


摘要:細(xì)菌感染是由細(xì)菌侵入宿主體內(nèi)所引起的病理變化的過程,是院內(nèi)和社區(qū)最常見的疾病。自20世紀(jì)40年代問世以來,抗生素延長(zhǎng)了人們的壽命、拯救了無數(shù)人的生命。目前,抗生素仍是治療細(xì)菌感染的主要手段。然而,隨著各種耐藥菌的不斷涌現(xiàn)和廣泛傳播,現(xiàn)有抗生素的療效不斷下降。因此,開發(fā)新型抗生素勢(shì)在必行。查耳酮是一類含有兩個(gè)芳香環(huán)的α,β不飽和酮類化合物,具有包括抗菌在內(nèi)的多種生物活性。值得一提的是,查耳酮雜合體可同時(shí)作用于致病菌的多個(gè)靶點(diǎn),具有抗菌活性更強(qiáng)、抗菌譜更廣和克服耐藥性的潛力,引起了藥物化學(xué)家的廣泛關(guān)注。本文將綜述近五年(2018年1月—2023年1月)所研發(fā)的具有抗菌活性的查耳酮雜合體的抗菌活性研究進(jìn)展,為進(jìn)一步研究提供參考。
關(guān)鍵詞:查耳酮;雜合體;抗菌;耐藥菌;構(gòu)—效關(guān)系;作用機(jī)制
中圖分類號(hào):R978.1" " " " "文獻(xiàn)標(biāo)志碼:A" " " " "文章編號(hào):1001-8751(2023)05-0289-08
Recent Advances on Chalcone Hybrids with Antibacterial Potential
Wu Huai-zhi," "Shen Yong," "Luo Ya-ni," "Yang Meng," "Li Xin-xue," "Feng Lian-shun
(Glycogene LLC," "Wuhan" "430075)
Abstract:The most prevalent illness in hospitals and communities is bacterial infection, a process of pathological alterations brought on by bacterial invasion into the host body. Since the advent of antibiotics in the 1940s, antibiotics have greatly extended people's lives and saved countless lives. At present, antibiotics are still the main means to treat bacterial infections. However, with the continuous emergence and widespread spread of various drug-resistant bacteria, the efficacy of existing antibiotics has been declining. Therefore, it is imperative to develop new antibiotics. Chalcone is a class of compounds containing two aromatic rings and α,β-unsaturated ketone compounds have a variety of biological properties including antibacterial activity." It is important to note that chalcone hybrids have increased antibacterial activity and the potential to overcome medication resistance, which has drawn the interest of pharmaceutical chemists. They can act on many targets of pathogens simultaneously. In this paper, the research progress of the antibacterial activity of chalcone hybrids with antibacterial activity developed in the past five years will be reviewed, to provide reference for further research.
