999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

二氫青蒿素雜合體的抗腫瘤活性研究進(jìn)展

2023-04-29 00:00:00湯敏,陳再鵬,周恒舉,趙詩佳,徐志,周威
國外醫(yī)藥抗生素分冊 2023年5期

摘要:化療藥物是治療腫瘤的重要武器,目前已上市的抗腫瘤化療藥物數(shù)以百計(jì)。然而,經(jīng)過一段時(shí)間的治療,腫瘤細(xì)胞不可避免地會(huì)產(chǎn)生耐藥性,且替代方案往往存在毒副作用明顯和特異性不高等缺點(diǎn)。因此,開發(fā)具有高活性和高特異性的新型抗腫瘤化療藥物仍是目前藥物化學(xué)家所必須面對的巨大挑戰(zhàn)。二氫青蒿素類化合物可通過阻滯腫瘤細(xì)胞周期、抑制腫瘤血管生成、誘導(dǎo)DNA損傷和鐵死亡等作用機(jī)制發(fā)揮抗腫瘤活性,對包括耐多藥腫瘤在內(nèi)的多種腫瘤具有良好的體內(nèi)外活性。其中,二氫青蒿素雜合體具有提高抗腫瘤活性、克服耐藥性、降低毒副作用和改善藥動(dòng)學(xué)性質(zhì)的潛力,已成為尋找新型抗腫瘤藥物的重要來源。本文將著重介紹2018—2022年所發(fā)展的具有體內(nèi)外抗腫瘤活性的二氫青蒿素雜合體的最新研究進(jìn)展。

關(guān)鍵詞:二氫青蒿素;雜合體;抗腫瘤;構(gòu)—效關(guān)系;作用機(jī)制

中圖分類號(hào):R979.1" " " " 文獻(xiàn)標(biāo)志碼:A" " " " "文章編號(hào):1001-8751(2023)05-0354-08

Recent Updates on Anticancer Activity of Dihydroartemisinin Hybrids

Tang Min1," "Chen Zai-peng1," "Zhou Heng-ju1," "Zhao Shi-jia2 ," "Xu Zhi1,3," "Zhou Wei 1

(1 School of Pharmacy, Guizhou Medical University, Guizhou 550025;

2 College of Chemistry and Chemical Engineering of Neijiang Normal University, Neijiang 641100;

3 Guizhou Miaoaitang Health Management Co., Ltd., Guiyang 550025)

Abstract:Chemotherapeutics are effective weapons for cancer treatment, and hundreds of drugs have been approved for clinical applications. However, cancer cells inevitably develop drug resistance after a period of treatment, and alternative strategies often suffer from serious side effects and low specificity. Therefore, the development of new anticancer chemotherapeutics with high activity and other desirable therapeutic indicators remains a critically important endeavor. Dihydroartemisinin derivatives could exert diverse anticancer mechanisms, inclusive of cell cycle inhibition, inhibition of tumor angiogenesis, induction of DNA damage, and ferroptosis. Accordingly, derivatives of dihydroartemisinin, including multidrug-resistant malignancies, show promising in vitro and in vivo action against a variety of cancers as a result. Among them, dihydroartemisinin hybrids have the potential to enhance anticancer activity, overcome drug resistance, reduce side effects, and improve pharmacokinetic properties, and have already become an important source for the discovery of new anticancer drugs. This review focuses on the in vitro and in vivo anticancer efficiency of dihydroartemisinin hybrids, along with the structure-activity relationships as well as mechanisms of action, covering articles published in recent five years.

Key words:dihydroartemisinin;" "hybrid molecules;" "anticancer;" "structure-activity relationship;" "mechanisms of action

1 前言

癌癥細(xì)胞具有細(xì)胞分化和增殖異常、生長失控、浸潤性和轉(zhuǎn)移性等生物學(xué)特征,可侵入周遭正常組織甚至經(jīng)由體內(nèi)循環(huán)系統(tǒng)或淋巴系統(tǒng)轉(zhuǎn)移到身體其他部分[1]。在世界范圍內(nèi),癌癥已成為僅次于心血管疾病的第二大人類殺手[2]。據(jù)統(tǒng)計(jì),2020年全球新增1 930萬癌癥病例,約1 000萬患者因此喪命[3]。其中,乳腺癌(11.7%)、肺癌(11.4%)、結(jié)直腸癌(10.0%)、前列腺癌(7.3%)和胃癌(5.6%)是最常見的癌癥,而肺癌(18%)、結(jié)腸癌(9.4%)、肝癌(8.3%)、胃癌(7.7%)和乳腺癌(6.9%)是最致命的癌癥[3-4]。由于環(huán)境污染、生活方式的改變等因素使得癌癥發(fā)病人數(shù)和死亡人數(shù)持續(xù)攀升,預(yù)計(jì)2040年將有超過2 950萬新增癌癥病例和1 630萬癌癥相關(guān)死亡病例[5]。

