999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于余熱利用的燃料電池汽車能量管理策略*

2020-04-24 02:27:46潘越明平文楊代軍張存滿
汽車技術(shù) 2020年4期

潘越 明平文 楊代軍 張存滿

(同濟(jì)大學(xué),上海 201804)

主題詞:燃料電池 鋰離子電容器 余熱利用 能量管理

1 前言

受燃料電池當(dāng)前技術(shù)發(fā)展水平的限制,純?nèi)剂想姵仄嚧嬖趧?dòng)態(tài)響應(yīng)慢、無(wú)法回收制動(dòng)能量等問(wèn)題[1-2]。因此,以燃料電池與輔助動(dòng)力源混合驅(qū)動(dòng)的燃料電池混合動(dòng)力汽車應(yīng)運(yùn)而生,因其存在多個(gè)能量源,根據(jù)車輛的功率需求對(duì)能量源進(jìn)行合理分配是提升整車效率、降低燃料成本的關(guān)鍵[3]。

目前,燃料電池汽車的輔助能量源常采用鋰離子電池或超級(jí)電容器。相比于這2種輔助能量源,鋰離子電容器在性能上具有一定優(yōu)勢(shì),其正極采用鋰離子電池電極材料,通過(guò)鋰離子嵌入和脫出化合物過(guò)程發(fā)生的電化學(xué)反應(yīng)來(lái)儲(chǔ)存能量,負(fù)極采用碳材料,利用雙電層原理儲(chǔ)存能量[4-5]。鋰離子電容器結(jié)合了鋰離子電池和傳統(tǒng)超級(jí)電容器的優(yōu)點(diǎn),能夠彌補(bǔ)鋰離子電池作為能量源時(shí)功率密度低的缺點(diǎn),同時(shí)可避免傳統(tǒng)超級(jí)電容器作為能量源時(shí)能量密度不足帶來(lái)的劣勢(shì)。

燃料電池電堆的壽命衰減與其瞬時(shí)加載/減載功率有關(guān),劇烈的動(dòng)態(tài)加載工況會(huì)導(dǎo)致其性能衰退[6-7]。對(duì)于鋰離子電容器來(lái)說(shuō),維持荷電狀態(tài)(State of Charge,SOC)在合適的范圍內(nèi),可以防止其過(guò)充、過(guò)放。上述限制條件均會(huì)在一定程度上影響能量源的耐久性,因而有必要在能量管理策略設(shè)計(jì)中考慮這2個(gè)因素。此外,燃料電池雖然效率較高,但其工作溫度與環(huán)境溫度相差較小且尾氣排放的熱量少,散熱環(huán)境較差。冬季乘員艙內(nèi)單獨(dú)采用正溫度系數(shù)(Positive Temperature Coefficient,PTC)空氣加熱器取暖時(shí),會(huì)使耗電量大幅增加,車輛的續(xù)航里程相應(yīng)減小[8]。若能用冷卻水中的一部分廢熱為乘員艙加熱器提供熱量,則既可以減輕散熱器的散熱負(fù)擔(dān),又能夠降低能量損耗,提升整車?yán)m(xù)航里程。文獻(xiàn)[9]研究了傳統(tǒng)發(fā)動(dòng)機(jī)汽車考慮余熱利用的能量管理策略,該策略采用動(dòng)態(tài)規(guī)劃算法,存在計(jì)算時(shí)間較長(zhǎng)、效率較低等問(wèn)題。目前,余熱利用在燃料電池混合動(dòng)力汽車能量管理策略方面的研究較少。

本文選用鋰離子電容器作為輔助能量源,提出燃料電池-鋰離子電容器動(dòng)力系統(tǒng)構(gòu)型,設(shè)計(jì)基于SOC與功率變化限制的能量管理策略,在此基礎(chǔ)上,提出一種基于燃料電池余熱利用的能量管理策略,并通過(guò)對(duì)比仿真,研究其對(duì)燃料電池汽車經(jīng)濟(jì)性和耐久性的影響。

2 燃料電池混合動(dòng)力汽車模型

2.1 燃料電池系統(tǒng)模型

燃料電池系統(tǒng)主要包括電堆,以及空壓機(jī)、冷卻水泵、散熱器等輔助部件。本文中,燃料電池模型采用極化曲線模型。

單電池的實(shí)際工作電壓Vcell為理想電壓Enerst與各種損耗引起的電壓下降值之差[10]:

式中,Vact為活化電壓損失;Vohm為歐姆電壓損失;Vcon為濃差電壓損失。

電堆輸出的總電壓Vst及總功率Pst為:

式中,ncell為電堆單體數(shù)目;Ist為燃料電池堆電流。

燃料電池系統(tǒng)凈輸出功率Pnet與效率ηfc分別為:

式中,Paux為燃料電池系統(tǒng)輔助部件功率;為燃料電池氫氣消耗率;ELHV為氫氣的低熱值。

氫氣消耗率的理論計(jì)算公式為:

式中,M(H2)為氫氣的摩爾質(zhì)量;ε(H2)為氫氣的過(guò)量系數(shù);n為反應(yīng)電子數(shù);F為法拉第常數(shù)。

2.2 鋰離子電容器模型

鋰離子電容器采用等效電路模型,其開(kāi)路電壓與內(nèi)阻均為SOC的函數(shù)。根據(jù)鋰離子電容器內(nèi)阻Ress、開(kāi)路電壓Uocv和輸出功率Pess對(duì)電路中未知的電流I進(jìn)行求解[11]:

鋰離子電容器的荷電狀態(tài)變化率可表示為:

式中,Q為鋰離子電容器的額定容量。

2.3 整車基本參數(shù)

燃料電池汽車與其他新能源汽車的根本區(qū)別在于動(dòng)力系統(tǒng)的結(jié)構(gòu)不同。本文采用的燃料電池汽車動(dòng)力系統(tǒng)由燃料電池系統(tǒng)、鋰離子電容器、電機(jī)及其控制器、DC/DC轉(zhuǎn)換器和主減速器等組成,如圖1所示。燃料電池和鋰離子電容器分別通過(guò)DC/DC 變換器與總線相連,為總線提供功率。

圖1 燃料電池汽車動(dòng)力系統(tǒng)結(jié)構(gòu)

整車的基本參數(shù)與動(dòng)力系統(tǒng)關(guān)鍵部件參數(shù)如表1、表2所示。

表1 整車基本參數(shù)

表2 動(dòng)力系統(tǒng)關(guān)鍵部件參數(shù)

3 基于龐特里亞金極小值原理的能量管理策略

3.1 能量管理策略簡(jiǎn)介

燃料電池混合動(dòng)力汽車在給定工況下的最優(yōu)問(wèn)題可看作非線性、時(shí)變、末端固定且控制變量受約束的最優(yōu)控制問(wèn)題[12]。燃料電池混合動(dòng)力系統(tǒng)可通過(guò)當(dāng)前工況計(jì)算出每個(gè)時(shí)間步長(zhǎng)下整車的需求功率,根據(jù)燃料電池的功率特性和鋰離子電容器SOC狀態(tài),由基于龐特里亞金極小值原理(Pontryagin’s Minimum Principle,PMP)的能量管理策略計(jì)算出在滿足約束條件的情況下使目標(biāo)函數(shù)最小時(shí)的燃料電池與鋰離子電容器的功率,即可獲得此工況下的最優(yōu)功率分配方案。具體實(shí)現(xiàn)過(guò)程如圖2所示。

圖2 基于PMP的燃料電池能量管理策略實(shí)現(xiàn)過(guò)程

3.2 考慮不同限制條件的PMP能量管理策略

3.2.1 考慮SOC與功率變化限制的PMP能量管理策略

為保證每一次行車結(jié)束后鋰離子電容器均能保持充足的電量,取鋰離子電容器的SOC始末值相等,即:

式中,t0為初始時(shí)刻;tf為末端時(shí)刻。

以鋰離子電容器SOC作為狀態(tài)變量,以燃料電池系統(tǒng)凈功率Pfcs為控制變量,建立狀態(tài)方程:

SOC需設(shè)置邊界值以避免鋰離子電容器過(guò)充、過(guò)放而導(dǎo)致安全和壽命衰減問(wèn)題。本文將鋰離子電容器SOC限制引入PMP 能量管理策略,以建立SOC邊界條件,使燃料電池汽車氫耗量最小化的同時(shí)盡量延長(zhǎng)鋰離子電容器壽命。SOC限制項(xiàng)的定義為:

其中,系數(shù)C根據(jù)SOC的范圍設(shè)置不同的數(shù)值:

式中,SOCmin、SOCmax分別為根據(jù)策略設(shè)定的SOC最小值和最大值;C1<0、C2>0均為系數(shù),分別用于控制SOC的下限和上限,C1、C2協(xié)同調(diào)節(jié),以保證SOC在規(guī)定的邊界范圍內(nèi)變化,且SOC始末值相同。