Key words:chalcone;" "hybrid;" "antibacterial;" "drug-resistant bacteria;" "structure-activity relationship; mechanisms of action
1 前言
革蘭陽性菌(金黃色葡萄球菌、表皮葡萄球菌和枯草芽孢桿菌)和革蘭陰性菌(大腸埃希菌、鮑曼不動(dòng)桿菌、肺炎克雷伯菌和銅綠假單胞菌)是院內(nèi)和社區(qū)常見的致病菌,可引起各種感染甚至死亡[1-2]。目前,抗生素是治療細(xì)菌感染的主要藥物,自問世以來拯救了無數(shù)人的生命[3-4]。抗生素已成為家庭必備藥物,應(yīng)用極為廣泛。然而,隨著抗生素長(zhǎng)時(shí)間的廣泛使用甚至濫用,致病菌通過各種作用機(jī)制對(duì)抗生素產(chǎn)生了不同程度的耐藥性,使得現(xiàn)有抗生素的療效不斷下降[5-6]。為對(duì)付不斷涌現(xiàn)的耐藥菌,開發(fā)新型抗生素勢(shì)在必行。
查耳酮是一類含有兩個(gè)芳香環(huán)的α,β不飽和酮類化合物,其獨(dú)特的α,β不飽和酮結(jié)構(gòu)片段使得查耳酮易發(fā)生Michael加成反應(yīng),易與各種藥物靶點(diǎn)結(jié)合[7-8]。不僅如此,查耳酮結(jié)構(gòu)骨架易于合成且可供修飾的位點(diǎn)較多,且其衍生物具有包括抗菌在內(nèi)的多種生物活性[9-10]。因此,在全新結(jié)構(gòu)骨架發(fā)現(xiàn)愈發(fā)困難的今天,查耳酮結(jié)構(gòu)骨架引起了藥物化學(xué)家的廣泛關(guān)注。值得一提的是,將查耳酮與其他抗菌藥效團(tuán)相結(jié)合所形成的雜合體可同時(shí)作用于細(xì)菌的多個(gè)靶點(diǎn),具有提高療效、拓展抗菌譜和克服耐藥性的潛力,可作為尋找新型抗菌藥的潛在候選物進(jìn)行研究[11-12]。
近年來,藥物化學(xué)家設(shè)計(jì)和合成多個(gè)系列查耳酮雜合體,并評(píng)價(jià)了它們的抗菌活性。結(jié)果顯示,某些查耳酮雜合體具有良好的抗菌活性。本文將著重介紹2018年1月—2023年1月所開發(fā)的具有抗菌活性的查耳酮雜合體的最新研究進(jìn)展,并歸納構(gòu)—效關(guān)系,為進(jìn)一步合理設(shè)計(jì)此類雜合體提供一定的理論支持。
2 查耳酮雜合體
2.1 查耳酮—單精氨酸雜合體
查耳酮—單精氨酸雜合體1 [圖1;最小抑菌濃度(MIC): 1.56 μg/mL]和查耳酮—雙精氨酸雜合體2 (MIC: 1.56 μg/mL)對(duì)所測(cè)的野生型金黃色葡萄球菌和2株耐甲氧西林金黃色葡萄球菌(MRSA)具有優(yōu)秀的活性,且二者的抗MRSA活性與萬古霉素(MIC: 1.56 μg/mL)相同[13]。構(gòu)—效關(guān)系研究表明,精氨酸結(jié)構(gòu)片段對(duì)高活性至關(guān)重要,將其替換為咪唑、四氫吡咯或哌嗪將導(dǎo)致活性大幅降低。細(xì)胞毒性試驗(yàn)結(jié)果顯示,雜合體2 [半數(shù)抑制濃度(IC50): >25 μg/mL]對(duì)小鼠角膜成纖維細(xì)胞未顯示出明顯毒性。耐藥性試驗(yàn)表明,雜合體2在金黃色葡萄球菌傳代14 d后MIC基本上沒有變化,而對(duì)照藥諾氟沙星的MIC則提升了10倍,提示該雜合體不易產(chǎn)生獲得性耐藥。作用機(jī)制研究發(fā)現(xiàn),雜合體2可通過破壞金黃色葡萄球菌的細(xì)胞膜快速發(fā)揮殺菌作用。體外時(shí)間—?dú)⒕芯拷Y(jié)果表明,雜合體2殺滅金黃色葡萄球菌活性呈濃度和時(shí)間依賴性,在濃度為4×MIC時(shí),該雜合體可在給藥12 h后殺滅99.9%的金黃色葡萄球菌。在感染金黃色葡萄球菌的小鼠模型中,雜合體2 (4.34 Log10 CFU)和萬古霉素(4.16 Log10 CFU)均可降低99.99%的細(xì)菌載量。總之,良好的體內(nèi)外活性、較高的安全性和不易產(chǎn)生耐藥性等優(yōu)點(diǎn)使得雜合體2可作為抗金黃色葡萄球菌感染候選物進(jìn)行深入的臨床前研究。