癌癥并非不治之癥,大多數(shù)癌癥患者經(jīng)過適當(dāng)?shù)闹委熆裳娱L壽命和緩解痛苦,且三分之一的癌癥可以通過早期篩查得以根治[6]。目前,科學(xué)家已制定出多種癌癥治療策略,但化療仍占主導(dǎo)地位。經(jīng)過一段時(shí)間的藥物治療,腫瘤細(xì)胞不可避免地會(huì)對所使用的藥物產(chǎn)生耐藥性,且替代方案往往存在毒副作用明顯和特異性低等諸多缺陷[7-8]。因此,開發(fā)具有高活性和高特異性的新型抗腫瘤藥物仍是目前藥物化學(xué)家所必須面對的巨大挑戰(zhàn)。

二氫青蒿素[圖1;化學(xué)名稱: (3R,5aS,6R,8aS,9R, 12S,12aR)-八氫-3,6,9-三甲基-3,12-橋氧-12H-吡喃并[4,3-j]-1,2-苯并二氧七環(huán)-10(3H)-醇]具有獨(dú)特的過氧橋結(jié)構(gòu),是高效低毒的抗瘧藥,其抗瘧藥效是青蒿素的10倍[9-10]。除經(jīng)典的抗瘧疾活性外,二氫青蒿素及其衍生物也具有包括抗腫瘤在內(nèi)的多種生物活性[11-12]。作用機(jī)制研究結(jié)果表明,二氫青蒿素類化合物母核中的過氧橋結(jié)構(gòu)可在腫瘤細(xì)胞血紅素二價(jià)鐵離子的作用下發(fā)生開環(huán)反應(yīng)生成高活性自由基,進(jìn)而通過阻滯腫瘤細(xì)胞周期、抑制腫瘤血管生成、誘導(dǎo)DNA損傷和鐵死亡等作用機(jī)制發(fā)揮抗腫瘤活性[13-16]。因此,二氫青蒿素類化合物對包括耐多藥腫瘤在內(nèi)的多種腫瘤具有良好的體內(nèi)外活性。

由二氫青蒿素的化學(xué)結(jié)構(gòu)可以看出,其C-10位連有一個(gè)半縮醛。該半縮醛化學(xué)性質(zhì)活潑,易于修飾,故對二氫青蒿素的修飾往往集中于C-10位。其中,在C-10位的半縮醛直接引入其他抗腫瘤藥效團(tuán)或通過適當(dāng)?shù)倪B接子將其他抗腫瘤藥效團(tuán)引入到C-10位是獲得二氫青蒿素雜合體(圖1)最有效的手段。二氫青蒿素雜合體可同時(shí)與腫瘤細(xì)胞的多個(gè)作用靶點(diǎn)結(jié)合,具有提高抗腫瘤活性、克服耐藥性、降低毒副作用和改善藥動(dòng)學(xué)性質(zhì)的潛力[17-20]。因此,二氫青蒿素雜合體已成為尋找新型抗腫瘤藥物的重要來源。本文將著重介紹2018年1月—2022年7月發(fā)展的具有體內(nèi)外抗腫瘤活性的二氫青蒿素雜合體的最新研究進(jìn)展。

2 二氫青蒿素雜合體的抗腫瘤活性

2.1 二氫青蒿素—甾體雜合體

二氫青蒿素—膽汁酸雜合體1 [圖2;半數(shù)抑制濃度(C50): 40~960 nmoL/L]對所測的15株腫瘤細(xì)胞系(K562, NIC-H446, OV-90, HCT-116, HepG2, RCC-4, RCC4-VHL, U2OS, U87MG, Kasumi-1, A549, Jurkat, 786-O, HeLa和MCF-7)具有優(yōu)秀的廣譜活性,且活性與紫杉醇(IC50: 10~5 190 nmoL/L)相當(dāng)或更優(yōu)[21]。在A549肺癌細(xì)胞異種移植小鼠模型中,雜合體1 (10 mg/kg, 腹腔注射)可抑制50.2%的腫瘤生長,而在Lewis肺癌細(xì)胞移植小鼠模型中,雜合體1 (12 mg/kg, 腹腔注射)可抑制44.9%的腫瘤生長。藥代動(dòng)力學(xué)研究結(jié)果顯示,雜合體1的最大血藥濃度(Cmax)為1 110 ng/mL,血漿清除率(CL)為0.492 L/h/kg,口服生物利用度為20.6%。優(yōu)良的體內(nèi)外活性和可接受的藥代動(dòng)力學(xué)性質(zhì)使得雜合體1可作為潛在的抗肺癌候選物進(jìn)行深入的臨床前研究。