燃料電池的壽命與其加載速度息息相關(guān)。在劇烈的動(dòng)態(tài)加載工況下,燃料電池易出現(xiàn)反應(yīng)物饑餓,導(dǎo)致質(zhì)子交換膜上產(chǎn)生局部熱點(diǎn),老化速度加快,甚至形成微孔,從而對(duì)燃料電池壽命產(chǎn)生一定程度的影響[6]。因此,在上述能量管理策略中,需要限制燃料電池的功率變化。燃料電池功率變化限制項(xiàng)γ(Pfcs(t))為:

式中,α為控制燃料電池功率變化的限制因子。

選取適當(dāng)?shù)摩林悼梢詼p小功率變化率,在一定程度上延緩燃料電池性能衰減。

綜合SOC與功率限制因子2個(gè)因素,建立目標(biāo)函數(shù)為:

式中,λ為協(xié)態(tài)變量,是拉格朗日乘子與動(dòng)態(tài)約束的結(jié)合。

哈密頓函數(shù)為:

約束條件為:

式中,Pfcs,min、Pfcs,max分別為燃料電池輸出功率的最小值和最大值;Pess,min、Pess,max分別為鋰離子電容器輸出功率的最小值和最大值。

哈密頓函數(shù)取最小值時(shí)需滿足:

式(17)中,第1個(gè)方程為狀態(tài)方程,第2個(gè)方程為協(xié)態(tài)變量方程,用于確定協(xié)態(tài)變量的最優(yōu)變化軌跡,第3個(gè)方程通過(guò)最小化哈密頓函數(shù)實(shí)時(shí)確定系統(tǒng)的控制變量,即燃料電池系統(tǒng)的最優(yōu)輸出功率。

3.2.2 考慮燃料電池余熱利用的PMP能量管理策略

燃料電池系統(tǒng)的功率流如圖3 所示。將電堆作為一個(gè)能量系統(tǒng),其輸入可看作反應(yīng)氣體具有的熱力學(xué)能,功率為Ptot。燃料電池內(nèi)部發(fā)生的電化學(xué)反應(yīng)將燃料的化學(xué)能轉(zhuǎn)化成電能為負(fù)載供電,同時(shí)生成大量熱量。在電能轉(zhuǎn)化過(guò)程中,Paux為向輔助部件供電的功率,凈輸出功率Pnet經(jīng)過(guò)DC/DC 后的功率Pfcs與鋰離子電容器經(jīng)過(guò)DC/DC 后的功率Pess共同響應(yīng)總線功率Pbus的需求。當(dāng)車輛存在大功率需求時(shí),如果燃料電池系統(tǒng)提供的功率不足,鋰離子電容器將進(jìn)行功率補(bǔ)充;當(dāng)鋰離子電容器電量不足時(shí),燃料電池在為總線提供功率的同時(shí),為鋰離子電容器充電。

圖3 燃料電池動(dòng)力系統(tǒng)功率流

燃料電池生成的熱功率Pthm包括4 個(gè)流向。其中,隨反應(yīng)剩余氣體排出的熱功率Pexh與向周圍環(huán)境輻射的熱功率Pemi占比很小。循環(huán)冷卻水帶走了大部分的熱功率Pcool,約占總熱功率的95%,當(dāng)燃料電池的溫度超過(guò)節(jié)溫器溫度閾值,且乘員艙有加熱需求(功率為Phtr)時(shí),冷卻水的一部分熱量可用于加熱乘員艙,剩余的熱量Prad通過(guò)散熱器散失。沒(méi)有排出或者帶走的熱功率Pself會(huì)使電堆自身溫度升高。

由以上分析可知,當(dāng)燃料電池溫度Tfc大于使用燃料電池冷卻液廢熱為乘員艙加熱的溫度閾值Thtr時(shí),乘員艙需求的加熱功率由燃料電池的余熱提供。故總線上功率平衡關(guān)系式為:

式中,Pm為電機(jī)需求功率;Pacc為電氣附件需求功率。

其中,乘員艙加熱器功率Phtr采用集總參數(shù)法計(jì)算,且與乘員艙內(nèi)的溫度變化以及乘員艙的比熱容ccabin和質(zhì)量mcabin等因素有關(guān):

式中,Tcabin為乘員艙溫度。

此時(shí),狀態(tài)方程為:

燃料電池在不同溫度下發(fā)出相同功率的氫耗量不同,因此本文引入溫度修正因子φ(Tfc)對(duì)氫耗量進(jìn)行修正。該系數(shù)與燃料電池冷卻系統(tǒng)節(jié)溫器的設(shè)定溫度Ttstat、燃料電池溫度Tfc和環(huán)境初始溫度Tamb有關(guān)[13]:

根據(jù)極小值原理,目標(biāo)函數(shù)為:

式中,SOChtr、λhtr分別為考慮燃料電池余熱利用的能量管理策略中的狀態(tài)變量和協(xié)態(tài)變量。

哈密頓函數(shù)為:

約束條件與式(16)相同。根據(jù)極小值原理,使哈密頓函數(shù)取最小值時(shí)需要滿足的必要條件為:

4 仿真結(jié)果與分析

4.1 考慮SOC 與功率變化限制的PMP 能量管理策略仿真結(jié)果

本文采用城市道路循環(huán)(Urban Dynamometer Driving Schedule,UDDS)工況對(duì)設(shè)計(jì)的能量管理策略進(jìn)行仿真分析。假設(shè)整個(gè)工況運(yùn)行期間汽車總線上的其他負(fù)載功率為0.7 kW。由文獻(xiàn)[9]可知,當(dāng)乘員艙與環(huán)境存在10 ℃的溫差時(shí),乘員艙的加熱功率需求為3 kW,因此本文設(shè)置乘員艙加熱功率為3 kW。此外,冷卻液廢熱為乘員艙進(jìn)行加熱的溫度閾值Thtr=60 ℃,即當(dāng)Tfc>60 ℃時(shí),可滿足乘員艙的加熱功率需求。未考慮與考慮SOC與功率限制的能量管理策略得到的SOC軌跡如圖4所示。

圖4 UDDS工況下SOC變化軌跡

由圖4 可知,2 種能量管理策略的SOC變化曲線趨勢(shì)相似,且均能保證末態(tài)SOC值與初始值相同。但相較于未進(jìn)行限制的結(jié)果,經(jīng)過(guò)限制的SOC軌跡下限值明顯提高,可以有效防止SOC過(guò)充、過(guò)放。通過(guò)調(diào)節(jié)SOC限制因子C1、C2可知:C1越大,功率分配過(guò)程中燃料電池提供的功率越大,鋰離子電容器提供的功率越小,SOC軌跡曲線的下限值越大;C2越小,功率分配過(guò)程中燃料電池提供的功率越大,鋰離子電容器提供的功率也越小,SOC軌跡曲線的上限值越小。

未考慮與考慮SOC與功率限制的能量管理策略得到的各能量源功率輸出結(jié)果如圖5所示。2種策略下燃料電池輸出功率的趨勢(shì)大體相同。但與未考慮SOC與功率限制相比,考慮限制的燃料電池輸出功率明顯較為平緩,有益于減緩因動(dòng)態(tài)加載引起的燃料電池壽命衰減。通過(guò)調(diào)節(jié)功率限制因子α可知,α越大,對(duì)燃料電池功率變化的抑制作用越強(qiáng),單位時(shí)間內(nèi)燃料電池功率變化越緩慢,鋰離子電容器輸出功率的變化率相應(yīng)逐漸增大,在高功率輸出時(shí),鋰離子電容器能夠提供更多的功率以響應(yīng)總線功率。通過(guò)調(diào)節(jié)α的取值,最終確定其數(shù)量級(jí)為10-9。

圖5 UDDS工況下2種策略仿真結(jié)果對(duì)比

2種能量管理策略在燃料電池系統(tǒng)效率上的差異如圖6所示。本文將效率處于50%以下的工作點(diǎn)定義為低效率工作點(diǎn)。未考慮限制的燃料電池輸出功率范圍為2.08~21.87 kW,考慮SOC與功率限制后該范圍為5.15~22.38 kW,功率波動(dòng)范圍更小,低效率區(qū)間工作點(diǎn)減少。