2.2 查耳酮—賴氨酸雜合體
查耳酮—賴氨酸雜合體3a~c (MIC: 1.0~4.0 μg/mL)具有良好的抗金黃色葡萄球菌、糞腸球菌、大腸埃希菌和銅綠假單胞菌活性,且活性是桿菌肽(MIC: 8.0~>128 μg/mL)的4~>32倍[14]。構(gòu)—效關(guān)系研究表明,向查爾酮母核引入取代基并不能提高其抗菌活性。其中,雜合體3a (MIC: 1.0 μg/mL)的抗MRSA和新德里金屬-β-內(nèi)酰胺酶(NMD)陽性菌株的活性是多西環(huán)素、環(huán)丙沙星、紅霉素、利福平和慶大霉素的2~280倍。耐藥性試驗(yàn)表明,雜合體3在金黃色葡萄球菌和大腸埃希菌傳代16 d后MIC基本上沒有變化,而對(duì)照藥諾氟沙星的MIC至少提升了16倍,提示該雜合體不易產(chǎn)生獲得性耐藥。體外時(shí)間—?dú)⒕芯拷Y(jié)果表明,雜合體3殺滅金黃色葡萄球菌活性呈濃度和時(shí)間依賴性,在濃度為6×MIC時(shí),該雜合體可在給藥4 h殺滅99.9%的金黃色葡萄球菌和大腸埃希菌。作用機(jī)制研究表明,雜合體3可通過與磷脂酰甘油(PG)相互作用破壞細(xì)菌細(xì)胞膜,導(dǎo)致細(xì)菌死亡。
2.3 查耳酮—截短側(cè)耳素雜合體
查耳酮—截短側(cè)耳素雜合體4 (MIC: 0.5~>128 μg/mL)抗野生型金黃色葡萄球菌、2株MRSA和大腸埃希菌構(gòu)—效關(guān)系研究結(jié)果顯示,與無取代的苯環(huán)衍生物相比,無論向苯環(huán)引入供電子基還是吸電子基均可大幅提高抗菌活性,但將苯環(huán)替換為呋喃、噻吩或者萘均不會(huì)改善活性[15]。其中,代表物4a,b (MIC: 0.5~1.0 μg/mL)具有優(yōu)秀的抗野生型金黃色葡萄球菌和2株MRSA活性,且活性是泰妙菌素(MIC: 8.0 μg/mL)的8~16倍。體外時(shí)間—?dú)⒕芯拷Y(jié)果表明,雜合體4a殺滅MRSA活性呈濃度和時(shí)間依賴性,在濃度為6×MIC時(shí),該雜合體的殺菌速度快于泰妙菌素。
2.4 查耳酮—環(huán)丙沙星雜合體
查耳酮—環(huán)丙沙星雜合體5 (MIC: 0.06 μg/mL, 0.18 μg/mL和0.64 μg/mL)具有良好的抗金黃色葡萄球菌、大腸埃希菌和銅綠假單胞菌活性,且抗大腸埃希菌活性與母藥環(huán)丙沙星(MIC: 0.15 μg/mL)相當(dāng),而抗金黃色葡萄球菌活性則是環(huán)丙沙星(MIC: 3.25 μg/mL)的54.1倍[16]。構(gòu)—效關(guān)系研究發(fā)現(xiàn),苯環(huán)間位上的氯對(duì)高活性至關(guān)重要。作用機(jī)制研究表明,雜合體5 (IC50: 0.231 μmol/L;環(huán)丙沙星IC50: 0.323 μmol/L)可通過抑制金黃色葡萄球菌DNA促旋酶發(fā)揮抗菌活性。
2.5 查耳酮—1,2,4-惡二唑雜合體
查耳酮—1,2,4-惡二唑雜合6 (MIC: 3.12 μg/mL)的抗枯草芽孢桿菌和海氏腸球菌的活性是環(huán)丙沙星(MIC: 6.25 μg/mL)和磺胺甲唑(MIC: 6.25 μg/mL)的2倍,而含有肟基的查耳酮—1,2,4-惡二唑雜合體7 (MIC: 3.12 μg/mL和6.25 μg/mL)的抗枯草芽孢桿菌和金黃色葡萄球菌活性不弱于環(huán)丙沙星(MIC: 6.25 μg/mL),而是磺胺甲唑(MIC: 6.25 μg/mL和12.5 μg/mL)的2倍[17]。作用機(jī)制研究表明,這類雜合體可通過抑制細(xì)菌DNA促旋酶發(fā)揮抗菌活性。進(jìn)一步研究發(fā)現(xiàn),雜合體6具有良好的藥物相似性和理化性質(zhì),值得進(jìn)一步研究。
2.6 查耳酮—1,2,3-三氮唑雜合體