二氫青蒿素—膽汁酸雜合體2 (IC50: 1.75和2.16 μmoL/L)是雜合體1的位置異構(gòu)體,其抗HepG2和Huh-7肝癌細(xì)胞系活性是母藥二氫青蒿素(IC50: 21.31和39.96 μmoL/L)的12.3倍和18.5倍,且對正常NHDF細(xì)胞的毒性低于二氫青蒿素[22]。作用機(jī)制研究結(jié)果表明,雜合體2可通過提高腫瘤細(xì)胞內(nèi)活性氧(ROS)的生成和線粒體膜電位去極化阻滯G0/G1細(xì)胞周期和誘導(dǎo)細(xì)胞凋亡。因此,雜合體2可用于開發(fā)新型抗肝癌藥物。

青蒿琥酯—雌激素雜合體3 (IC50: 3.23 μmoL/L和2.08 μmoL/L)的抗PC-3和MCF-7腫瘤細(xì)胞系活性是二氫青蒿素(IC50: 263 μmoL/L和49.3 μmoL/L)、青蒿琥酯(IC50: 195 μmoL/L和32.0 μmoL/L)和阿非昔芬(IC50: 75.1 μmoL/L和19.3 μmoL/L)的9.2~81.4倍[23]。二氫青蒿素—睪酮雜合體4 (IC50: 26.60 μmoL/L和28.16 μmoL/L)具有潛在的抗MDA-MB-231和SK-BR-3乳腺癌細(xì)胞活性,且對正常LO2細(xì)胞的毒性(IC50: 210.3 μmoL/L)較低[24]。作用機(jī)制研究結(jié)果表明,雜合體4可通過抑制組織蛋白酶K的表達(dá)抑制乳腺癌細(xì)胞的增殖和遷移。在MDA-MB-231移植小鼠模型中,雜合體4的體內(nèi)活性較低,這主要是由于雜合體4的溶解度差。因此,改善這類雜合體的溶解度將是今后研究的重點(diǎn)。

2.2 二氫青蒿素—氮芥雜合體

二氫青蒿素—苯丁酸氮芥酯雜合體5 (圖3; IC50: 3.06 μmoL/L和15.17 μmoL/L)具有潛在的抗K562和耐阿霉素K562/ADR白血病細(xì)胞系活性,但活性弱于阿霉素(IC50: 0.67 μmoL/L和9.16 μmoL/L)[25]。作用機(jī)制研究結(jié)果表明,該雜合體可阻滯K562和K562/ADR的G1期,并誘導(dǎo)細(xì)胞凋亡。

青蒿素—苯丁酸氮芥酯雜合體6a~c (IC50: 70~690 nmoL/L)顯示出良好的抗A2780, OVCAR-3, SKOV-3, Hep3B和7721腫瘤細(xì)胞系活性,且構(gòu)—效關(guān)系研究顯示,醚連接子優(yōu)于酯連接子,如酯基連接的雜合體7 (IC50: 0.83~1.04 μmoL/L)活性顯著降低[26]。作用機(jī)制研究結(jié)果表明,這類雜合體可通過阻滯腫瘤細(xì)胞S期、誘導(dǎo)細(xì)胞凋亡和抑制遷移發(fā)揮抗腫瘤活性。特別值得一提的是,在A2480, 7404和huh7移植小鼠模型中,雜合體7 (30 mg/kg, 腹腔注射)顯示出良好的體內(nèi)活性,可分別抑制74.19%, 74.74%和77.96%的腫瘤生長,極具進(jìn)一步開發(fā)價(jià)值。

2.3 二氫青蒿素—喹啉/喹唑啉雜合體

二氫青蒿素—喹啉雜合體L-A03 (圖4;8, IC50: 15 μmoL/L)具有潛在的抗MCF-7腫瘤細(xì)胞活性,且作用機(jī)制研究結(jié)果表明,該雜合體可通過誘導(dǎo)自噬促使腫瘤細(xì)胞凋亡[27]。二氫青蒿素—喹啉雜合體9可在濃度為10 μmoL/L時(shí)抑制33.5%~82.5%的CCRF-CEM, RPMI-8226, K562, HL-60和MOLT4白血病細(xì)胞系[28]。其中,該雜合體抑CCRF-CEM, K562和HL-60白血病細(xì)胞系的IC50lt;10 μmoL/L。因此,雜合體9在抗白血病領(lǐng)域值得進(jìn)一步研究。

