福建省晉江市教師進修學校 蔡秋洪
運算能力是2011版《義務教育數學課程標準》中提出的10個核心概念之一。運算能力主要是指能夠根據法則和運算規律正確地進行運算的能力,直接關系著學生對數學基礎知識和基本技能的掌握,正確進行運算的能力、合理簡潔的運算方法是學生繼續學習數學和其他學科知識必不可少的基礎。通過大量重復習題盲目、機械地進行訓練,只重視計算的結果,卻忽視了計算的過程,淡化方法的概括和多種形式有效的練習,導致學生運算能力有明顯的弱化趨勢,這樣的問題可以說是老生常談,表現為計算正確率低、速度慢、學生喪失學習興趣等。因此,剖析學生的致錯原因,并采取相應的積極的預防措施,不失為一治“本”之策,也是提高學生運算能力的需要。
概念是思維的基本形式,概念明確了,才能做出正確的判斷及合乎邏輯的推理。小學生計算錯誤有些是由于對概念理解不清造成的,學生只有正確掌握了有關概念,才能正確地進行計算。例如,筆算加法計算法則是由“數位”“個位”“相加”“滿十”“前一位”“進一”等數學概念組成的,如果學生沒有弄清楚這些概念,尤其是在小數、分數的同類知識計算中對這些概念混淆不清,只靠機械地強調運算順序是不夠的,那僅是一種治“標”措施,就無法依據計算法則進行筆算。
算理是四則運算的理論依據,由數學概念、運算定律、運算性質等構成。教學中,有的教師不重視對算理的教學,學生基本算理未理解,便急著進行大量生活應用;還有的教師一味追求算法多樣化,將大量時間花在探究算法上,不注重算法提煉,很多學生“想不明白”,不理解隱含在計算過程中的基本算理,導致計算方法不正確。例如:0.4×0.2,學生由于“想不明白”,容易出現積是“0.8”的錯誤。
思維定式是思維的一種“慣性”,有積極作用,也有消極作用。積極作用能促進知識的遷移,而消極作用則干擾新知識的學習,在計算方面,則表現為原有的計算法則、方法干擾新的計算法則、方法的掌握,干擾正常思維活動,出現知識之間的負遷移,造成計算錯誤。常見的是在學習了運用“運算定律和運算性質”進行“簡便計算”之后,很多學生受找特殊數的干擾,出現改變題目運算順序的錯誤。例如:180+20×6,由于前面所學的加法運算定律,學生很容易出現先把180和20相加的錯誤。又如:36×4÷36×4,學生經常出現算得結果為“1”的現象。
記憶是學習的基礎,知識的儲存、積累和更新都要依賴于記憶,無論是口算還是筆算或估算,都需要良好的短時記憶力做保證,就一道多步計算的計算題而言,對中間得數也需要短時記憶。有的學生由于短時記憶力發展較差,直接造成計算錯誤,如退位減法,前一位退1,可忘了減1,同樣,做進位加法時,忘了進位,特別是連續進位的加法、連續退位的減法,忘加或漏減的錯誤現象頻頻出現。
學生在運算時總希望能很快得到結果,他們不僅難以在一定時間內把注意保持在某一事物或活動上,而且在注意的分配上也常常出現顧此失彼的現象,這在客觀上容易造成學生運算的錯誤。如:在計算豎式時計算正確, 但橫式上的得數抄錯等等,這都是注意不穩定造成的。尤其是當遇到計算題里的數據較大或算式顯得過繁時, 就會產生排斥心理,表現為缺乏耐心和定力,不能認真地審題, 也不再耐心地去選擇合理的算法,這樣錯誤率必然會升高。
