC: 3.9 μg/mL和7.81 μg/mL)的抗MRSA和抗耐萬古霉素腸球菌(VRE)活性與萬古霉素(MIC: 1.95 μg/mL)和環丙沙星(MIC: 3.9 μg/mL)相當。不僅如此,雜合體7a~d (MIC: 0.49 μg/mL和0.98 μg/mL)的抗白色念珠菌和煙曲霉菌活性是兩性霉素B (MIC: 0.98 μg/mL和1.95 μg/mL)的2倍。特別值得一提是,雜合體7b~d (MIC: 0.39 μg/mL)對結核分枝桿菌(MTB) RCMB 010126臨床分離株的活性是異煙肼(MIC: 0.78 μg/mL)的2倍。因此,此類靛紅—噻唑雜合體在抗細菌、抗真菌和抗結核領域具有廣闊的應用前景。

靛紅—噻唑烷酮雜合體8 (MIC: 1.95~125 μg/mL)顯示出潛在的抗金黃色葡萄球菌、表皮葡萄球菌、枯草芽孢桿菌、藤黃微球菌、大腸埃希菌、肺炎克雷伯菌和銅綠假單胞菌活性,且構—效關系顯示,向苯環引入氨基對活性有利[35]。其中,代表物8a,b (MIC: 1.95~3.90 μg/mL和3.90~7.81 μg/mL)對所測所有細菌的活性與環丙沙星(MIC: 1.95~7.81 μg/mL)相當。不僅如此,雜合體8a (MIC: 7.81 μg/mL)還具有略弱于酮康唑(MIC: 3.90 μg/mL)的抗真菌(煙曲霉和黑曲霉)活性。因此,雜合體8a可作為抗菌和抗真菌候選物進行深入評價。

靛紅—1,2,3-三氮唑雜合體9 (MIC: 3.12~25 μg/mL)具有潛在的抗表皮葡萄球菌、枯草芽孢桿菌、大腸埃希菌和銅綠假單胞菌活性,但活性弱于環丙沙星(MIC: 1.56 μg/mL)[36]。構—效關系顯示,向1,2,3-三氮唑N-1位的芐基引入吸電子基對活性有利,如雜合體9a,b (MIC: 3.12~6.25 μg/mL)抗革蘭陽性菌(表皮葡萄球菌和枯草芽孢桿菌)活性與環丙沙星處于同一水平[36];C-3位的羰基對活性影響顯著,如雜合體10 (MIC: 32~>1024 μg/mL)僅顯示出弱到中等強度的抗金黃色葡萄球菌和大腸埃希菌活性[37-38];1,2,3-三氮唑N-1位的芐基并非高活性所必需,可將其用苯環代替,如雜合體11 (抑菌圈: 18 mm和21 mm, 50 μL, 200 μg/mL)的抗金黃色葡萄球菌和大腸埃希菌活性與對照藥阿莫西林(抑菌圈: 19 mm和16 mm)相當[39]。作用機制研究發現,雜合體11可通過氫鍵和π-π共軛等多種非共價鍵作用與細菌的D-丙氨酸連接酶和二氫葉酸還原酶結合,進而發揮抗菌活性[39]。

對一系列靛紅—1,2,4-三氮唑/咪唑/苯并咪唑/苯并三氮唑/吡唑雜合體的體外抗金黃色葡萄球菌、MRSA、糞腸球菌、大腸埃希菌、銅綠假單胞菌、肺炎克雷伯菌和鮑曼不動桿菌活性評價結果表明,絕大多數雜合體對所測菌株未顯示出明顯活性,MIC≥128 μg/mL[40-42]。構—效關系顯示,唑環對活性有較大的影響且1,2,4-三氮唑最優。值得一提的是,雜合體12 (MIC: 1.0 μg/mL)的抗大腸埃希菌活性是對照藥諾氟沙星(MIC: 8.0 μg/mL)的8倍。初步機制研究表明,該雜合體可能通過插入DNA,與DNA聚合酶Ⅲ相互作用,從而阻斷DNA復制,進而發揮抗菌活性[40]。