二氫青蒿素—喹唑啉雜合體10 (IC50: 110 nmoL/L)的抗HCT-116腫瘤細(xì)胞活性與紫杉醇(IC50: 110 nmoL/L)相當(dāng),而是順鉑(IC50: 10.98 μmoL/L)和吉非替尼(IC50: 19.82 μmoL/L)的99.8倍和180倍[29]。在HCT-116移植小鼠模型中,雜合體10 (5 mg/kg, 腹腔注射)可顯著的抑制腫瘤的生長(約80%),且體內(nèi)活性明顯優(yōu)于二氫青蒿素(10 mg/kg, 腹腔注射,抑制率約為50%)和吉非替尼(10 mg/kg,腹腔注射,抑制率約為50%)。不僅如此,該雜合體對小鼠體重?zé)o明顯影響。二氫青蒿素—喹唑啉酮雜合體11a,b (IC50: 0.77~2.24 μmoL/L)的抗SKLu-1和MCF-7腫瘤細(xì)胞系的活性高于對照藥玫瑰樹堿(IC50: 3.1 μmoL/L和3.5 μmoL/L)和二氫青蒿素(IC50: 64.9 μmoL/L和84.3 μmoL/L)[30]。總之,二氫青蒿素—喹唑啉/喹唑啉酮雜合體具有良好的抗腫瘤活性,是尋找新型抗腫瘤藥物的不錯(cuò)選擇。

2.4 二氫青蒿素—苯并呋喃/靛紅/吲哚雜合體

二氫青蒿素—苯并呋喃雜合體12 (圖5; IC50: 1.8 nmoL/L和6.8 nmoL/L)具有極高的抗CCRF-CEM和耐多藥CEM/ADR5000白血病細(xì)胞系活性,且活性優(yōu)于阿霉素(IC50: 3.3 nmoL/L和1 613 nmoL/L)[31]。構(gòu)—效關(guān)系研究發(fā)現(xiàn),二氫青蒿素和苯并呋喃之間的烷醚連接子及苯并呋喃結(jié)構(gòu)片段對高活性至關(guān)重要。作用機(jī)制研究結(jié)果表明,該雜合體可通過鐵離子介導(dǎo)活性氧產(chǎn)生,誘導(dǎo)DNA斷鏈,最終導(dǎo)致腫瘤細(xì)胞凋亡。總之,該雜合體具有抗藥敏型和耐多藥白血病的潛力,值得深入研究。

二氫青蒿素—靛紅雜合體13 (IC50: 7.54~73.8 μmoL/L)和14 (IC50: 20.7~99.9 μmoL/L)的抗腫瘤細(xì)胞系構(gòu)—效關(guān)系研究結(jié)果表明,向靛紅的C-5位引入氟原子對活性有利[32-35]。代表物13a~c (IC50: 7.54~15.9 μmoL/L)的抗A549, 耐阿霉素A549/DOX和耐順鉑A549/DDP肺癌細(xì)胞的活性優(yōu)于順鉑(IC50: 9.38~66.9 μmoL/L),而雜合體14a,b (IC50: 20.7~34.7 μmoL/L)的抗MCF-7, MDA-MB-231和MCF-7/DOX乳腺癌細(xì)胞活性與阿霉素(IC50: 17.2~83.4 μmoL/L)相當(dāng),提示1,2,3-三氮唑?yàn)槎淝噍锼睾偷寮t之間的連接子時(shí)對抗肺癌細(xì)胞活性有利,而烷基連接子則對抗乳腺癌細(xì)胞活性有利。

二氫青蒿素—吲哚雜合體15 (IC50: 5.25 μmoL/L和6.17 μmoL/L)不僅抗MCF-7和A549腫瘤細(xì)胞系活性優(yōu)于母藥二氫青蒿素(IC50: 34.29 μmoL/L和45.33 μmoL/L),而且該雜合體與阿霉素聯(lián)用時(shí)顯示出協(xié)同作用[36]。作用機(jī)制研究結(jié)果表明,該雜合體可通過阻滯G2期發(fā)揮抗腫瘤活性。