學生良好的學習習慣是掌握學習方法、提高學習能力的起點,是提高運算能力的前提。計算粗心的學生往往缺少認真負責、一絲不茍的學習心態和學習習慣。如:書寫習慣差,書寫模糊而出錯,字跡潦草,以致0、6 難分,1、7 難辨。書寫時不會把握數與數之間的空隙,再加書寫時亂涂亂改,因此,誤看、誤寫的錯誤比較嚴重。又如:草稿不規范,有的雖有草稿,但寫得亂七八糟,在桌面上甚至手心上隨處寫。諸如此類,思想上不重視,好習慣沒養成,必然導致運算中經常失誤。
學生運算錯誤的原因是方方面面的,教師在平時的教學中將學生運算中的錯誤分類記載下來,從中發現共性錯誤并找出典型錯例,剖析根源,找出“病因”,然后再有針對性地、有目的性地對癥下藥,辨證施治。
大多數學生看題、讀題、審題、演算過程急于求成,造成這樣或那樣的錯誤。在平時的計算教學中,潛移默化地培養學生學會回頭看,再次讀題,重新審題,找錯誤所在。
看數字符號是否有誤:就是看清題中的數字和運算符號,有無看錯運算符號或抄錯數、漏數,從而造成計算錯誤。
看運算順序是否正確:縱觀算式,分析算式,畫“步驟線”,在試題上標出先算哪一步,后算哪一步。尋找聯系, 確定順序,再口述出運算順序。當學生通過看題明確了題中運算符號及數據特點后, 還要根據運算定律、運算性質尋找內在聯系, 最后確定運算順序。
看運算方法是否簡便:首先把整道題目細看一遍,接著分析運算符號和數據有什么特點, 有沒有內在聯系,可不可以簡便運算,如果可以,選用的方法是否合理。
計算本身沒有情境,并且外顯形式簡單,容易造成小學生感知粗略籠統、不夠具體,容易出現算理不清、法則模糊、方法不對的典型錯例。算理為運算法則提供了理論依據,運算法則又使算理可操作化。所以教學中既要重視法則教學,使學生掌握計算的方法,理解法則背后的道理,又要讓學生明白該怎樣計算,為什么要這樣計算,在理解算理的基礎上掌握運算法則。針對錯題,多想想為什么錯,想清思路,比較方法,辨析正誤。
有的學生在運算過程中一頭扎進死胡同,繞不出來,這次計算錯了,下次還是在這里出現錯誤,屢教不改。要了解導致學生計算錯誤的原因,有針對性地選擇常見的典型特例,組織學生一起分析、交流、討論,以同桌或者小組形式進行,老師作為問題的共同研究者也可參與到討論中,互相交換、檢查對方的習題,議錯誤原因、議題目結構、議運算順序、議如何避免,互相提改正建議,讓學生去探討交流發現題目中蘊含的道理,進而總結出運算的法則,促進學生思維的發展。學生一起分析、交流,通過集體“會診”,達到既“治病”又“防病”的目的,這樣一起議論的效果有時比獨自機械練題來得好。
一些學生學習過于自信,計算后從不檢驗;而有一些學生只想作業盡快完成,根本就不想檢驗;更有一些學生知道自己無把握全部正確, 就依賴于家長代為檢驗,或等教師批改后,有錯再檢查訂正。學生任務式地完成后就拋之腦后,錯誤也就在所難免了。教學中,要逐步培養學生回頭再做一做,形成“自覺估算——即時口算——重新計算——再次驗算” 的計算習慣,在經歷估算、口算、計算、驗算的過程中,理清算理,掌握算法。尤其是自我檢驗,是提高運算正確性的重要一環,在計算中,要讓學生養成自覺檢驗的習慣。
辨析錯因,弄清算理,以理馭法。每一種運算都有一定的理論根據,掌握這些根據,是培養和提高運算能力的前提。要讓學生明白四則運算的計算法則、運算定律、性質和規律,使學生不僅知道運算方法,而且知道駕馭方法的算理,讓學生既知其然,又知其所以然,以此提高四則計算知識的掌握水平,提高學生的計算能力。