查耳酮—1,2,3-三氮唑雜合體8a (MIC: 200 μg/mL和280 μg/mL)具有潛在的抗革蘭陽性菌(金黃色葡萄球菌和枯草芽孢桿菌)活性,而雜合體8b (MIC: 190~260 μg/mL)顯示出一定的抗革蘭陰性菌(大腸埃希菌、銅綠假單胞菌和惡臭假單胞菌)活性,但活性略弱于對(duì)照藥阿莫西林(MIC: 100~200 μg/mL)[18]。構(gòu)—效關(guān)系研究表明,向查耳酮母核引入第二個(gè)1,2,3-三氮唑結(jié)構(gòu)片段或?qū)⒈江h(huán)用吡唑環(huán)代替并不能提高其抗菌活性[19-21]。
2.7 含有香豆素和二氫嘧啶酮結(jié)構(gòu)單元的查耳酮雜合體
含有香豆素和二氫嘧啶酮結(jié)構(gòu)單元的查耳酮雜合體9 (圖2; MIC: 4.0 μg/mL和3.2 μg/mL)具有潛在的抗金黃色葡萄球菌和大腸埃希菌活性,但活性遠(yuǎn)遜于環(huán)丙沙星(MIC: 0.08 μg/mL和0.02 μg/mL)[22],而含有香豆素和噻吩結(jié)構(gòu)單元的雜合體10 (MIC: 0.39 μg/mL)則顯示出優(yōu)異的抗金黃色葡萄球菌活性[23]。構(gòu)—效關(guān)系研究表明,將香豆素結(jié)構(gòu)片段用2-喹諾酮替換對(duì)活性不利[23-24]。進(jìn)一步結(jié)構(gòu)修飾所得的含有香豆素和噻唑結(jié)構(gòu)片段的查耳酮雜合體11a~c (MIC: 2.0~4.0 μg/mL)具有潛在的抗MRSA活性,且活性是諾氟沙星(MIC: 8.0 μg/mL)的2~4倍[25]。體外時(shí)間—?dú)⒕芯拷Y(jié)果表明,雜合體11a可快速殺滅MRSA活性。耐藥性試驗(yàn)顯示,雜合體11a在MRSA傳代16 d后MIC僅提升了2倍,而對(duì)照藥諾氟沙星的MIC則提升了16倍,提示該雜合體不易產(chǎn)生獲得性耐藥。作用機(jī)制研究發(fā)現(xiàn),雜合體11a可能通過破壞MRSA細(xì)胞膜發(fā)揮抗菌活性,也可能通過插入MRSA DNA中進(jìn)而抑制MRSA的復(fù)制和生長(zhǎng)。細(xì)胞毒性試驗(yàn)表明,雜合體11a (IC50: >500 μg/mL)對(duì)正常LO2和RAW 264.7細(xì)胞未顯示出任何毒性,提示其安全性良好。
2.8 含有喹啉和吡唑結(jié)構(gòu)片段的查耳酮雜合體
含有喹啉和吡唑結(jié)構(gòu)片段的查耳酮雜合體12 (MIC: 6.25 μg/mL)具有潛在的抗金黃色葡萄球菌和枯草芽孢桿菌活性,但活性略弱于諾氟沙星(MIC: 3.12 μg/mL)[26]。構(gòu)—效關(guān)系研究表明,向查耳酮母核引入1,2,3-三氮唑可在一定程度上提高抗金黃色葡萄球菌活性,如雜合體13 (MIC: 1.56 μg/mL)的抗金黃色葡萄球菌活性與諾氟沙星(MIC: 1.56 μg/mL)相當(dāng)[27]。
2.9 含有吡嗪結(jié)構(gòu)片段的查耳酮雜合體
含有吡嗪結(jié)構(gòu)片段的查耳酮雜合體14a,b (MIC: 3.12~12.5 μg/mL和3.12~25 μg/mL)對(duì)3株金黃色葡萄球菌、4株表葡球菌、MRSA、2株耐萬古霉素金黃色葡萄球菌(VRSA)和2株耐萬古霉素腸球菌(VRE)具有潛在的廣譜抗菌活性[28]。體外時(shí)間—?dú)⒕芯拷Y(jié)果表明,對(duì)所試驗(yàn)的3株金黃色葡萄球菌而言,雜合體14a,b在濃度為4×MIC時(shí)可在24 h內(nèi)快速殺滅≥99.4%的金黃色葡萄球菌。體外細(xì)胞毒性試驗(yàn)顯示,雜合體14a,b (IC50: 122.9 μmol/L和143.3 μmol/L)對(duì)人腎上皮細(xì)胞HK-2的毒性極低。體內(nèi)毒性試驗(yàn)結(jié)果表明,雜合體14a,b的半數(shù)致死量(LD50)分別為>1460 mg/kg和>1813 mg/kg,提示二者的安全性良好。
2.10 查耳酮—磺酰胺雜合體