2.5 二氫青蒿素—肉桂酸/羥肟酸雜合體

二氫青蒿素—雙肉桂酸雜合體DHA-37 (圖6; 16, IC50: 10 μmol/L)具有潛在的抗A549, SGC-7901, HeLa, MDA-MB-231和MCF-7腫瘤細(xì)胞系活性,且作用機(jī)制研究發(fā)現(xiàn),該雜合體可誘導(dǎo)腫瘤細(xì)胞凋亡[37]。在A549移植小鼠模型中,DHA-37 (50 mg/kg,腹腔注射)可抑制56%的腫瘤生長,且對小鼠體重?zé)o影響。潛在的體內(nèi)活性加之良好的安全性使得DHA-37可作為臨床前候選物進(jìn)行深入研究。二氫青蒿素—肉桂酰胺雜合體17 (IC50: 5.07~7.88 μmoL/L)的抗MCF-7, MDA-MB-231,HepG2和A549腫瘤細(xì)胞系活性略弱于阿霉素(IC50: 0.65~3.18 μmoL/L),但遠(yuǎn)優(yōu)于青蒿素(IC50: gt;50 μmoL/L)和二氫青蒿素(IC50: 25.04~58.69 μmoL/L) [38]。構(gòu)—效關(guān)系研究結(jié)果顯示,肉桂酰胺苯環(huán)上的吸電子基對高活性至關(guān)重要。作用機(jī)制研究結(jié)果表明,該雜合體可提高腫瘤細(xì)胞內(nèi)活性氧的生成和線粒體膜電位去極化進(jìn)而阻滯G0/G1期、誘導(dǎo)細(xì)胞凋亡和抑制遷移。

二氫青蒿素—羥肟酸雜合體18 (IC50: 0.15~1.36 μmoL/L)的抗K562, HL60, NALM6, HPBALL和MOLM13白血病細(xì)胞活性略弱于對照藥伏立諾他(IC50: 0.20~0.63 μmoL/L),但優(yōu)于二氫青蒿素(IC50: 0.69~9.93 μmoL/L)[39]。因此,該雜合體可作為抗白血病候選物,值得進(jìn)一步結(jié)構(gòu)優(yōu)化。

2.6 二氫青蒿素—香豆素/唑/百里香酚雜合體

二氫青蒿素-1,2,3-三氮唑—香豆素雜合體19a,b (圖7; IC50: 2.44~11.68 μmoL/L和3.40~9.78 μmoL/L)的抗HT-29, MDA-MB-231和A549腫瘤細(xì)胞系活性優(yōu)于二氫青蒿素(IC50: 11.74~>100 μmoL/L)[40]。二氫青蒿素—喜樹堿雜合體20 (IC50: 50 nmoL/L和320 nmoL/L)具有極高的抗RPMI7951和SK-MEL 24白血病細(xì)胞活性,且活性不亞于對照藥紫杉醇(IC50: 13 nmoL/L和4 730 nmoL/L) [41]。作用機(jī)制研究結(jié)果表明,該雜合體具有良好的抑拓?fù)洚悩?gòu)酶I活性。

二氫青蒿素-1,2,3-三氮唑雜合體21 (IC50: 4.06~15.43 μmoL/L)不僅抗A431, A549, K562, PC-3和MDA-MB-231腫瘤細(xì)胞系活性與阿霉素(IC50: 1.43~11.99 μmoL/L)相當(dāng),而且對正常HEK293細(xì)胞未顯示出任何毒性(IC50: gt;100 μmoL/L)[42]。作用機(jī)制研究結(jié)果顯示,該雜合體可通過阻滯G2/M期和誘導(dǎo)細(xì)胞凋亡發(fā)揮抗腫瘤活性。二氫青蒿素-1,2,3-三氮唑—磺酰胺雜合體22 (IC50: 650 nmoL/L)具有極高的抗HT-29腫瘤細(xì)胞活性,而對正常MCF-10A細(xì)胞的毒性(IC50: 78.0 μmoL/L)較低[43-45]。二氫青蒿素—吡唑啉雜合體23 (IC50: 61~420 nmoL/L)具有極為優(yōu)秀的廣譜抗HL-60, U937, K562, NB-4, PC-3, LNCaP, MDA-MB-231, MCF-7和MCF-7/DOX腫瘤細(xì)胞活性[46],而二氫青蒿素—百里香酚雜合體24 (IC50: 6.03~97.31 μmoL/L)具有潛在的抗HepG2, LnCap, Caco-2和HeLa腫瘤細(xì)胞活性[47]。

3 結(jié)論

二氫青蒿素衍生物可通過促進(jìn)腫瘤細(xì)胞凋亡、誘導(dǎo)細(xì)胞周期阻滯和自噬、抑制腫瘤細(xì)胞侵襲和遷移、抑制腫瘤血管生成、誘導(dǎo)DNA損傷和鐵死亡發(fā)揮抗腫瘤活性。特別值得一提的是,二氫青蒿素雜合體可作用于多個(gè)靶點(diǎn),具有提高抗腫瘤活性、克服耐藥性和減少毒副作用的潛力,是尋找新型抗腫瘤藥物的不錯(cuò)選擇。近年來,藥物化學(xué)家設(shè)計(jì)、合成并評價(jià)了多個(gè)系列二氫青蒿素雜合體的抗腫瘤活性,發(fā)現(xiàn)此類雜合體或具有廣譜抗腫瘤活性或?qū)δ投嗨幠[瘤細(xì)胞具有良好活性或顯示出優(yōu)秀的體內(nèi)功效和安全性。然而,目前未見二氫青蒿素雜合體用于治療癌癥或處于臨床評價(jià)階段,這側(cè)面說明此類雜合體的活性仍有待于進(jìn)一步提高。

