摘 要:在科學技術迅猛發展的今天,信息技術和互聯網技術被廣泛應用于高中數學教學的領域中。無論是信息技術還是互聯網技術,從本質上來講核心思想核心內容都是算法,因此教師可從算法的角度來深入剖析高中數學教學。
關鍵詞:高中數學;算法思想;應用探究
中圖分類號:G63? ? ? ? ? 文獻標識碼:A
文章編號:1673-9132(2019)15-0086-01
DOI:10.16657/j.cnki.issn1673-9132.2019.15.075
算法,顧名思義是指解題方案準確而完整的方法,是一系列為了解決問題而下達的清晰指令。算法是一種用系統方法描述解決問題的策略機制。最為重要的就是算法的計算公式,如果一個算法有缺陷,不能夠滿足該問題的需要,那么執行的過程中空間復雜程度和時間復雜程度就會自動報錯,從而被改動到滿足需求為止。因此一個算法的優劣可以用空間復雜程度和時間復雜程度去衡量。算法從某種意義上來說就是一種計算,從另一角度來看,它又是一種思考解決問題的方式。算法思想本質就是算法在思維和空間上的延伸和一定程度的演變。
一、算法思想的幾大特征
(一)通用性
一個算法對應的問題不僅僅是單個的問題,如同教師在課堂上講解給學生的例題,一個例題代表了一類題這個例題是核心,其他的類似的題只是換掉了幾個馬甲抑或是頭發染了不同的顏色。一種算法對應了一種題,并且這個算法的公式中傳遞的函數不盡相同,唯一的區別就是變量。例如,向100名學生調查對A、B兩事件的態度,產生了以下結果:贊成A事件的人數占全體人數的五分之三,其余的人則不贊成;贊成B事件的人數比贊成A事件的人數多3人,其余的人不贊成;另外,對A、B兩事件都不贊成的學生人數比對A、B兩事件都贊成的學生人數的三分之一還要多1人,問對A、B兩事件都贊成的學生有多少人。
從這個題的命題意圖來看,該題考察的是有關集合的知識,從該問題的解決方法來看,解題方法大致分為兩種:數軸法取交集、韋恩圖畫法。數軸法取交集和韋恩圖畫法都屬于算法,而且這兩種方法是一種算法,這個算法的目的就是解決集合的相關知識,客觀上來說只要是有關集合的問題用這個算法都能求解,這就是算法通用性的展現。
(二)確定性
算法思想在這個特性上受到了“唯一性”的影響,和“唯一性”具有相同的特征那就是具有完全確定性,不會通過算法得到第二種解決思路或解決方式,算法的運用過程中遵循著嚴格的程序步驟,算法的開始和結束都有著明確的約束條件,這些確保了算法最終結果的唯一性,只有一個正確答案讓算法更加的可靠與準確。
數學教學中能將確定性這一特性完全表達的教學內容就是充分條件、必要條件和充要條件的辨析,學生在接觸這三個數學概念時很容易出現混淆概念的狀況。由于學生剛接觸,對于這三個數學概念的定義沒有完全理解,分辨不清充分條件和充要條件的區別。雖然這三個概念只有一字之差,但是學生理解起來特別困難,往往這節課剛強掉了充分是充分,充要是充分又必要,到了下節課再提問還是有學生會記錯。解決這類問題的算法往往就是利用命題條件的不變與變化,從中找到不變量,再根據不變量去推導變量這類題有且只有一個正確的答案,無論邏輯順序從哪開始,思維從哪開始入手,無論是先判斷幾個條件的哪一個,最終結果也是唯一并且確定的。這充分體現了算法的嚴謹和邏輯性。
(三)有窮性
算法的處理可能繁瑣可能簡單,但是無論簡單還是復雜的算法都具有一個明顯的算法過程。在算法運行的過程中需要運行的步驟是有限的,算法的有窮性保證了也限制了算法的運行過程結束后一定會得到一個準確的唯一的結果。無論是有窮數列還是無窮數列,其本質上就是利用數列的規律去解題,依據算法的步驟,按照一定的過程要求執行下去,一定能得到準確并且唯一的結果,這可以說是算法有窮性最明顯的體現。數列不僅體現了算法思想的有窮性,其在解題中需要用到的邏輯思維和運算能力在某種程度上更是和算法思想所蘊含的不盡相同,在高中數學的教學目標中,數列這一章節的教學目標明確要求了學生要能夠熟悉掌握數列解題過程中的邏輯思想,為數學思維的形成做下鋪墊。高中數學教學培養的終極目的就是為了學生能夠形成自己的獨立數學思維,并在以后的學習生活中能夠熟練運用。
二、算法的延伸與拓展
算法并非是單純的解題方法,更多的時候算法代指的是一種思想、一種理念,因此算法并非局限于數字和符號之間的應用,隨著信息技術和互聯網技術的發展,計算機所能應用的算法越來越多,利于算法分析的數據流也越來越龐大,最終導致網絡數據信息流的爆炸,這種時代的洪流下,教師應該揚長避短,抓到一切可以利用的機會,利用一切可以利用的技術與設備,不僅僅依賴于基礎的多媒體教學授課,要把更多的精力和目光轉移到網絡教學云平臺上去。網絡教學云平臺的本質就是利用特定的算法分析數據流,從龐大的數據中提取有價值的信息加以分析整理,然后用于教師對學生的指導和教學。教師在利用網絡教學平臺時不要過分信賴,數據流僅僅是一個參考的工具和方向,具體教學策略的制定還是需要高中數學教學組的集體探討。
參考文獻:
[1]趙慧.算法思想在數學基礎課程教學中的應用研究——以財經院校為例[J].財會學習,2018.
[2]周丹青.高中數學新課程中算法思想的應用[J].科技資訊,2017(15).
[責任編輯 胡雅君]
作者簡介: 蘇麗敏(1979.11— ),女,漢族,河北景縣人,中學一級,研究方向:高中數學教學。