999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

胰高血糖素樣肽介導運動抗抑郁作用的潛在機制

2017-10-25 13:24:09劉佳彤劉微娜漆正堂季瀏
首都體育學院學報 2017年5期
關鍵詞:抑郁癥

劉佳彤 劉微娜 漆正堂 季瀏

摘 要:胰高血糖素樣肽-1(GLP-1)是機體在響應營養攝入時而釋放的一類腸促胰島素,主要由腸道末端L細胞分泌,是目前治療糖尿病的重要靶點。近年來,研究發現:GLP-1受體不僅在腸、胰腺等外周組織中表達,而且在海馬、下丘腦等腦組織中也大量表達,這暗示其可能在糖尿病的并發疾病——抑郁癥中發揮作用;但GLP-1易被二肽基肽酶Ⅳ降解失活,難以發揮作用,而長期運動可增加GLP-1的表達和分泌。基于此,旨在探究運動介導GLP-1調控抑郁行為的可能機制,進而為運動的抗抑郁機制研究提供新的視角。通過對相關領域文獻資料的梳理分析發現,GLP-1介導運動的抗抑郁作用涉及HPA軸激活、中樞單胺類神經遞質、中樞營養因子及中樞炎癥因子的水平4個維度。由此推論,GLP-1可能是運動發揮抗抑郁作用的重要介質,從而為抑郁癥的能量代謝機制和治療策略提供了新的靶點和闡釋路徑。

關鍵詞:抑郁癥;胰高血糖素樣肽;運動;HPA軸;單胺類神經遞質;神經營養因子;炎癥

中圖分類號:G 804.2 文章編號:1009-783X(2017)05-0474-07 文獻標識碼:A

Abstract: Glucagon-like peptide -1 (GLP-1), mainly secreted by L cells, is a kind of incretin hormone released by the body in response to nutritional intake and an important target for the treatment of diabetes. Recent studies have found that GLP-1 receptor is not only expressed in intestinal and pancreatic, but also in the hippocampus and hypothalamus, suggesting its role in depression accompany with diabetes. However, GLP-1 can be degradated by dipeptidyl peptidase Ⅳ, thus being difficult to work, while long term exercise can increase the expression and secretion of GLP-1. Therefore, the current study aimed to explore potential mechanisms of GLP-mediated antidepressant effects of exercise, and to provide a new perspective for exercise effects on depression. The available documents demonstrate that the activation of HPA axis, the expression of central monoamine neurotransmitters, neurotrophic factor and central inflammatory cytokines are involved in the antidepressant effects. To sum up, GLP-1 may be a mediator of exercise effects on depression, which suggests a novel target and pathway of energy metabolism and treatment strategy for depression.

Keywords: depression; glucagon-like peptide; exercises; HPA axis; monoamine neurotransmitters; neurotrophic factors; inflammation

研究已經充分證實,抑郁癥患者存在HPA軸功能失調、單胺類功能異常、腦源性神經營養因子減少及中樞炎癥反應增加。臨床上,糖尿病患者罹患抑郁癥現象正受到越來越多研究者的關注,反之亦然[1]。胰高血糖素樣肽(glucagon-like peptide),包括胰高血糖素樣肽-1(GLP-1)和2(GLP-2),是目前治療糖尿病的重要靶點。最新研究表明,GLP-1、GLP-2或其受體激動劑、水解酶抑制劑具有抗抑郁、抗焦慮作用[2-3],但這種功能分子的作用機制目前尚未完全闡明。GLP-1是腸L細胞分泌的腸促胰島素,其功能由GLP-1受體介導,可調節胰島素信號通路,從而保護胰島β細胞,促進胰島素的分泌;GLP-1及其受體激動劑對2型糖尿病[4]、肥胖[5]、心血管疾病[6]、脂肪肝[7]有較好的療效。而在中樞神經系統中,GLP-1也可通過血腦屏障與其腦內受體結合,參與神經系統的調節,從而發揮神經保護作用,對帕金森和阿爾茲海默癥等疾病[8-9]有顯著療效。GLP及其受體激動劑的抗精神病作用逐步顯現,其分子機制存在多種途徑。基于此,本文旨在探究運動介導GLP-1調控抑郁行為的可能機制,進而為運動的抗抑郁機制提供新的視角。通過對相關領域文獻資料的梳理分析發現,GLP-1介導運動的抗抑郁作用涉及HPA軸激活、中樞單胺類神經遞質、中樞營養因子及中樞炎癥因子的水平4個維度。本文將對此類研究進行綜述,并基于HPA軸功能、單胺類神經遞質、中樞神經營養因子、中樞炎癥等4個方面闡釋GLP在抑郁癥中的作用機制,及其介導運動抗抑郁作用的潛在途徑,如圖1所示。