為了更清晰地體現(xiàn)不同燃料電池功率對(duì)應(yīng)的效率分布,作燃料電池的系統(tǒng)功率-效率直方圖如圖7所示,其中,燃料電池功率組距為2 kW,效率組距為4%。由圖7計(jì)算可得,未考慮和考慮SOC與功率限制的燃料電池系統(tǒng)在低效率區(qū)間的工作點(diǎn)占比分別為2.63%和1.61%。結(jié)合圖6 和圖7 可知,燃料電池系統(tǒng)工作在6~20 kW范圍內(nèi)處于效率峰值,在此段區(qū)間內(nèi)考慮SOC與功率限制的燃料電池系統(tǒng)工作點(diǎn)數(shù)量占比較未考慮限制的燃料電池系統(tǒng)略低。綜合以上因素可知,在整個(gè)工況下,考慮SOC與功率限制的燃料電池系統(tǒng)的平均效率為55.27%,略低于未考慮限制的燃料電池系統(tǒng)的平均效率55.44%。

圖6 燃料電池系統(tǒng)效率

圖7 燃料電池功率-效率直方圖

此外,由策略的控制原理可知,未考慮限制的PMP能量管理策略以氫耗量最小為優(yōu)化目標(biāo)得到燃料電池系統(tǒng)的最優(yōu)工作點(diǎn)。而考慮限制條件后,一方面,對(duì)鋰離子電容器SOC進(jìn)行限制會(huì)使燃料電池系統(tǒng)的最優(yōu)工作點(diǎn)發(fā)生變化以維持SOC在一定范圍內(nèi)波動(dòng),另一方面,對(duì)燃料電池功率變化的限制也使得燃料電池系統(tǒng)的最優(yōu)工作點(diǎn)發(fā)生變化以減小功率變化率。這兩方面的綜合作用使2種策略的燃料電池系統(tǒng)效率差距很小。

綜上所述,考慮SOC與功率限制的能量管理策略雖然使燃料電池系統(tǒng)效率略有下降,但是此策略能夠有效地限制燃料電池的變載速率,減緩因動(dòng)態(tài)加載導(dǎo)致的壽命衰減,并且能夠降低SOC波動(dòng)范圍,延長(zhǎng)鋰離子電容器的使用壽命。

4.2 考慮燃料電池余熱利用的PMP 能量管理策略仿真結(jié)果

在4.1 節(jié)中建立的考慮SOC和功率限制的能量管理策略基礎(chǔ)上,考慮燃料電池余熱利用,并與僅考慮SOC和功率限制的能量管理策略進(jìn)行對(duì)比仿真,UDDS工況下的仿真結(jié)果如圖8 所示。由圖8 中燃料電池的輸出功率可以看出:在第231 s 前,由于燃料電池處于由室溫上升到穩(wěn)定工作溫度的區(qū)間內(nèi),冷卻水的溫度未達(dá)到為乘員艙加熱的溫度閾值,乘員艙由電能提供加熱功率;在第231 s 后,燃料電池的溫度達(dá)到為乘員艙加熱的溫度閾值,乘員艙加熱器由燃料電池的余熱提供熱量,總線上需求功率減小,故燃料電池系統(tǒng)輸出功率有所減小。

圖8 UDDS工況下2種策略仿真結(jié)果對(duì)比

考慮燃料電池余熱利用的PMP能量管理策略得到的燃料電池系統(tǒng)效率和功率-效率直方圖分別如圖9、圖10所示。由圖9可知,燃料電池系統(tǒng)功率范圍為0.1~24.18 kW,與未考慮燃料電池余熱利用的能量管理策略相比,其輸出功率波動(dòng)范圍有所增加,最大輸出功率相差不大,差異主要體現(xiàn)在低功率工作區(qū)間。

圖9 燃料電池系統(tǒng)效率

由圖10可知,低效率工作點(diǎn)主要集中在0~4 kW功率范圍內(nèi),占比為4.01%。結(jié)合圖8 中的燃料電池系統(tǒng)輸出功率曲線可知,低輸出功率主要出現(xiàn)在工況的初始時(shí)刻,此時(shí)燃料電池處于升溫階段。由于考慮了溫度對(duì)氫耗量的修正作用,氫耗量相比于未進(jìn)行溫度修正時(shí)更高。根據(jù)最小化氫耗量目標(biāo)可知,考慮燃料電池余熱利用的能量管理策略在工況初始階段為燃料電池分配的功率減小,會(huì)導(dǎo)致相應(yīng)低效率工作點(diǎn)的出現(xiàn)。在整個(gè)工況下,燃料電池系統(tǒng)的平均效率為54.33%。