靛紅—硝基咪唑雜合體(MIC: 0.0625~>64 μg/mL)具有潛在的抗MSSA、MRSA、大腸埃希菌、銅綠假單胞菌和VRE活性,且構—效關系顯示,向靛紅的C-5位引入硝基可極大地提升抗菌活性[43]。其中,代表化合物13b (MIC: 0.0625~0.5 μg/mL)不僅具有良好的抗MSSA、MRSA、大腸埃希菌和銅綠假單胞菌活性及中等強度的抗VRE活性(MIC: 4.0 μg/mL),而且即使在濃度為500 μmol/L時該雜合體也未顯示出明顯的溶血率,提示安全性良好。作用機制研究發現,雜合體13可能通過作用于細菌的硝基還原酶發揮抗菌活性[43]。

靛紅—苯并硝基咪唑雜合體(抑菌圈: 11~22 mm, 10 μg/mL)具有潛在的抗金黃色葡萄球菌、枯草芽孢桿菌、大腸埃希菌和普通變形桿菌活性,且構—效關系顯示,無論向靛紅母核引入吸電子基或供電子基亦或向苯并咪唑的C-2位引入取代基均對活性不利[44]。其中,代表物14 (抑菌圈: 17~22 mm, 10 μg/mL)的抗菌活性與對照藥阿莫西林(抑菌圈: 17~22 mm, 10 μg/mL)相當,可作為先導物進一步研究。靛紅-1,3,4-惡二唑雜合體15 (抑菌圈: 10~19 mm, 250 μg/mL)的抗金黃色葡萄球菌、枯草芽孢桿菌、大腸埃希菌和銅綠假單胞菌活性優于阿莫西林(抑菌圈: 0~13 mm, 250 μg/mL),值得進一步開發[45]。

4 靛紅—吡啶/喹啉/香豆素/喹諾酮雜合體

靛紅—吡啶雜合體16 (圖4;MIC: 3.1~50 μg/mL)具有潛在的抗金黃色葡萄球菌、枯草芽孢桿菌、大腸埃希菌和銅綠假單胞菌活性,且構—效關系顯示,向靛紅的C-5位引入溴對活性有利[46-47]。其中,雜合體16a,b (MIC: 3.1~6.2 μg/mL)的活性是對照藥環丙沙星(MIC: 12.5 μg/mL)的2~4倍。值得一提的是,這類雜合體與氯霉素和環丙沙星具有協同作用。靛紅—吡啶雜合體17 (MIC: 15~30 μg/mL)的抗金黃色葡萄球菌、枯草芽孢桿菌、大腸埃希菌和肺炎克雷伯菌活性略弱于鏈霉素(MIC: 12.5 μg/mL)和慶大霉素(MIC: 12.5 μg/mL),值得進一步開發[48]。

靛紅—喹啉雜合體18 (MIC: 16 μg/mL)的抗MRSA活性遠遜于萬古霉素(MIC: 1.0 μg/mL)[49],但雜合體19 (MIC: 0.39~6.25 μg/mL)則顯示出潛在的抗金黃色葡萄球菌、地衣芽孢桿菌、變異微球菌、大腸埃希菌和銅綠假單胞菌活性[50-51]。靛紅—香豆素雜合體20 (抑菌圈: 8~20 mm, 100 μg/mL)具有潛在的抗金黃色葡萄球菌、枯草芽孢桿菌、大腸埃希菌和銅綠假單胞菌活性,且構—效關系表明,靛紅C-5位的氯對活性有利[52-53]。其中,代表物20a,b (抑菌圈: 18~20 mm, 100 μg/mL)的活性略弱于環丙沙星(抑菌圈: 20~22 mm, 100 μg/mL),值得進一步結構優化。