未來幾年的研究可集中在:(1)引入其他抗腫瘤藥效團(tuán),合成更多的結(jié)構(gòu)新穎的二氫青蒿素雜合體,為后續(xù)研究提供足夠多的先導(dǎo)物;(2)對現(xiàn)有的具有潛在抗腫瘤活性的二氫青蒿素雜合體進(jìn)行合理的結(jié)構(gòu)優(yōu)化,如引入適當(dāng)?shù)倪B接子、改變連接方式等,以獲得更多具有優(yōu)秀體內(nèi)外活性的候選物;(3)對現(xiàn)有的具有優(yōu)秀體內(nèi)外抗腫瘤活性的二氫青蒿素雜合體進(jìn)行深入的臨床前評價(jià),為進(jìn)一步的臨床研究提供候選物。

參 考 文 獻(xiàn)

[1]Hulvat M C. Cancer incidence and trends[J]. Surg Clin N Am, 2020, 100(3): 469-481.

[2]Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.

[3]The international agency for research on cancer. latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020[EB/OL]. [2022-01-02] https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/.

[4]Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview[J]. Int J Cancer, 2021, 149(4): 778-789.

[5]International agency for research on cancer. Cancer tomorrow[EB/OL].[2022-02-01] https://gco.iarc.fr/tomorrow/graphic-isotype?type=0amp;population=900amp;mode=populationamp;sex=0amp;cancer=39amp;age_group=valueamp;apc_male=0amp;apc_female=0.

[6]Al-Othman S, Haoudi A, Alhomoud S, et al. Tackling cancer control in the gulf cooperation council countries[J]. Lancet Oncol, 2015, 16(5): e246-e257.

[7]Dallavalle S, Dobri?i? V, Lazzarato L, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors[J]. Drug Resist Updates, 2020, 50: e100682.

[8]Garcia-Mayea M, Masson P, Leonart A. Insights into new mechanisms and models of cancer stem cell multidrug resistance[J]. Semin Cancer Biol, 2020, 60: 166-180.

[9]Tu Y Y. Artemisinin-a gift from traditional Chinese medicine to the world (Nobel lecture)[J]. Angew Chem Int Ed Engl, 2016, 55: 10210-10226.

[10]Liu K, Zuo H, Li G, et al. Global research on artemisinin and its derivatives: Perspectives from patents[J]. Pharm Res, 2020, 159: e105048.

[11]Ho W E, Peh H Y, Chan T K, et al. Artemisinins: pharmacological actions beyond anti-malarial[J]. Pharmacol Ther, 2014, 142(1): 126-139.

[12]李洋, 黃康平, 唐雪梅, 等. 雙氫青蒿素衍生物研究進(jìn)展[J]. 藥物化學(xué), 2020, 8(3): 66-78.

[13]Hu Y Y, Guo N, Yang T, et al. The potential mechanisms by which artemisinin and its derivatives induce ferroptosis in the treatment of cancer[J]. Oxid Med Cell Longev, 2022, 2022: e1458143.

[14]Zhou X Y, Suo F Z, Haslinger K, et al. Artemisinin-type drugs in tumor cell death: Mechanisms, combination treatment with biologics and nanoparticle[J]. Pharmaceutics, 2022, 14(2): e395.

[15]Dai Y F, Zhou W W, Meng J, et al. The pharmacological activities and mechanisms of artemisinin and its derivatives: A systematic review[J]. Med Chem Res, 2017, 26: 867-880.

[16]Zhu S, Yu Q, Huo C, et al. Ferroptosis: A novel mechanism of artemisinin and its derivatives in cancer therapy[J]. Curr Med Chem, 2021, 28(2): 329-345.

[17]王京, 鄭誠月, 劉來, 等. 青蒿素衍生物的合成及抗腫瘤活性研究進(jìn)展[J]. 國外醫(yī)藥抗生素分冊, 2018, 39(1): 68-73.

[18]徐志. 基于青蒿素的二聚體/雜合體的抗腫瘤活性[J]. 國外醫(yī)藥抗生素分冊, 2020, 41(3): 193-200.

[19]Gao F, Sun Z, Kong F, et al. Artemisinin-derived hybrids and their anticancer activity[J]. Eur J Med Chem, 2020, 188: e112044.