圖10 燃料電池系統(tǒng)功率-效率直方圖

通過(guò)仿真可得:不考慮任何限制、考慮SOC與功率限制、考慮燃料電池余熱利用的PMP 能量管理策略得到的百公里氫耗量分別為1.254 kg、1.263 kg、0.975 kg。與不考慮任何限制的PMP 能量管理策略相比,考慮SOC與功率限制的策略氫耗量雖然稍有增加,但該策略能夠在一定程度上提升燃料電池和鋰離子電容器的耐久性。此外,考慮燃料電池余熱的百公里氫耗量與未考慮燃料電池余熱的氫耗量相比,降低了22.80%。與氫耗量方面的降低幅度相比,燃料電池的系統(tǒng)效率僅下降了0.94%,幅度很小。因此,基于燃料電池余熱利用的PMP能量管理策略可以合理利用燃料電池?zé)崃浚箽浜牧棵黠@下降,提升整車的經(jīng)濟(jì)性。

5 結(jié)束語(yǔ)

本文基于龐特里亞金極小值原理建立了考慮SOC與功率變化限制的能量管理策略,該策略對(duì)于提升燃料電池與鋰離子電容器的耐久性具有一定的積極作用,使燃料電池的功率變化更加平緩,并且在鋰離子電容器SOC保證始末值相等的同時(shí),具有更小的波動(dòng)范圍。

在此基礎(chǔ)上,本文提出利用燃料電池產(chǎn)生的余熱代替電能為乘員艙加熱器提供熱量的策略,并在目標(biāo)函數(shù)中對(duì)氫耗量進(jìn)行溫度修正。仿真結(jié)果表明,考慮燃料電池余熱會(huì)顯著改善燃料電池混合動(dòng)力汽車的最優(yōu)能量分配。基于余熱利用的能量管理策略在滿足極小值原理約束條件的前提下,將燃料電池的余熱盡可能地用于乘員艙加熱器加熱,使整車經(jīng)濟(jì)性提高了22.80%,可為提高整車能量利用效率提供參考。

主站蜘蛛池模板: 欧美啪啪精品| 色婷婷在线播放| 尤物国产在线| 国产女人在线| 亚洲中文字幕在线一区播放| 精品国产自在在线在线观看| 四虎永久在线视频| 日本在线视频免费| 青青操视频免费观看| 久久伊人操| 欧日韩在线不卡视频| 高清乱码精品福利在线视频| 亚洲天堂网在线观看视频| 在线观看精品自拍视频| a欧美在线| 久久天天躁夜夜躁狠狠| 亚洲国产精品日韩av专区| 自慰网址在线观看| 欧美精品在线免费| a免费毛片在线播放| 久草视频一区| 国内精品伊人久久久久7777人 | 青青青国产精品国产精品美女| 国产成人免费观看在线视频| 黄片在线永久| 国产成人综合日韩精品无码首页| 久久这里只精品热免费99| 亚洲第一区精品日韩在线播放| 最新国产高清在线| 亚洲一级无毛片无码在线免费视频| 3344在线观看无码| 在线日韩一区二区| 99草精品视频| 精品无码国产一区二区三区AV| 色亚洲激情综合精品无码视频| 五月天福利视频 | aⅴ免费在线观看| 一本大道香蕉久中文在线播放| 97国产在线视频| 国产精品欧美日本韩免费一区二区三区不卡| 久久男人资源站| 国产无遮挡裸体免费视频| 极品国产一区二区三区| 亚洲国产日韩欧美在线| 成人年鲁鲁在线观看视频| 国产在线欧美| 欧美精品亚洲二区| 91久久偷偷做嫩草影院精品| 日本不卡在线视频| 午夜激情福利视频| 97se亚洲| 久久网综合| 黄色网址手机国内免费在线观看| 国产成人一区在线播放| 亚洲国产黄色| 久久久久人妻一区精品色奶水| 国产真实二区一区在线亚洲| 久草网视频在线| 一级黄色网站在线免费看| 国产成人在线无码免费视频| 久热这里只有精品6| 日韩欧美综合在线制服| 小说区 亚洲 自拍 另类| YW尤物AV无码国产在线观看| 日韩人妻少妇一区二区| 2021国产精品自产拍在线观看| 亚洲IV视频免费在线光看| 97久久免费视频| 免费黄色国产视频| 国产尤物jk自慰制服喷水| 日本成人福利视频| 国产精品自在拍首页视频8| 19国产精品麻豆免费观看| 九色在线视频导航91| 国产精品视频导航| 激情乱人伦| 亚洲妓女综合网995久久| 精品视频第一页| 亚洲欧美在线综合一区二区三区 | 福利片91| 看看一级毛片| 青青青亚洲精品国产|