靛紅—氟喹諾酮雜合體對包括耐藥菌在內的多種致病菌具有廣譜活性,如靛紅—環丙沙星雜合體21 (MIC: ≤0.03~8.0 μg/mL)對包括MRSA和耐甲氧西林表皮葡萄球菌(MRSE)在內的18株致病菌的活性與環丙沙星(MIC: ≤0.03~128 μg/mL)和左氧氟沙星(MIC: ≤0.03~64 μg/mL)相當或更優[54-56]。構—效關系顯示,這類雜合體的活性與氟喹諾酮的種類息息相關,如靛紅—加替沙星雜合體22 (MIC: 0.06~2.0 μg/mL)也具有良好的抗菌活性[57];靛紅與氟喹諾酮之間的連接子對活性也有較大影響,如1,2,3-三氮唑連接的靛紅—加替沙星雜合體23 (MIC: 0.06~8.0 μg/mL)和靛紅—莫西沙星雜合體24 (MIC: ≤0.03~8.0 μg/mL)對絕大多數所測菌株的活性與加替沙星(MIC: 0.06~8.0 μg/mL)和莫西沙星(MIC: ≤0.03~8.0 μg/mL)相當[58-59],而靛紅—諾氟沙星雜合體25 (抑菌圈: 17 mm和16 mm, 25 μg/mL)的抗枯草芽孢桿菌和肺炎克雷伯菌活性優于諾氟沙星(抑菌圈: 9 mm和12 mm, 25 μg/mL)[60];將靛紅—氟喹諾酮雜合體與金屬螯合并不能顯著提高抗菌活性[61]。

5 靛紅—呋喃/吡咯/噻吩/吲哚雜合體

靛紅—苯并呋喃雜合體(MIC: 0.06~64 μg/mL)對包括MRSA和MRSE在內的多種致病菌顯示出潛在的活性,構—效關系表明,苯并呋喃C-2位苯環上的取代基、靛紅和苯并呋喃之間連接子的碳鏈長度和靛紅C-3及C-5位的取代基對這類雜合體的抗菌活性均有影響[62-63]。其中,代表物26 (圖5;MIC: 0.06~1.0 μg/mL)對所測14株致病菌中的12株具有優秀的抗菌活性,其中,雜合體26 (MIC: 1.0 μg/mL和0.5 μg/mL)抗MRSA活性與萬古霉素(MIC: 1.0 μg/mL)相當,抗MRSE活性是萬古霉素(MIC: 1.0 μg/mL)和環丙沙星(MIC: 4.0 μg/mL)的2倍和8倍。體內藥代動力學研究顯示,該雜合體的半衰期為3.33 h,達峰時間為1.65 h,具有起效快等優點,值得進一步研究。

靛紅—吡嗪—吲哚雜合體27 (MIC: 12 μg/mL和10 μg/mL)具有潛在的抗MRSA和大腸埃希菌活性[64],而靛紅—雙吲哚雜合體28 (MIC: 8.0 μg/mL和4.0 μg/mL)的抗金黃色葡萄球菌和枯草芽孢桿菌活性則是慶大霉素(MIC: 16 μg/mL和8.0 μg/mL)的2倍[65]。靛紅—氮雜靛紅雜合體29 (抑菌圈:2.12~7.80 mm, 200 μg/mL)也顯示出一定的抗金黃色葡萄球菌、大腸埃希菌、銅綠假單胞菌和產氣克雷伯菌活性,但活性遠弱于對照藥環丙沙星(抑菌圈:12.46~15.00 mm, 200 μg/mL)[66]。

靛紅—噻吩雜合體30a,b (抑菌圈:12~14 mm, 10 mg/mL)具有一定的抗金黃色葡萄球菌、枯草芽孢桿菌、大腸埃希菌和普通變形桿菌活性,但活性遠遜于慶大霉素(抑菌圈:24~30 mm, 10 mg/mL)[67]。靛紅螺四氫吡咯雜合體也顯示出潛在的抗菌活性,如雜合體31a,b (MIC: 3.9 μg/mL)的抗金黃色葡萄球菌活性是四環素(MIC: 24 μg/mL)的6.1倍[68-70]。雜合體31a,b (MIC:7.8 μg/mL)也具有良好的抗真菌(白色念珠菌)活性,且活性優于兩性霉素B (MIC: 15 μg/mL)。構—效關系顯示,向苯環上引入取代基對活性不利。