[20]Kiani B H, Kayani W K, Khayam A U, et al. Artemisinin and its derivatives: A promising cancer therapy[J]. Mol Biol Rep, 2020, 47(8): 6321-6336.

[21]Bian H, Dong X, Fu R, et al. Study on the structure-activity relationship of dihydroartemisinin derivatives: Discovery, synthesis, and biological evaluation of dihydroartemisinin-bile acid conjugates as potential anticancer agents[J]. Eur J Med Chem, 2021, 225: e113754.

[22]Huang T E, Deng Y N, Hsu J L, et al. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells[J]. Front Pharm, 2020, 11: e599067.

[23]Fr?hlich T, Mai C, Bogautdinov R P, et al. Synthesis of tamoxifen-artemisinin and estrogen-artemisinin hybrids highly potent against breast and prostate cancer[J]. Chem Med Chem, 2020, 15(15): 1473-1479.

[24]Gu X, Peng Y, Zhao Y, et al. A novel derivative of artemisinin inhibits cell proliferation and metastasis via down-regulation of cathepsin K in breast cancer[J]. Eur J Pharm, 2019, 858: e172382.

[25]王合珍, 程敬東, 徐應(yīng)淑, 等. 新型青蒿素-苯丁酸氮芥酯的合成及抗腫瘤活性研究[J]. 國外醫(yī)藥抗生素分冊, 2021, 42(1): 55-58.

[26]Zhou Y, Li X, Chen K, et al. Structural optimization and biological evaluation for novel artemisinin derivatives against liver and ovarian cancers[J]. Eur J Med Chem, 2021, 211: e113000.

[27]Yao G D, Ge M Y, Li D Q, et al. L-A03, a dihydroartemisinin derivative, promotes apoptotic cell death of human breast cancer MCF-7 cells by targeting c-Jun N-terminal kinase[J]. Biomed Pharmacother, 2018, 105: 320-325.

[28]Herrmann L, Yaremenko I A, Capci A, et al. Synthesis and in vitro study of artemisinin/synthetic peroxide-based hybrid compounds against SARS-CoV-2 and cancer[J]. Chem Med Chem, 2022, 17: e202200005.

[29]Wang L L, Kong L, Liu H, et al. Design and synthesis of novel artemisinin derivatives with potent activities against colorectal cancer in vitro and in vivo[J]. Eur J Med Chem, 2019, 182: e111665.

[30]Vu T K, Nguyen B X, Duy L N P, et al. Design, synthesis and in vitro cytotoxic evaluation of novel hybrids of artemisinin and quinazolinone[J]. Lett Org Chem, 2022, 19: 558-569.

[31]Gruber L, Abdelfatah S, Frhlich T, et al. Treatment of multidrug-resistant leukemia cells by novel artemisinin-, egonol-, and thymoquinone-derived hybrid compounds[J]. Molecules, 2018, 23(4): e841.

[32]Hou H, Qu B, Su C, et al. Design, synthesis and anti-lung cancer evaluation of 1,2,3-triazole tethered dihydroartemisinin-isatin hybrids[J]. Front Pharm, 2021, 12: e801580.

[33]Wang Y, Ding R, Tai Z, et al. Artemisinin-isatin hybrids with potential antiproliferative activity against breast cancer[J]. Arab J Chem, 2022, 15: e103639.

[34]Dong M, Zheng G, Gao F, et al. Three-carbon linked dihydroartemisinin-isatin hybrids: Design, Synthesis and their antiproliferative anticancer activity[J]. Front Pharm, 2022, 13: e834317.

[35]Zhang Z, Zhang D, Zhou Y, et al. The anti-lung cancer activity of propylene tethered dihydroartemisinin-isatin hybrids[J]. Arab J Chem, 2022, 15: e103721.

[36]Hu Y, Li N, Zhang J, et al. Artemisinin-indole and artemisinin-imidazole hybrids: Synthesis, cytotoxic evaluation and reversal effects on multidrug resistance in MCF-7/ADR cells[J]. Bioorg Med Chem Lett, 2019, 29(9): 1138-1142.

[37]Liu X, Wu J, Fan M, et al. Novel dihydroartemisinin derivative DHA37 induces autophagic cell death through upregulation of HMGB1 in A549 cells[J]. Cell Death Dis, 2018, 9: e1048.

[38]Hu Y, Wang Y, Li N, et al. Discovery of novel dihydroartemisinin-cinnamic hybrids inducing lung cancer cells apoptosis via inhibition of Akt/Bad signal pathway[J]. Bioorg Chem, 2021, 111: e104903.

[39]Bredow L, Schafer T M, Hogenkamp J, et al. Synthesis, antiplasmodial, and antileukemia activity of dihydroartemisinin-HDAC inhibitor hybrids as multitarget drugs[J]. Pharmaceuticals, 2022, 15: e333.