查耳酮—磺酰胺雜合體15 (MIC: 1.50 μg/mL)具有良好的抗金黃色葡萄球菌和藤黃微球菌活性,且活性是阿莫西林(MIC: 5.04 μg/mL和10.08 μg/mL)的3.3倍和6.7倍[29]。構(gòu)—效關(guān)系研究結(jié)果顯示,疊氮基團(tuán)并非這類雜合體具有抗菌活性所必需的官能團(tuán),如雜合體16a,b (MIC: 4.0~8.0 μg/mL)的抗枯草芽孢桿菌活性優(yōu)于莫西沙星(MIC: 30.25 μg/mL)[30]。含有呋喃片段的查耳酮—磺酰胺雜合體17 (MIC: 0.156 μg/mL和2.50 μg/mL)也顯示出潛在的抗金黃色葡萄球菌和大腸埃希菌活性[31],而含有噻吩結(jié)構(gòu)單元的查耳酮—磺酰胺雜合體18 (MIC: 32 μg/mL和16 μg/mL)僅具有中等強(qiáng)度的抗枯草芽孢桿菌和大腸埃希菌活性,且活性遠(yuǎn)遜于對(duì)照藥左氧氟沙星(MIC: 0.13 μg/mL和0.031 μg/mL)[32]。
2.11 含有二茂鐵和吡啶結(jié)構(gòu)單元的查耳酮雜合體
含有二茂鐵和吡啶結(jié)構(gòu)單元的查耳酮雜合體19 (MIC: 0.016~0.125 μg/mL)具有優(yōu)秀的藥敏活性(2株金黃色葡萄球菌、克氏微球菌、糞腸球菌、2株大腸埃希菌、肺炎克雷伯菌和曼徹斯特沙門菌)和抗耐藥菌(MRSA、耐青霉素金黃色葡萄球菌和耐青霉素、紅霉素和克林霉素金黃色葡萄球菌)活性[33-34]。構(gòu)—效關(guān)系研究結(jié)果表明,延長(zhǎng)烷基側(cè)鏈的碳鏈長(zhǎng)度對(duì)活性有利。其中,雜合體19a~d (MIC: 0.016~0.063 μg/mL)對(duì)所測(cè)的2株金黃色葡萄球菌MRSA、耐青霉素金黃色葡萄球菌和耐青霉素、紅霉素和克林霉素金黃色葡萄球菌顯示出極為優(yōu)秀的活性,提示這類雜合體具有克服耐藥性的潛力,在治療金黃色葡萄球菌感染領(lǐng)域可能大有作為。
2.12 含有吡啶的查耳酮雜合體
含有吡啶的查耳酮雜合體20 (在濃度為5.12 mg/mL時(shí)的抑菌圈為13~27 mm)具有較高的抗金黃色葡萄球菌活性,且構(gòu)—效關(guān)系研究結(jié)果表明,在苯環(huán)上引入取代基并不能顯著地提高活性[35]。其中,雜合體20a,b (在濃度為5.12 mg/mL時(shí)的抑菌圈為27 mm和26 mm)的抗金黃色葡萄球菌活性優(yōu)于利福平(在濃度為5.12 mg/mL時(shí)的抑菌圈為20 mm)。
2.13 含有均三嗪的查耳酮雜合體
含有均三嗪的查耳酮雜合體21 (圖3; 在濃度為1.0 mg/mL時(shí)的抑菌圈為10~85 mm)具有潛在的抗金黃色葡萄球菌、枯草芽孢桿菌、大腸埃希菌和銅綠假單胞菌活性,且構(gòu)—效關(guān)系研究結(jié)果顯示,向苯環(huán)上引入氟或含氟取代基對(duì)活性有利[36]。值得一提的是,雜合體21a~d不僅對(duì)上述致病菌的活性(在濃度為1.0 mg/mL時(shí)的抑菌圈為68~85 mm)顯著優(yōu)于環(huán)丙沙星(在濃度為1.0 mg/mL時(shí)的抑菌圈為15~25 mm),而且對(duì)白色念珠菌、熱帶念珠菌、光滑念珠菌和黑曲霉的活性(在濃度為1.0 mg/mL時(shí)的抑菌圈為67~85 mm)也優(yōu)于咪康唑(在濃度為1.0 mg/mL時(shí)的抑菌圈為15~25 mm)。因此,這類雜合體是優(yōu)秀的抗菌和抗真菌候選物進(jìn)行深入研究。
2.14 含有氮雜喹啉和吡啶的查耳酮雜合體
含有氮雜喹啉和吡啶的查耳酮雜合體22 (在濃度為1.0 mg/mL時(shí)的抑菌圈為24 mm和19 mm)抗金黃色葡萄球菌和表葡球菌活性高于環(huán)丙沙星(在濃度為1.0 mg/mL時(shí)的抑菌圈為19 mm和18 mm) [37]。構(gòu)—效關(guān)系研究結(jié)果顯示,對(duì)羥基苯基對(duì)活性有利,將其替換為雜環(huán)會(huì)導(dǎo)致活性降低;α,β不飽和酮結(jié)構(gòu)片段的雙鍵與溴發(fā)生加成反應(yīng)所得的衍生物具有更高的活性。含有喹啉和均三嗪的查耳酮雜合體23 (MIC: 7.81 μg/mL和31.25 μg/mL)的抗金黃色葡萄球菌和大腸埃希菌活性不弱于環(huán)丙沙星(MIC: 31.25 μg/mL和31.25 μg/mL),而雜合體24 (MIC: 7.81 μg/mL和15.62 μg/mL)的活性則是環(huán)丙沙星的4倍和2倍[38]。