6 結論

靛紅可供修飾的位點較多,具有結構多樣性、類藥性強、選擇性高和毒副作用小等特點,是目前的藥物化學領域熱點研究的結構骨架。靛紅雜合體可同時作用于兩個或多個藥物靶點,具有提高藥效、克服耐藥性和拓展抗菌譜的潛力,在抗菌領域具有廣泛的應用前景。近年來,藥物化學家設計合成了多個系列靛紅雜合體,并評價了它們的抗菌活性。總體而言,所合成的大多數靛紅雜合體對包括耐藥菌在內的多種致病菌顯示出潛在的活性,為未來的進一步結構優化和研究提供了良好的先導物和候選物。

未來幾年的研究可集中在:(1)將更多的新型抗菌藥效團如截短側耳素、萬古霉素、惡唑烷酮、氨基糖苷等與靛紅雜合,以獲得更多的先導物或候選物;(2)對現有的具有潛在抗菌活性的靛紅雜合體進行深入的結構優化如優化連接子和向靛紅母核各位點引入各種取代基,以獲得更多具有優秀體內外抗菌活性的候選物。

參 考 文 獻

[1]Deusenbery C, Wang Y, Shukla, A. Recent innovations in bacterial infection detection and treatment[J]. ACS Infect Dis, 2021, 7(4): 695-720.

[2]Yang B, Fang D, Lv Q, et al. Targeted therapeutic strategies in the battle against pathogenic bacteria[J]. Front Pharmacol, 2021, 12: e673239.

[3]Murugaiyan J, Anand K, Rao G S, et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics[J]. Antibiotics, 2022, 11(2): e200.

[4]Butler M S, Gigante V, Sati H, et al. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: Despite progress, more action is needed[J]. Antimicrob Agents Chemother, 2022, 66(3): e01991-21.

[5]Mancuso G, Midiri A, Gerace E, et al. Bacterial antibiotic resistance: The most critical pathogens[J]. Pathogens, 2021, 10(10): e1310.

[6]Mulani M S, Kamble E, Kumkar S N, et al. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review[J]. Front Microbiol, 2019, 10: e539.

[7]胡遠強, 徐志, 馮連順. 靛紅雜合體極其抗結核活性[J]. 國外醫藥抗生素分冊, 2017, 38(2): 90-S2.

[8]徐志. 靛紅雜合體在抗腫瘤領域的應用[J]. 國外醫藥抗生素分冊, 2020, 41(3): 163-169.

[9]Nath P, Mukherjee A, Mukherjee S, et al. Isatin: A scaffold with immense biodiversity[J]. Mini-Rev Med Chem, 2021, 21(9): 1096-1112.

[10]Varpe B D, Kulkarni A A, Jadhav S B, et al. Isatin hybrids and their pharmacological investigations[J]. Mini-Rev Med Chem, 2021, 21(10): 1182-1225.

[11]樊靜. 抗MRSA吲哚/靛紅雜合體的研究進展[J]. 國外醫藥抗生素分冊, 2021, 42(6): 328-332.

[12]蘭香瑩, 黃潔, 袁成, 等. 靛紅二聚體的抗菌活性研究[J]. 國外醫藥抗生素分冊, 2021, 42(6): 346-351 .

[13]Cheke R S, Patil V M, Firke S D, et al. Therapeutic outcomes of isatin and its derivatives against multiple diseases: Recent developments in drug discovery[J].Pharmaceuticals, 2022, 15(3): e272.

[14]Kumar G, Singh N P, Kumar K. Recent advancement of synthesis of isatins as a versatile pharmacophore: A review[J]. Drug Res, 2021, 71(3): 115-121.

[15]Maddela S, Mathew G E, Parambi D G T, et al. Dual acting isatin-heterocyclic hybrids: Recent highlights as promising pharmacological agents[J]. Lett Drug Des Discov, 2018, 16(2): 220-236.

[16]Kumar R, Takkar P. Repositioning of isatin hybrids as novel anti-tubercular agents overcoming pre-existing antibiotics resistance[J]. Med Chem Res, 2021, 30(4): 847-876.