[40]Yu H, Hou Z, Yang X, et al. Design, synthesis, and mechanism of dihydroartemisinin-coumarin hybrids as potential anti-neuroinflammatory agents[J]. Molecules, 2019, 24(9): e1672.

[41]Botta L, Filippi S, Zippilli C, et al. Artemisinin derivatives with antimelanoma activity show inhibitory effect against human DNA Topoisomerase 1[J]. ACS Med Chem Lett, 2020, 11(5): 1035-1040.

[42]Kapkoti D S, Singh S, Luqman S, et al. Synthesis of novel 1,2,3-triazole based artemisinin derivatives and their antiproliferative activity[J]. New J Chem, 2018, 42(8): 5978-5995.

[43]Liu X, Zhang Y, Huang W, et al. Development of high potent and selective Bcl-2 inhibitors bearing the structural elements of natural product artemisinin[J]. Eur J Med Chem, 2018, 159: 149-165.

[44]An R, Lin B, Zhao S, et al. Discovery of novel artemisinin-sulfonamidehybrids as potential carbonicanhydraseIX inhibitors with improved antiproliferative activities[J]. Bioorg Chem, 2020, 104: e104347.

[45]Ackermann A, ?apc? A, Buchfelder M, et al. Chemical hybridization of sulfasalazine and dihydroartemisinin promotes brain tumor cell death[J]. Sci Rep, 2021, 11(1): e20766.

[46]Wei Y F, Huang M, Li A H, et al. Design, synthesis and antiproliferative activity in cancer cells of novel dihydropyrazolyl and pyraolyl aretemisinin-phenyl ester[J]. Chin J Pharm, 2018, 43(17): 3582-3588.

[47]Kavak E, Mutlu D, Ozok O, et al. Design, synthesis and pharmacological evaluation of novel artemisinin-thymol[J]. Nat Prod Res, 2022, 36(14): 3511-3519.

主站蜘蛛池模板: 久久a毛片| 人妻91无码色偷偷色噜噜噜| 99视频在线观看免费| 色综合网址| 99在线观看国产| 国产真实乱子伦精品视手机观看| 人人爽人人爽人人片| 欧美黑人欧美精品刺激| 亚洲视频免费在线看| 色精品视频| 久久99精品国产麻豆宅宅| 亚瑟天堂久久一区二区影院| 国产免费怡红院视频| 国产高潮流白浆视频| 欧美一级黄片一区2区| 亚洲欧美在线看片AI| 成人一区在线| 日本一本正道综合久久dvd | 中文无码精品A∨在线观看不卡| 91福利国产成人精品导航| 国产亚洲高清在线精品99| 在线免费观看a视频| 成人国产三级在线播放| 欧美性精品不卡在线观看| 99视频全部免费| 亚洲国产欧美目韩成人综合| 老司机久久精品视频| 国产最新无码专区在线| 99无码中文字幕视频| 99热国产这里只有精品无卡顿"| 一本大道香蕉久中文在线播放 | 成人午夜视频网站| 国产91无码福利在线| 国产人前露出系列视频| 日韩专区第一页| 国产精品香蕉| 日韩午夜福利在线观看| 亚洲成人黄色在线| 亚洲国产高清精品线久久| 亚洲国产综合精品一区| 国产欧美自拍视频| 1024你懂的国产精品| 亚洲视屏在线观看| 第一页亚洲| 91亚洲精品国产自在现线| 欧美成人免费一区在线播放| 日韩av在线直播| yy6080理论大片一级久久| 国产精品分类视频分类一区| 国产小视频a在线观看| 国产一级视频在线观看网站| 免费观看亚洲人成网站| 韩日无码在线不卡| 亚洲第一色网站| m男亚洲一区中文字幕| 激情乱人伦| 日本精品视频一区二区| 久久综合色天堂av| 精品国产成人a在线观看| 国产乱子精品一区二区在线观看| 思思99热精品在线| 国禁国产you女视频网站| 日韩中文字幕免费在线观看| 国产成人精品三级| 日韩精品免费一线在线观看| 色综合婷婷| 久久久精品无码一二三区| 亚洲国产欧美国产综合久久 | 亚洲av无码专区久久蜜芽| 一级毛片免费的| 高清视频一区| 福利在线免费视频| 免费看一级毛片波多结衣| 久久中文字幕不卡一二区| 亚洲首页在线观看| 91九色视频网| 91精品国产91欠久久久久| 免费在线a视频| 蜜芽国产尤物av尤物在线看| 亚洲午夜综合网| 欧美一区精品| 蜜芽国产尤物av尤物在线看|