


【摘要】定值、定點問題是探究運動變化過程中的不變量問題,也是解析幾何中的一類典型問題, 本文從一道題目出發,探索解析幾何中一類定值、定點問題的內在聯系.
【關鍵詞】圓錐曲線;定值;定點
題目已知動點P(x,y)與兩定點M(-a,0),N(a,0)(agt;0)連線的斜率之積等于常數λ(λ≠0).
(1)求動點P的軌跡C的方程;
(2)討論軌跡C的形狀.
解(1)由題意kPM=yx+a(x≠-a),
kPN=yx-a(x≠a),
所以kPM·kPN=y2x2-a2=λ(x≠±a),
于是y2=λ(x2-a2),
故x2a2+y2-λa2=1(x≠±a).
(2)當λ=-1時,軌跡C的形狀是以坐標原點為圓心,半徑為a的圓去掉M(-a,0),N(a,0)兩點.
當-1lt;λlt;0時,軌跡C的形狀是焦點在x軸上,以2a為長軸長的橢圓去掉M(-a,0),N(a,0)兩點.
當λlt;-1時,軌跡C的形狀是焦點在y軸上,以2a為短軸長的橢圓去掉M(-a,0),N(a,0)兩點.
當λgt;0時,軌跡C的形狀是焦點在x軸上,以2a為實軸長的雙曲線去掉M(-a,0),N(a,0)兩點.
猜想當這兩個點不是曲線(圓、橢圓或雙曲線)與x軸的兩個交點時,曲線(圓、橢圓、雙曲線)上任意一點和這兩個點連線的斜率之積能否也為定值?
事實上,P,Q是曲線上關于原點對稱的兩點時,曲線上任意一點M(不與P,Q兩點重合)與P,Q的連線斜率之積為定值.下面通過變式1證明該結論.
變式1在平面直角坐標系xOy中,過原點的直線PQ與曲線C:x2a2-y2λa2=1(λ,a為常數,且λ≠0,agt;0)相交于P,Q兩點,點M(不與P,Q兩點重合)是曲線C上一動點,求證:直線PM與QM斜率之積為定值.
證明設P(x1,y1),
則Q(-x1,-y1),M(x0,y0),
所以kPM=y0-y1x0-x1,kQM=y0+y1x0+x1,
即 kPM·kQM=y0-y1x0-x1·y0+y1x0+x1=y20-y21x20-x21.
設點M(x0,y0),P(x1,y1)是曲線x2a2-y2λa2=1上的點,則
x20a2-y20λa2=1,x21a2-y21λa2=1,
即x20-x21a2=y20-y21λa2,
所以y20-y21x20-x21=λ,kPM·kQM=λ,
故直線PM與QM斜率之積為定值.
變式2在平面直角坐標系xOy中,直線PQ與曲線x2a2-y2λa2=1(λ≠0,agt;0)相交于P,Q兩點,點M為PQ的中點,求證:直線PQ與OM斜率之積為定值.
證明設P(x1,y1),Q(x2,y2),
則Mx1+x22,y1+y22,
所以kPQ=y1-y2x1-x2,kOM=y1+y2x1+x2,
kPQ·kOM=y1-y2x1-x2·y1+y2x1+x2=y21-y22x21-x22,
因為點P(x1,y1),Q(x2,y2)是曲線x2a2-y2λa2=1上的點.
所以x21a2-y21λa2=1,x21a2-y22λa2=1,
于是x21-x22a2=y21-y22λa2,
y21-y22x21-x22=λ,kPQ·kOM=λ,
故直線PQ與OM斜率之積為定值.
變式3直線PQ與曲線x2a2-y2λa2=1(λ≠0,agt;0)相交于P,Q兩點,點M為曲線(不與P,Q兩點重合)上任意一點,且點M與P,Q的連線斜率之積為定值λ,求證:直線PQ過定點.
證明當直線PQ斜率不存在時,
設P(x1,λ(x21-a2)),
則Q(x1,-λ(x21-a2)).
設M(x0,y0),則
kMP=y0-λ(x21-a2)x0-x1,
kMQ=y0+λ(x21-a2)x0-x1,
kMP·kMQ=y20-(λx21-λa2)(x0-x1)2
=y20+λa2-λx21(x0-x1)2=λx20-λx21(x0-x1)2,
因為x0≠x1,
所以kMP·kMQ=λ(x0+x1)x0-x1=λ,
所以x0+x1x0-x1=1,x1=0,
故直線PQ過原點.
當直線PQ斜率存在時,
設直線PQ的方程為y=kx+m,
P(x1,y1),Q(x2,y2),M(x0,y0),
由λx2-y2=λa2,y=kx+m,得
(λ-k2)x2-2kmx-m2-λa2=0.