1 胰高血糖素樣肽及其受體endprint

GLP-1是腸L細胞以營養依賴性方式分泌的一種具有葡萄糖依賴性促胰島素分泌功能的腸促胰島素,是胰高血糖素原基因的編碼產物之一;該基因在胰腺α細胞、腸L細胞及下丘腦、腦干等處的神經元中都有表達,具有促進胰島素分泌、保護胰島β細胞、抑制胰高血糖素分泌、抑制胃排空、降低食欲等藥理作用,臨床可用于2型糖尿病和肥胖癥的治療。GLP-2是一個有33個氨基酸的肽,在腸道和中樞神經中均有表達,在腸內主要起保護腸道的作用。GLP-1受體(glucagon-like peptide-1 receptor,GLP-1R)是由463個氨基酸組成的7次跨膜螺旋G蛋白偶聯受體,在胰島、心臟、腸、迷走神經、下丘腦、垂體、海馬及大腦皮層表達[10],主要功能是促進胰島素的分泌,刺激β細胞的增生。GLP-2受體不僅在不同胃腸細胞[11-12],而且在中樞神經系統,包括下丘腦背內側核的特定區域、杏仁核、丘腦、小腦、海馬和大腦皮層中也有表達[13-14]。人體內具有生物活性的GLP主要是GLP-1(7-36)酰胺、GLP-1(7-37)和GLP-2(1-33),天然GLP-1和GLP-2均被二肽基肽酶Ⅳ迅速水解失活(半衰期小于5 min),不具有臨床使用價值。GLP-1受體激動劑(GLP-1RA)是GLP-1類似物,不易被二肽基肽酶Ⅳ降解,可以額外增加外源性GLP-1濃度,具有與GLP-1 相似的生物學活性。研究表明GLP-1RA可通過降低體脂、控制血糖治療糖尿病[15],也用于治療兒童性肥胖[5],通過延緩胃排空與抑制食欲等作用對肥胖癥患者達到減重的效果[16]。GLP-1RA對于心血管疾病、神經退行性疾病也有一定的作用[17-19]。但是,近年來一系列研究顯示,GLP-1、GLP-2或GLP-1RA在不同的抑郁動物模型中表現出顯著的抗抑郁作用[3,20-23]。

2 GLP及其受體激動劑對焦慮、抑郁行為的影響

抑郁癥常伴有焦慮癥狀,焦慮是抑郁癥患者表現的一種情緒反應。研究表明,GLP-1可作為一種神經遞質在神經元中表達。GLP-1與情緒有關,可能是通過多巴胺、5-羥色胺等產生作用。GLP-1R在杏仁核、中縫背核和海馬等區域中被發現,主要是調節情緒和情感,與能量調節聯系不大[22]。動物研究表明,GLP-1對焦慮行為的作用相互矛盾。一些臨床前的研究發現,中樞直接注射GLP-1能增加嚙齒類動物的焦慮行為[24-25];另一些研究則表明,長期外周注射GLP-1類似物沒有改變其在FST(強迫游泳實驗)中的焦慮行為[23,26]。但Sharma等的大量研究表明,急性外周注射GLP-1類似物降低了大鼠在EPM(高架十字迷宮實驗)中的焦慮行為[2-3,27]。Anderberg等的研究也發現,急性注射GLP-1類似物增加了大鼠在EPM、黑白箱實驗中的焦慮行為[22]。Komsuoglu等的研究也表明,長期注射GLP-1對糖尿病大鼠產生抗焦慮作用[28]。GLP-1對焦慮行為產生的影響不同可能是由于注射途徑(中樞和外周)、給藥方式(慢性、急性),及鼠種和動物所處生理狀態不同所產生的結果。對于抑郁行為,目前的研究趨于一致,即GLP-1類似物能夠產生明顯的抗抑郁效果。Sharma等的研究表明,長期使用利拉魯肽治療能夠逆轉雌性精神病大鼠的抑郁行為,大鼠在FST中的不動時間明顯縮短,游動時間增長[3]。Komsuoglu等的研究表明,艾塞那肽(EX4)對T2DM小鼠有抗抑郁作用,同樣能夠降低T2DM大鼠在FST中的不動時間[28]。Anderberg等[22]和Isacson等[29]的研究都表明,長期注射EX4能夠降低大鼠在FST中的不動時間,緩解了抑郁樣行為。一些研究表明,熱量限制可以降低焦慮和抑郁,EX4導致厭食可能是其發揮抗抑郁作用的途徑之一[30]。近幾年對GLP-2的研究表明,GLP-2同樣產生了抗焦慮和抗抑郁的效果。Takashi 等發現,GLP-2明顯增加了促腎上腺皮質激素(ATCH)處理的小鼠在開場實驗中處于中心區域的時間和在EPM實驗中進臂的次數[31],從而降低小鼠的焦慮行為。短期注射GLP-2能夠降低小鼠在FST和懸尾實驗中的不動時間[20],進一步研究表明,GLP-2能夠降低由FST誘導的血漿皮質酮的增加[21]。以上研究表明,GLP-1及其受體激動劑及GLP-2在改善抑郁行為中發揮積極作用。