[17]Liu B, Jiang D, Hu G W. The antibacterial activity of isatin hybrids[J]. Curr Top Med Chem, 2022, 22(1): 25-40.

[18]Song X F, Li Z H, Bian Y Q, et al. Indole/isatin-containing hybrids as potential antibacterial agents[J]. Arch Pharm, 2020, 353(10): e2000143.

[19]Bogdanov A V, Voloshina A D, Sapunova A S, et al. Isatin-3-acylhydrazones with enhanced lipophilicity: Synthesis, antimicrobial activity evaluation and the influence on hemostasis system[J]. Chem Biodiversity, 2022, 19(2): e202100496.

[20]Bogdanov A, Tsivileva O, Voloshina A, et al. Synthesis and diverse biological activity profile of triethyl-ammonium isatin-3-hydrazones[J]. Admet Dmpk, 2022, 10(2): 163-179.

[21]Abzalilov T A, Bogdanov A V, Mironov V F, et al. Synthesis and antimicrobial, antiplatelet, and anticoagulant activities of new isatin deivatives containing a hetero-fused imidazole fragment[J]. Russ J Org Chem, 2022, 58(3): 327-334.

[22]Bogdanov A V, Kadomtseva M E, Bukharov S V, et al. Effect of the cationic moiety on the antimicrobial activity of sterically hindered isatin 3-hydrazone derivatives[J]. Russ J Org Chem, 2020, 56(3): 555-558.

[23]Bogdanov A V, Zaripova I F, Voloshina A D, et al. Synthesis and antimicrobial activity evaluation of some novel water-soluble isatin-3-acylhydrazones[J]. Monatsh Chem, 2018, 149: 111-117.

[24]Bogdanov A V, Zaripova I F, Voloshina A D, et al. Synthesis and biological evaluation of new isatin-based QACs with high antimicrobial potency[J]. Chemistry Select, 2019, 4: 6162-6266.

[25]Yang Y S, Su M M, Xu J F, et al. Discovery of novel oxoindolin derivatives as atypical dual inhibitors for DNA Gyrase and FabH[J]. Bioorg Chem, 2019, 93: e103309.

[26]Elsayed Z M, Eldehna W M, Abdel-Aziz M M, et al. Development of novel isatin-nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing-bacteria[J]. J Enzym Inhib Med Chem, 2021, 36(1): 384-393.

[27]Youssef H M, Abdulhamed Y K, El-Reash G M A, et al. Cr(III) and Ni(II) complexes of isatin-hydrazone ligand: preparation, characterization, DFT studies, biological activity, and ion-flotation separation of Ni(II)[J]. Inorg Chem Commun, 2022, 138: e109278.

[28]Espinosa-Ruíz C, Esteban M A, Kalra P, et al. A quick microwave preparation of isatin hydrazone schiff base conjugated organosilicon compounds: Exploration of their antibacterial, antifungal, and antioxidative potentials[J]. J Organomet Chem, 2021, 953: e122051.

[29]El-Sayed N M A, Elsawy H, Adam M S S. Polar and nonpolar iron (II) complexes of isatin hydrazone derivatives as effective catalysts in oxidation reactions and their antimicrobial and anticancer activities[J]. Appl Organomet Chem, 2022, 36: e6662.

[30]Younis A M, Rakha T H, El-Gamil M M, et al. Synthesis and characterization of some complexes derived from isatin dye ligand and study of their biological potency and anticorrosive behavior on aluminum metal in acidic medium[J]. J Inorg Organomet Poly Mater, 2022, 32: 895-911.

[31]Shakdofa M M E, Selim Q M, Shakdofa A M E. Ru3+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ uni-metallic complexes of 3-(-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methylene) hydrazono)indolin-2-one, preparation, structure elucidation and antibacterial activity[J]. J Mol Struct, 2021, 1246: e131194.

[32]Abo-Ashour M F Eldehna W M, George R F, et al. Novel indole-thiazolidinone conjugates: Design, synthesis and wholecell phenotypic evaluation as a novel class of antimicrobial agents[J]. Eur J Med Chem, 2018, 160: 49-60.