當Δgt;0時,由韋達定理知
x1+x2=2kmλ-k2,x1x2=-(m2+λa2)λ-k2,
kMP·kMQ=y1-y0x1-x0·y2-y0x2-x0
=(kx1+m-y0)(kx2+m-y0)(x1-x0)(x2-x0)
=k2x1x2+k(m-y0)(x1+x2)+(m-y0)2x1x2-x0(x1+x2)+x20
=-(k2m2+λk2a2)+2k2m(m-y0)+(λ-k2)(m-y0)2-(m2+λa2)-2kmx0+x20(λ-k2)
=λ(m-y0)2-k2(y20+λa2)(λx20-λa2)-(kx0+m)2
=λ[(m-y0)2-k2x20]y20-(kx0+m)2
=λ(m-y0+kx0)(m-y0-kx0)(y0-kx0-m)(y0+kx0+m),
因為y0≠kx0+m,
所以kMP·kMQ=-λ(m-y0-kx0)y0+kx0+m=λ,
于是y0+kx0-my0+kx0+m=1,m=0,
故直線PQ過原點.
綜上知,直線PQ過定點,且該定點為坐標原點.
變式4已知點M(x0,y0)是曲線x2a2-y2λa2=1(λ,a為常數,且λ≠0,agt;0)上一定點,直線PQ(不過點M)與曲線x2a2-y2λa2=1相交于P,Q兩點,若直線PM與QM斜率之積為定值c(c為常數,且c≠0),求證:直線PQ過定點.
證明當直線PQ斜率不存在時,
設P(x1,λ(x21-a2)),
則Q(x1,-λ(x21-a2)),
設M(x0,y0),
所以kMP=y0-λ(x21-a2)x0-x1,
kMQ=y0+λ(x21-a2)x0-x1,
kMP·kMQ=y20-(λx21-λa2)(x0-x1)2
=y20+λa2-λx21(x0-x1)2=λx20-λx21(x0-x1)2,
因為x0≠x1,
所以kMP·kMQ=λ(x0+x1)x0-x1=c,
x0+x1x0-x1=cλ,x1=c-λc+λx0.
當直線PQ斜率存在時,
設直線PQ的方程為y=kx+m,
P(x1,y1),Q(x2,y2),M(x0,y0),
由λx2-y2=λa2,y=kx+m,得
(λ-k2)x2-2kmx-m2-λa2=0,
Δgt;0時,由韋達定理知
x1+x2=2kmλ-k2,x1x2=-(m2+λa2)λ-k2,
kMP·kMQ=y1-y0x1-x0·y2-y0x2-x0
=(kx1+m-y0)(kx2+m-y0)(x1-x0)(x2-x0)
=k2x1x2+k(m-y0)(x1+x2)+(m-y0)2x1x2-x0(x1+x2)+x20
=-(k2m2+λk2a2)+2k2m(m-y0)+(λ-k2)(m-y0)2-(m2+λa2)-2kmx0+x20(λ-k2)
=λ(m-y0)2-k2(y20+λa2)(λx20-λa2)-(kx0+m)2
=λ[(m-y0)2-k2x20]y20-(kx0+m)2
=λ(m-y0+kx0)(m-y0-kx0)(y0-kx0-m)(y0+kx0+m),
因為y0≠kx0+m,
所以kMP·kMQ=-λ(m-y0-kx0)y0+kx0+m=c,
于是y0+kx0-my0+kx0+m=cλ,
m=λ-cc+λy0+k(λ-c)c+λx0,
所以PQ方程為y=kx+λ-cc+λy0+k(λ-c)c+λx0,
即y=kx-c-λc+λx0+λ-cc+λy0,
所以直線PQ恒過定點c-λc+λx0,λ-cc+λy0.
綜上知,直線PQ過定點,且定點坐標為
c-λc+λx0,λ-cc+λy0.
變式5已知點M(x0,y0)是拋物線y2=2px上一定點,直線PQ(不過點M)與曲線y2=2px相交于P,Q兩點,若直線PM與QM斜率之積為定值c(c為常數,且c≠0),求證:直線PQ過定點.
證明設直線PQ方程為x=ty+m.
設P(x1,y1),Q(x2,y2),
由x=ty+m,y2=2px,得
y2-2pty-2pm=0.
當Δgt;0時,y1+y2=2pt,y1y2=-2pm,
所以x1x2=m2,x1+x2=2pt2+2m,
kMP·kMQ=y1-y0x1-x0·y2-y0x2-x0
=y1y2-y0(y1+y2)+y20x1x2-x0(x1+x2)+x20
=2p(x0-y0t-m)(x0-m)2-2pt2x0=2p(x0-y0t-m)(x0-m)2-t2y20
=2p(x0-y0t-m)(x0-m+ty0)(x0-m-ty0).
因為x0-y0t-m≠0,
所以kMP·kMQ=2p(x0-y0t-m)(x0-m+ty0)(x0-m-ty0)
=2px0-m+ty0=c,
所以m=-2pc+x0+ty0,
所以直線PQ的方程為x=ty-2pc+x0+ty0,
即x=t(y+y0)-2pc+x0,
所以直線PQ恒過定點-2pc+x0,-y0.