3 GLP-1及其受體激動劑對HPA軸功能的調節機制

促腎上腺皮質激素釋放因子(CRF)和血管加壓素(AVP)是下丘腦-垂體-腎上腺軸(HPA軸)的調節肽,促腎上腺皮質激素釋放激素(CRH)、ATCH和糖皮質激素(GC,主要指皮質醇)是HPA軸的重要的基礎調節激素。GLP-1參與應激反應的HPA軸的調節,可直接作用于CRF和AVP,進而通過調節基礎激素發揮作用[32]。研究表明,中樞注射GLP-1能激活HPA軸,進而增加ACTH[25,33]、AVP[34]和血漿皮質酮[35]的水平。CRF是GLP-1影響HPA軸的重要介質,外周注射非特異性CRF受體拮抗劑Astressin能減弱GLP-1誘導ACTH和血漿皮質酮升高[25]。此外,EX4能有效激活皮質酮和ACTH,并且此前注射過Astressin,這種效果就會被減弱,EX4也可以增加GC的水平[36],表明GLP-1通過增加CRH活性來激活HPA軸反應。有證據表明,GLP-1通過交互作用激活HPA軸。在短期內,GLP-1R激動劑相當有效地激活HPA軸,引起下丘腦CRF升高,促進垂體ACTH的分泌。GLP-1R激動劑有助于恢復糖尿病患者的代謝水平,不只是因為減少食物的攝取,也源于脂肪組織保持相對高的脂解活性,這些作用一部分可能是通過中樞CRF介導的[37]。比較直接的證據是,GLP-1R基因沉默能降低HPA軸對急慢性應激的反應,并阻止慢性應激導致的體重流失。這表明,慢性應激誘導抑郁行為很可能是GLP-1介導的[38],但是神經內分泌研究已證實,HPA軸過度激活與抑郁行為有關。換言之,HPA軸過度激活是抑郁癥的重要表現之一[39]。難以解釋的是,GLP-1對HPA軸的激活應該是不利于抗抑郁作用的。另有研究表明,中樞GLP-1通過CRH這一關鍵介質誘導HPA軸反應,而在這一過程中可能存在GLP-1誘導的HPA軸的下調機制[40]。HPA軸的正常活動還有賴于負反饋調節抑制,內源性GC與GC受體(GR)結合,對下丘腦的CRH和垂體的ACTH的分泌產生負反饋抑制作用;因此,GLP-1可能通過增加GC水平促進GC的負反饋抑制作用,從而降低抑郁行為。另外,GLP-1可能通過作用于CRF來調節和糾正HPA軸功能紊亂,進而發揮抗抑郁作用。endprint

4 GLP-1及其受體激動劑對中樞單胺類神經遞質的調節機制

單胺類神經遞質系統功能紊亂是抑郁癥發病最重要的假說,5-羥色胺(5-HT)、多巴胺(DA)等神經遞質釋放異常與抑郁癥的發病率密切相關。5-HTR(5-HT受體)在抑郁癥的發病機制和抗抑郁劑的藥理機制中發揮著極為重要的作用,急性中樞注射GLP-1RA能增加杏仁核5-HT的轉運和5-HT受體基因的表達[22]。而在5-HT系統中的5-HT1AR(受體亞型,在海馬中密度最高)在抑郁癥發病機制及抗抑郁治療中發揮著重要的作用。5-HT1AR被激活后,降低腺苷酸環化酶(AC)活性、cAMP(環磷酸腺苷)表達水平,進而影響PKA(蛋白激酶A)的活性,使核轉錄因子CREB發生磷酸化,而活化的CREB與靶基因調節區cAMP反應元件結合,進而調節下游信號通路神經營養因子基因的表達。5-HT1AR介導的信號通路異常是抑郁發生的重要機理,GLP-1可能通過調節 5-HT1AR介導的cAMP-PKA-CREB信號通路發揮抗抑郁作用。多巴胺也與抑郁密切相關[41]。中腦多巴胺神經元的抑制或激活能立即誘導或減輕慢性應激有關的多種抑郁行為和癥狀。采用光遺傳學技術募集多巴胺神經元,顯著改變了與抑郁有關的神經元基因表達[42],而GLP-1R激動劑-EX4,可以減弱可卡因誘導的小鼠紋狀體多巴胺釋放[43]。此外,EX4還有抗精神病樣的作用[44],能降低由安非他命導致中樞DA水平增加所誘導的神經活動[45]。這表明EX4可能降低中樞多巴胺的水平,其抗抑郁作用可能與降低多巴胺轉運有關。