[33]Hamzehloueian M, Sarrafi Y, Darroudi M, et al. Synthesis, antibacterial and anticancer activities evaluation of new 4-thiazolidinone-indolin-2-one analogs[J]. Biointer Res Appl Chem, 2022, 12(6): 8094-8104.

[34]Costa D P, Castro A C, Silva, G A, et al. Microwave-assisted synthesis and antimicrobial activity of novel spiro 1,3,4-thiadiazolines from isatin derivatives[J]. J Heterocyclic Chem, 2021, 58(3): 766-776.

[35]Lahari K, Sundararajan R. Design and synthesis of novel 1-((dimethylamino)methyl)-3-(4-(3-(substitute dphenyl)-4-oxothiazolidin-2-yl)phenylimino)-5-nitroindolin-2-ones as potent antitubercular agents[J]. Asian J Pharm Clin Res, 2019, 12(5): 200-207.

[36]Deswal S, Tittal R K, Vikas D G, et al. 5-Fluoro-1H-indole-2,3-dione-triazoles-Synthesis, biological activity, molecular docking, and DFT study[J]. J Mol Struct, 2020, 1208: e127982.

[37]Sampath S, Vadivelu M, Ravindran R, et al. Synthesis of 1,2,3-triazole tethered 3-hydroxy-2-oxindoles: Promising corrosion inhibitors for steel in acidic medium and their anti-microbial evaluation[J]. Chemistry Select, 2020, 5(7): 2130-2134.

[38]Bogdanov A V, Kulik N V, Mironov V F, et al. Effect of structure of 1-substituted isatins on direction of their reactions with some acetohydrazide ammonium derivatives[J]. Russ J Gen Chem, 2020, 90(9): 1591-1600.

[39]Abdel Mageid R E, Abdelrahman M T, El-Manawaty M A, et al. Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids[J]. J Mol Struct, 2022, 1250: e131855.

[40]Tangadanchu V K R, Sui Y F, Zhou C H. Isatin-derived azoles as new potential antimicrobial agents: Design, synthesis and biological evaluation[J]. Bioorg Med Chem Lett, 2021, 41: e128030.

[41]Hamidi M, Ramezanpour N, Karimitabar F, et al. Study on antibacterial activity of newly synthesized derivatives of pyranopyrazole, pyrazolo[1,2-b]phtalazine and bis-pyrazole[J]. Acta Microbiologica Hellenica, 2019, 64(1): 33-40.

[42]Hassan A S. Antimicrobial evaluation, in silico ADMET prediction, molecular docking, and molecular electrostatic potential of pyrazole-isatin and pyrazole-indole hybrid molecules[J]. J Iran Chem Soc, 2022, 19(3): 3577-3589.

[43]Zhou Y, Ju Y, Yang Y, et al. Discovery of hybrids of indolin-2-one and nitroimidazole as potent inhibitors against drug-resistant bacteria[J]. J Antibiot, 2018, 71(10): 887-897.

[44]Chaithanya B, Kasiviswanath I V, Chary D P. Synthesis and pharmacological screening of new isatin-3-[N2-(benzimidazol-1-acetyl)]hydrazine[J]. Bull Chem Soc Ethiopia, 2019, 33(2): 321-329.

[45]Jabbar S S. Synthesis, characterization and antimicrobial activity of new isatin derivatives[J]. Int Res J Pharm, 2019, 10(1): 98-102.

[46]Chaurasia H, Mishra R, Naaz F, et al. Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin[J]. J Mol Struct, 2021, 1243: e130763

[47]Bogdanov A V, Zaripova I F, Voloshina A D, et al. Isatin derivatives bearing a fluorine atom. Part 1: Synthesis, hemotoxicity and antimicrobial activity evaluation of fluoro-benzylated water-soluble pyridinium isatin-3-acylhydrazones[J]. J Fluoro Chem, 2019, 227: e109345.