2.15 其他查耳酮雜合體
除上述雜合體外,含有四氫異喹啉、呋喃和噻吩的查耳酮雜合體也具有一定的抗菌活性,但活性普遍較弱[39-44],如含有四氫異喹啉的查耳酮雜合體25 (MIC: 130 μg/mL)具有較弱的抗大腸埃希菌活性[39],含有呋喃的查耳酮雜合體26 (MIC: 645~1024 μg/mL)對(duì)所測(cè)4株金黃色葡萄球菌的活性較弱[40],而含有噻吩的查耳酮雜合體27 (MIC: 1024 μg/mL)對(duì)所測(cè)2株金黃色葡萄球菌和大腸埃希菌的活性也較弱[41]。盡管如此,這類研究豐富了構(gòu)—效關(guān)系,為進(jìn)一步合理設(shè)計(jì)提供了一定的參考。
3 結(jié)論
查耳酮獨(dú)特的α,β不飽和酮結(jié)構(gòu)片段使得查耳酮易于發(fā)生Michael加成反應(yīng),可與各種藥物靶點(diǎn)結(jié)合。其中,查耳酮雜合體具有抗菌譜廣、活性高和耐藥性低等優(yōu)點(diǎn),對(duì)包括金黃色葡萄球菌、表皮葡萄球菌、枯草芽孢桿菌、糞腸球菌、大腸埃希菌、希拉腸球菌、銅綠假單胞菌、克雷伯菌、克氏微球菌、曼徹斯特沙門菌、藤黃微球菌、惡臭假單胞菌、MRSA、VRSA、耐萬古霉素表皮葡萄球菌(VRSE)、耐青霉素金黃色葡萄球菌和耐青霉素、紅霉素和克林霉素金黃色葡萄球菌在內(nèi)的多種致病菌顯示出良好的活性。近年來,藥物化學(xué)家設(shè)計(jì)合成了多個(gè)系列查耳酮雜合體,并從中篩選出多個(gè)具有良好抗菌活性的候選物,為未來的進(jìn)一步結(jié)構(gòu)優(yōu)化提供了一定的理論參考。研究發(fā)現(xiàn),單精氨酸、賴氨酸、截短側(cè)耳素、香豆素、噻唑、吡嗪和二茂鐵對(duì)提高抗MRSA、VRSA、VRSE、耐青霉素金黃色葡萄球菌和耐青霉素、紅霉素和克林霉素金黃色葡萄球菌等耐藥菌活性有利。
未來幾年的研究可集中在:(1)將更多的抗菌藥效團(tuán)如四環(huán)素、大環(huán)內(nèi)酯和β-內(nèi)酰胺等與查耳酮雜合,以獲得更多的先導(dǎo)物或候選物,為后續(xù)研究提供量的保障; (2)對(duì)現(xiàn)有的具有優(yōu)秀抗菌活性的查耳酮雜合體進(jìn)行深入的結(jié)構(gòu)優(yōu)化,如根據(jù)構(gòu)—效關(guān)系引入不同的吸電子基或者供電子基、增加或減少氫鍵的個(gè)數(shù)和向兩個(gè)藥效團(tuán)之間引入不同的連接子或者改變連接位點(diǎn)等,以進(jìn)一步提升其活性,為進(jìn)行體內(nèi)活性評(píng)價(jià)提供更多優(yōu)質(zhì)候選物。
參 考 文 獻(xiàn)
[1]Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects[J]. Microb Pathogen, 2023, 175: e105963.
[2]Cheung G Y C, Bae J S, Otto M, et al. Pathogenicity and virulence of Staphylococcus aureus[J]. Virulence, 2021, 12(1): 547-569.
[3]Fernández L, Cima-Cabal M D, Duarte A C, et al. Developing diagnostic and therapeutic approaches to bacterial infections for a new era: Implications of globalization[J]. Antibiot, 2020, 9(12): e916.
[4]Deusenbery C, Wang Y Y, Shukla A. Recent innovations in bacterial infection detection and treatment[J]. ACS Infect Dis, 2021, 7(4): 695-720.