5 GLP-1及其受體激動劑對中樞神經營養因子的調節機制

目前,抑郁癥的5-HT假說仍有爭議,因為抑郁癥患者有近1/3不能從SSRI治療中得到緩解[46],因此,有學者提出,神經退行性變化也是抑郁癥的發病機制之一,抗抑郁治療應從增加神經發生著手[47-48]。GLP-1是一種具有神經保護特性的生長因子,并且有證據表明GLP-1R激動劑EX4有神經營養和神經保護的作用[49-50];因此,治療抑郁可能從GLP-1R減少神經退行性病變和增加神經發生出發。GLP-1受體激動劑和葡萄糖依賴性促胰島素激素(GIP)受體激動劑可通過血腦屏障[51-52],減輕神經元氧化應激,抑制細胞凋亡,促進神經細胞增殖和神經細胞長出新的突起[53-55],BDNF(腦源性神經營養因子)是目前抗抑郁研究中較為關鍵的一個神經營養因子,GLP-1和GLP-1R雙重激動劑DA-JC能增加黑質中的BDNF表達,表明了GLP-1對神經元和突觸的保護作用[56]。而神經生長因子的活化,能激活AKT并參與神經保護作用。AKT是激活細胞修復通路的關鍵激酶,能促進細胞增殖和能量利用。GLP-1和BDNF等生長因子激活AKT[57-58],能通過ERK1/2通路來發揮DA-JC的神經保護作用[55]。DA-JC還能增加生長因子信號傳導分子Bcl-2的表達,減少凋亡信號分子Bax蛋白表達[56]。這些研究表明,GLP-1受體的激活調節這些關鍵信號分子的表達,可能通過BDNF/AKT/Bcl-2/BAX機制減少細胞凋亡,促進細胞增殖,進而增加神經發生產生抗抑郁作用。

6 GLP-1及其受體激動劑對中樞炎癥的調節機制

許多研究表明抑郁癥與中樞慢性炎癥相關,抗炎是抑郁癥治療的一種重要策略;基于GLP-1的抗炎作用,GLP-1及其受體激動劑廣泛用于慢性炎癥有關的疾病,例如1/2型糖尿病、動脈粥樣硬化、神經退行性疾病等[59-61]。神經膠質細胞對于中樞神經系統的炎癥發揮關鍵作用,并且GLP-1R在星形膠質細胞和小膠質細胞中被觀察到。GLP-1對表達其受體的細胞具有普遍的抗凋亡特性和保護作用,其機制可能與GLP-1受體介導的凋亡信號通路的失活及保護信號通路的激活有關[62]。促炎細胞因子,如白細胞介素-1β(IL-1β)、γ-干擾素(IFN-γ)和腫瘤壞死因子-ɑ(TNF-ɑ)是星形膠質細胞炎癥的主要激活物。GLP-1類似物利拉魯肽能抑制TNF-ɑ、IL-6、IL-1β的表達[63],并通過抑制小膠質細胞的活性,明顯降低阿爾茲海默癥小鼠的炎癥反應[64]。星形膠質細胞中的NF-κB(核轉錄因子)是中樞神經系統中重要的炎性調節因子,TNF-ɑ、IL等在內的多種信號能夠活化NF-κB途徑,抑制此信號轉導通路對組織再生有很好的效果。GLP-1R激動劑EX4能抑制炎癥基因如NF-kB的表達[65]。在星形膠質細胞中,GLP-1能預防脂多糖(LPS)誘導IL-1β的表達,從而減輕炎癥反應[66]。二肽基肽酶Ⅳ抑制劑維格列汀能減少GLP-1、2的水解,顯著降低血漿TNF-ɑ濃度[67]。這些結果表明,GLP-1類似物、GLP-1R激動劑或者維持GLP-1水平均能抑制炎性細胞因子。上述研究發現提示,GLP-1的抗抑郁作用很可能與抗炎作用有關,但更多的直接證據尚有待于實驗研究進一步證實。