[48]Ahmadi N, Sayyed-Alangi S Z, Varasteh-Moradi A. Synthesis and evaluation of antioxidant and antimicrobial activity of new spiropyridine derivatives using Ag/TiO2/Fe3O4@MWCNTs MNCs as efficient organometallic nanocatalyst[J]. Appl Organomet Chem, 2021, 35(12): e6372.

[49]Awolade P, Cele N, Ebenezer O, et al. Synthesis of 1H-1,2,3-triazole-linked quinoline-isatin molecular hybrids as anti-breast cancer and anti-methicillin-resistant Staphylococcus aureus (MRSA) agents[J]. Anti-Cancer Agents Med Chem, 2021, 21(10): 1228-1239.

[50]Ajani O O, Iyaye K T, Audu O Y, et al. Microwave assisted synthesis and antimicrobial potential of quinoline-based 4-hydrazide-hydrazone derivatives[J]. J Heterocyclic Chem, 2018, 55(1): 302-312.

[51]Ashoka K S, Mamatha G P, Santhosh H M. Synthesis, antimicrobial and electrochemical studies of four substituted isatin derivatives at a glassy carbon electrode[J]. Anal Bioanal Electrochem, 2020, 12(3): 415-424.

[52]Chabukswar A R, Adsule P V, Randhave P B, et al. Design, synthesis and antibacterial, antifungal activity of some coumarin acetohydrazide derivatives[J]. Res J Pharm Tech, 2021, 14(7): 3931-3937.

[53]Bhagat K, Bhagat J, Gupta M K, et al. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids[J]. ACS Omega, 2019, 4: 8720-8730.

[54]Wang R, Yin X, Zhang Y, et al. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids[J]. Eur J Med Chem, 2018, 156: 580-586.

[55]Guo H. Design, synthesis, and antibacterial evaluation of propylene-tethered 8-methoxyl ciprofloxacin-isatin hybrids[J]. J Heterocyclic Chem, 2018, 55(10): 2434-2440.

[56]Niveditha N, Begum M, Prathibha D, et al. Design, synthesis and pharmacological evaluation of some C3 heterocyclic-substituted ciprofloxacin derivatives as chimeric antitubercular agents[J]. Chem Pharm Bull, 2020, 68(12): 1170-1177

[57]Guo H. Design, synthesis, and in vitro antibacterial activities of propylene-tethered gatifloxacin-isatin hybrids[J]. J Heterocyclic Chem, 2018, 55(8): 1899-1905.

[58]Guo H, Diao Q P. Gatifloxacin-1,2,3-triazole-isatin hybrids tethered through methylene and acetyl and their antibacterial activities[J]. Rev Roum Chim, 2020, 65(3): 239-246.

[59]Gao F, Ye L, Kong F, et al. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids[J]. Bioorg Chem, 2019, 91: e103162.

[60]Gangrade D M, Waghmare N N. Synthesis of mannich bases of norfloxacin: Conventional and microwave assisted synthesis[J]. Int J Pharm Sci Res, 2018, 9(12): 5121-5130.

[61]Gandhi D H, Vaidya U V, Pathak C, et al. Mechanistic insight of cell anti?proliferative activity of fuoroquinolone drug?based Cu(II) complexes[J]. Mol Diversity, 2022, 26: 869-878.

[62]Gao F, Wang T, Gao M, et al. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity[J]. Eur J Med Chem, 2019, 165: 323-331.

[63]Wang Y L, Zhao S J, Liu Y, et al. Design, synthesis and in vitro anti-bacterial activities of benzofuran-isatin hybrids[J]. Rev Roum Chim, 2019, 64(8): 687-710.

[64]Anjum K, Kaleem S, Yi W, et al. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275[J]. Mar Drugs, 2019, 17: e89.

[65]El-Hawary S S, Sayed A M, Mohammed A, et al. Bioactive brominated oxindole alkaloids from the red sea sponge Callyspongia siphonella[J]. Mar Drugs, 2019, 17(8): e465.

[66]Kumar P P S, Krishnaswamy G, Desai N R, et al. Highly facile, regio- and stereoselective synthesis of spiropyrrolidine-5-aza-2-oxindole derivatives through multicomponent 1,3-dipolar cycloaddition reaction and their in-vitro and in-silico biological studies[J]. Chemistry Select, 2021, 6(35): 9407-9414.