[5]Sousa S A, Feliciano J R, Pita T, et al. Bacterial nosocomial infections: Multidrug resistance as a trigger for the development of novel antimicrobials[J]. Antibiot, 2021, 10(8): e942.
[6]Culyba M J, van Tyne D. Bacterial evolution during human infection: Adapt and live or adapt and die[J]. PLoS Pathogens, 2021, 17(9): e1009872.
[7]Rudrapal M, Khan J, Dukhyil A A B, et al. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics[J]. Molecules, 2021, 26(23): e7177.
[8]Salehi B, Quispe C, Chamkhi I, et al. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence[J]. Front Pharm, 2020, 11: e592654.
[9]Marotta L, Rossi S, Ibba R, et al. The green chemistry of chalcones: Valuable sources of privileged core structures for drug discovery[J]. Front Chem, 2022, 10: e988376.
[10]Elkanzi N A A, Hrichi H, Alolayan R A, et al. Synthesis of chalcones derivatives and their biological activities: A review[J]. ACS Omega, 2022, 7(32): 27769-27786.
[11]Dan W, Dai J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry [J]. Eur J Med Chem, 2020, 187: e111980.
[12]da Silva L, Donato I A, Gon?alves C A C, et al. Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus[J]. Biotech, 2023, 13(1): e1.
[13]Chen Y Z, Li H, Lin S, et al. Design, synthesis, and evaluation of amphiphilic chalcone derivatives as potent Gram-positive antibacterial agents[J]. Eur J Med Chem, 2020, 202: e112596.
[14]Shen B Y, Wang M M, Xu S M, et al. Antibacterial efficacy evaluation and mechanism probe of small lysine chalcone peptide mimics[J]. Eur J Med Chem, 2022, 244: e114885.
[15]Xie C, Zhang S, Zhang W, et al. Synthesis, biological activities, and docking study of novel chalcone-pleuromutilin derivatives[J]. Chem Biol Drug Des, 2020, 96(2): 836-849.
[16]Mohammed H H H, Ali D M E, Badr M, et al. Synthesis and molecular docking of new N4?piperazinyl ciprofloxacin hybrids as antimicrobial DNA gyrase inhibitors[J]. Mol Diversity, 2023, 27: 1751-1765.
[17]Ibrahim T S, Almalki A J, Moustafa A H, et al. Novel 1,2,4-oxadiazole-chalcone/oxime hybrids as potential antibacterial DNA gyrase inhibitors: Design, synthesis, ADMET prediction and molecular docking study[J]. Bioorg Chem, 2021, 111: e104885.
[18]Fabitha K, Arya C G, Shyam P, et al. 1,2,3-Triazole linked chalcone-morpholine hybrids: Synthesis, in vitro antibacterial evaluation and in silico ADMET predictions[J]. Polycyclic Aromatic Compounds, 2023, 43(8): 7903-7109.
[19]Umapathi N, Jalapathi P, Raghavender M, et al. Synthesis of (E)-1-(2,4-bis((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-phenylprop-2-en-1-one derivatives and their antimicrobial activity[J]. Asian J Chem, 2021, 33(10): 2341-2346.
[20]Pereira D, Dur?es F, Szemerédi N, et al. New chalcone-triazole hybrids with promising antimicrobial activity in multidrug resistance strains[J]. Int J Mol Sci, 2022, 23(22): e14291.
[21]Nagaraja M, Kalluraya B, Asma A, et al. Synthesis of chalcone precursor via Cu(I) catalyzed 1,3-dipolar reaction of functionalized acetylene and pyrazole embedded dipole[J]. J Heterocyclic Chem, 2020, 57(10): 3642-3652.
[22]Konidala S K, Kotra V, Danduga R C S R, et al. Design, multistep synthesis and in vitro antimicrobial and antioxidant screening of coumarin clubbed chalcone hybrids through molecular hybridization approach[J]. Arab J Chem, 2021, 14(6): e103154.
[23]Alotaibi S H. Spectroscopic and biophysical studies on chalcones and Schiff bases derived from chromen-2-one and quinoline-2(1H)-one derivatives as antibacterial agents. Asian J Chem, 2020, 32(7): 1719-1727.
[24]Kumar C H P, Katagi M S, Nandeshwarappa B P. Novel synthesis of quinoline chalcone derivatives - Design, synthesis, characterization and antimicrobial activity[J]. Chem Data Collect, 2022, 42: e100955.
