馬蕾

摘 要:隨著科技和經濟的持續進步,高中教育已經逐漸變成目前我們國家十分重視的對象之一。現如今教育部對高中數學課程提出了全新的標準,要求教師除了需要完成基礎知識講解之外,還要對學生的直覺思維展開培養,從而使其綜合水平得到全面提高。本篇文章將闡述高中數學課堂中培養學生直覺思維的策略,并列舉相關案例進行詳細說明。
關鍵詞:高中數學課堂 直覺思維 培養 策略
引言
針對數學知識展開探索的過程,同時也能算作是直覺思維發展的過程,可以促使學生們的創造力得到發展。為此,高中數學教師理應采取一些針對性措施,以此對學生們的直覺思維展開引導,并將其和邏輯思維以及宏觀思維整合在一起,進而促使其數學能力得到提升。
一、引導學生積極展開猜想
1.基本概念分析
學生們之所以會對數學知識產生直覺,主要是因為知識和經驗大量的累積,由量變引發了質變,從而對某一事物本身有了獨特的思維和感覺。絕大多數理論的誕生都是源于科學家敏銳的直覺。為此,教師便需要在課堂中對學生們展開訓練,以此促使其直覺思維能夠得到有效培養[1]。
2.具體案例分析
例如,有一道數學題目的題干是:當前有一個定義在R上的函數f(x),其滿足f(1)=2,同時f(x)<1。為此,求不等式f(x2)
在面對這一題目的時候,由于題干中并沒有提供該函數本身的形式,因此只要任何函數滿足其條件,解集均完全一樣。所以,可以假設一個滿足其條件的函數,諸如f(x)=x+,則可以將該不等式轉化為x2+
在進行課堂講解的時候,學生們本身并不缺乏猜想的基礎靈感,僅僅只是缺少自信以及機遇。因此,教師便需要在課堂中為學生們創設良好的氛圍,當學生們提出不同的意見時,應當對其進行鼓勵和引導。不僅如此,為了確保學生們可以時刻保持著積極的思維,教師還需要對學生們的思維發展進行跟進,對其思想特點展開研究,以此為其提供最為合適的方法。如此一來,即便證明學生的猜想是錯誤的,但學生們在整個參與的過程中,自身數學水平也得到了有效鍛煉。在未來的學習中,當學生遇到一些困難的問題時,其自己也能有效應對和處理,進而提升自身直覺思維能力。
二、扎實學生們的知識基礎
1.基本概念分析
如果學生們的知識基礎不夠扎實,則直覺思維便沒有發展的根基,相關設想也僅僅只是空談。為此,教師必須在日常教學中幫助學生們不斷累積基礎知識,幫助其形成優良的知識體系,并在頻繁的練習中,獲得大量的經驗,并在遇到的問題中發現靈感,應用自身直覺思維完成問題解答。
2.具體案例分析
例如,有一道數學題目的題干是:現有兩個光源A與B,兩者的距離是d,實際強度分別是a與b。那么在兩光源的連線AB上,什么位置的照度最小?假設a為8,b為1,d為3,以此對這一問題進行分析。一直照度正比于光的強度,反比于光源距離的平方。
在面對這一題目的時候,假設在改線段上有一個點為P,且P點到A的距離是x,則P點到B的距離則是3-x。
由此能夠證明,當x的數值是2的時候,I(x)為最小值。
在實際講解的時候,依靠立方差因數分解的南方是進行講解肯定最為有效,但是如果讓學生們在考試中應用這種方法,往往會給其帶來巨大的心理壓力,很容易造成錯誤產生。為此,教師便可以結合學生的直覺思維,逐步進行思路組織,從而完成問題處理。如此不僅步驟簡單,而且正確率非常高[2]。
三、依靠數形結合提升學生的觀察力
1.基本概念分析
觀察力可以算作是學生自身直覺思維發展的重要基礎,在進行問題研究的時候,教師理應積極引導學生們認真觀察和聯想,以此促使學生們的觀察能力得到提升,促使學生們可以有效完成數形之間的轉化。如此一來,在面對同一問題的時候,學生們可以從多個角度出發展開思考,以此得出正確結論。
2.具體案例分析
例如,有一道數學題目的題干是:某個農場的面積是50畝,該農場主打算在該農場中種植韭菜和黃瓜,而預算金額不能超過54萬元。為了能夠獲得最大的收益,則兩種蔬菜的種植面積是多少?具體產量、成本以及銷售價格如下表所示[3]。
在面對這一題目的時候,可以假設黃瓜的種植面積是x畝,韭菜的種植面積則是y畝,而總利潤則是z萬元。用函數進行表示則是:
z=(0.55*4x-1.2x)+(0.3*6y-0.9y)=x+0.9y
用圖表表示則是
基于線性約束條件,可以表示成x+y≤50,4x+3y≤180,x≥0,y≥0,最終得出利潤數值是48萬元。
結語
綜上所述,學生們的數學直覺都是在后天長期的練習中產生。為此,教師理應在日常教學中對學生們進行培養,幫助其得到鍛煉,進而具備直覺思維能力,以此為后期知識學習帶來幫助。
參考文獻
[1]施冬芳.芻議高中數學課堂學生直覺思維的培養策略[J].中學數學(高中版)上半月,2018(15):00025-00026.
[2]丁曉軍.淺談高中數學教學中學生思維激活策略[J].數學大世界(教學導向),2018(10):18-18.
[3]吳麗霞.淺談高中數學教學中學生創造性思維能力的培養[J].當代教研論叢,2017(4):49-50.