[67]El-Mawgoud H K A, Atta-Allah S R, Hemdan M M. Uses of 2-(thiophene-2-carbonylcarbamothioylthio)acetic acid as a good synthon for construction of some new thiazole and annulated thiazole derivatives[J]. Chem Pharm Bull, 2018, 66(10): 992-998.

[68]Askri S, Dbeibia A, Mchiri C, et al. Antimicrobial activity and in silico molecular docking studies of pentacyclic spiro[oxindole-2,3'-pyrrolidines] tethered with succinimide scaffolds[J]. Appl Sci, 2022, 12: e360.

[69]Askri S, Edziri H, El-Gawad H H A, et al. Synthesis, biological evaluation, density functional calculation and molecular docking analysis of novel spiropyrrolizidines derivatives as potential anti-microbial and anti-coagulant agents[J]. J Mol Struct, 2022, 1250: e131688.

[70]Alaqeel S I, Arumugam N, Viswanathan V, et al. Synthesis, computational studies and antibacterial assessment of dispirooxindolopyrrolidine integrated indandione hybrids[J]. J Mol Struct, 2022, 267: e133577.

主站蜘蛛池模板: 欧美日本在线一区二区三区| 国产一级毛片高清完整视频版| 亚洲午夜福利精品无码| 亚洲精品在线影院| 全免费a级毛片免费看不卡| 国产午夜无码片在线观看网站| 亚洲成人精品在线| 亚洲国产精品国自产拍A| 欧美成人怡春院在线激情| 99久久国产综合精品女同 | 亚洲天堂视频网站| 四虎亚洲国产成人久久精品| 中文字幕伦视频| 粉嫩国产白浆在线观看| 亚洲无码熟妇人妻AV在线| 91年精品国产福利线观看久久| 99re精彩视频| 国产视频久久久久| 白浆免费视频国产精品视频| 人与鲁专区| 久久黄色一级视频| 亚欧美国产综合| 又黄又湿又爽的视频| 久久这里只有精品23| 亚洲a级毛片| 国产网友愉拍精品视频| 欧美日韩va| 国产剧情无码视频在线观看| 日韩精品欧美国产在线| 欧美黄色网站在线看| 久久综合色天堂av| 超碰aⅴ人人做人人爽欧美| 国内精自线i品一区202| 在线观看国产精品第一区免费| 日韩在线网址| 制服丝袜国产精品| 午夜日韩久久影院| 国产精品视频导航| a级毛片免费网站| 亚洲色中色| 国产粉嫩粉嫩的18在线播放91| 网久久综合| 久久国产香蕉| 伊在人亚洲香蕉精品播放| 亚洲精品爱草草视频在线| 日韩一级毛一欧美一国产| 91精品国产无线乱码在线| 亚洲日韩高清在线亚洲专区| 综合色区亚洲熟妇在线| 人人91人人澡人人妻人人爽| 午夜欧美理论2019理论| 亚洲浓毛av| 免费A∨中文乱码专区| 亚洲区欧美区| 四虎AV麻豆| 亚洲黄色激情网站| 91精品情国产情侣高潮对白蜜| 亚洲一道AV无码午夜福利| 国产成人调教在线视频| 色综合成人| 国产产在线精品亚洲aavv| 国产中文一区二区苍井空| 香蕉国产精品视频| 中文字幕在线日本| 亚洲AV无码久久天堂| 中文字幕免费视频| 久久久久人妻精品一区三寸蜜桃| 五月婷婷综合网| 亚洲成aⅴ人在线观看| 毛片免费试看| 亚洲色欲色欲www在线观看| 亚洲区第一页| 国产性生交xxxxx免费| 毛片久久网站小视频| 亚洲国产天堂在线观看| 九九视频在线免费观看| 亚洲综合精品香蕉久久网| 国产精品亚洲一区二区三区z| 国产在线精品人成导航| 亚洲欧洲日产国产无码AV| 91九色国产porny| 亚洲欧美日韩成人在线|