[25]Hu Y Y, Hu C F, Pan G X, et al. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus[J]. Eur J Med Chem, 2021, 222: e113628.
[26]Kamra N, Rani S, Kumar D, et al. Synthesis, biological evaluation and docking studies of quinoline pyrazolyl-chalcone hybrids as anticancer and antimicrobial agents[J]. Chemistry Select, 2021, 6(42): 11822-11831.
[27]Kamra N, Rani S, Thakral S, et al. Synthesis, biological activity and molecular docking studies of heterocyclic chalcones[J]. Chem Biodiversity, 2022, 19(9): e202200560.
[28]Kone?ná K, Diepoltová A, Holmanová P, et al. Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones[J]. Front Microbiol, 2022, 13: e912467.
[29]Mostafa Y A, Mustafa M. A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide-chalcones and their in vitro antimicrobial activity[J]. Monatsh Chem, 2020, 151: 417-427.
[30]Tang Y L, Li Y K, Li M X, et al. Synthesis of new piperazine substituted chalcone sulphonamides as antibacterial agents[J]. Curr Org Syn, 2020, 17(2): 136-143.
[31]Bonakdar A P S, Sadeghi A, Aghaei H R, et al. Convenient synthesis of novel chalcone and pyrazoline sulfonamide derivatives as potential antibacterial agents[J]. Russ J Bioorg Chem, 2020, 46(3): 371-381.
[32]黎勇坤," 唐燕玲, 李敏欣, 等. 含哌嗪片段的噻吩查爾酮衍生物的合成及其抗菌活性[J]. 有機(jī)化學(xué), 2020, 40: 108-114.
[33]Henry E J, Bird S J, Gowland P, et al. Ferrocenyl chalcone derivatives as possible antimicrobial agents[J]. J Antibiot, 2020, 73(5): 299-308.
[34]Henry E J, Bennett C T, Collins M, et al. Novel ferrocenyl chalcone derivatives as antibacterial agents: Is there a solution to the problem?[J]. Med Chem Res, 2021, 30(6): 1284-1293.
[35]Behr J B, Benazzouz-Touami A, Machado-Rodrigues C, et al. Synthesis, biological activities of chalcones and novel 4-acetylpyridine oximes, molecular docking of the synthesized products as acetylcholinesterase ligands[J]. J Mol Struct, 2022, 1252: e132153.
[36]Shinde R S, Dake S A, Pawar R P. Design, synthesis and antimicrobial activity of some triazine chalcone derivatives[J]. Anti-Infect Agents, 2020, 18(4): 332-338.
[37]Ayoob A I, Sadeek G T, Saleh M Y. Synthesis and biologically activity of novel 2-chloro-3-formyl-1,5-naphthyridine chalcone derivatives[J]. J Chem Health Risks, 2022, 12(1): 73-79.
[38]Arun A, Selvaraj R, Suresh J, et al. Synthesis of novel organic compounds from cyanuric chloride containing 1-(4-(7-chloroquinolin-4-ylamino)phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one chalcone for biological applications[J]. Asian J Chem, 2022, 34(5): 1139-1144.
[39]Mukhtar S S, Saleh F M, Hassaneen H M, et al. Synthesis, reaction, antimicrobial, and docking study of new chalcones incorporating isoquinoline moiety[J]. Synth Commun, 2022, 52(19-20): 1909-1916.
[40]Xavier J C, Almeida-Neto F W Q, Rocha J E, et al. Spectroscopic analysis by NMR, FT-Raman, ATR-FTIR, and UV-Vis, evaluation of antimicrobial activity, and in silico studies of chalcones derived from 2-hydroxyacetophenone[J]. J Mol Struct, 2021, 1241: e130647.
[41]Leal A L A B, Silva P T, Rocha M N, et al. Potentiating activity of Norfloxacin by synthetic chalcones against NorA overproducing Staphylococcus aureus[J]. Microb Pathogen, 2021, 155: e104894.
[42]Akdeniz G Y, Akgün H, ?zakp?nar ? B, et al. Synthesis and studies of anticancer and antimicrobial activity of new phenylurenyl chalcone derivatives[J]. Lett Drug Des Dis, 2022, 19(6): 500-519.
[43]Aryamueang S, Chansaenpak K, Kamkaew A, et al. Photophysical study and biological applications of synthetic chalcone-based fluorescent dyes[J]. Molecules, 2021, 26(10): e2979.
[44]Zhai J D, Li S C, Fu L, et al. Structural modification and antibacterial property studies of natural chalcone sanjuanolide[J]. Front Chem, 2022, 10: e959250.