7 GLP-1與運動的抗抑郁作用

大量研究表明,運動是治療抑郁癥的一種有效手段,規律的體育運動可以有效降低抑郁癥狀的發生[68];Conn等的薈萃分析發現,無論是抑郁還是非抑郁成年人,運動對其抑郁行為都有一定的緩解作用[69]。在動物研究中,也發現運動能夠改善動物的抑郁行為。本課題組前期研究發現,游泳運動能夠明顯改善抑郁癥模型大鼠的抑郁行為[70],另有研究表明,自主跑輪運動可以改善抑郁模型大鼠的抑郁樣行為[71]。基于前文分析,運動的抗抑郁作用可能牽涉GLP-1對神經系統的多種作用途徑。一方面,大量研究表明運動增加GLP-1表達和分泌。健康人運動后,血清GLP-1 的濃度明顯增加[72-74],進食30 min后進行運動使GLP-1濃度明顯增加[75];長期的廣場舞運動可增加機體空腹基線水平內源性GLP-1的分泌量[76];長期的有氧運動、補充谷氨酰胺能夠抑制炎癥因子NF-κB的基因表達,升高GLP-1[77]。另一方面,運動對HPA軸活性、單胺類神經遞質釋放、神經營養因子表達以及中樞炎癥等都有積極調節作用。Kim等研究發現,跑臺運動可以降低大鼠海馬CRF mRNA表達和血清ACTH水平下降,改善HPA軸的異常活動[78];Zheng等研究發現,運動能夠逆轉慢性應激所導致的大鼠皮質酮升高和GR的降低,從而使HPA軸對應激產生適應性反應[79]。運動可通過反復激活HPA軸,產生HPA軸的適應性,從而改善抑郁行為,而GLP-1是HPA軸應激反應的關鍵性介質,運動可能通過GLP-1R/CRH/GC這一正向通路和負反饋調節機制發揮作用。研究發現,小鼠在懸尾實驗中的抑郁行為不是由于運動障礙和肌肉松弛,而是由于5-HT轉運活性變化和5-HT釋放減少[80]。抑郁行為伴隨著5-HT和DA釋放減少,運動能夠增加大腦海馬5-HT[81]、紋狀體DA[82]等神經遞質的釋放。運動還能上調海馬GLP-1的表達,通過5-HT1AR介導的cAMP/PKA/CREB信號通路發揮抗抑郁作用。同樣,運動能夠增加海馬BDNF水平[79,83],GLP-1同樣能夠增加BDNF的表達,這種增加機制可能是通過CREB來調節,也可能通過GLP-1介導的BDNF/AKT/Bcl-2/BAX途徑實現細胞的存活、生長、分化。運動能夠調節IL-1、IL-6和TNF-ɑ等炎癥因子的水平[84],使GLP-1表達增加,促使GLP-1抑制NF-κB,降低這些炎癥因子的水平發揮抗抑郁作用[85]。endprint

8 結束語

綜合來看,GLP-1可能通過HPA軸激活、中樞單胺類神經遞質、中樞營養因子及中樞炎癥因子的水平等4個維度從多種途徑介導了運動的抗抑郁作用(如圖1所示)。抑郁癥一直被認為是一種精神衛生問題,甚至被形象的稱之為“精神感冒”。隨著對抑郁癥研究的不斷深入發現,96%左右的抑郁癥都是代謝性抑郁癥,因而有學者提出“抑郁癥實際上是一種代謝性疾病”。作為代謝性疾病的治療靶點,GLP-1在抑郁癥中的作用也就凸顯而出。運動調控GLP-1通過作用于下游信號分子減輕中樞的炎癥反應、減少神經毒害性代謝產物、增加腦源性神經營養因子的表達,從而作用于腦組織發揮抗抑郁作用。由此推論,GLP-1可能是運動發揮抗抑郁作用的重要介質。GLP及其受體激動劑的抗抑郁作用不僅為運動抗抑郁作用提出了一條新的闡釋路徑,也為抑郁癥的能量代謝機制和治療策略提供了新的靶點。目前臨床上常用抗抑郁藥,如三環類抗抑郁藥(TCAs)、單胺氧化酶抑制劑(MAOIs)、選擇性5-HT 再攝取抑制劑(SSRIs)等,均有毒副作用,都可能產生肝、腎毒性,并會增加患糖尿病的風險;因此,未來靶向GLP-1等代謝分子的藥物研發及運動干預手段將有望改變抑郁癥的治療方向。

參考文獻:

[1] KRISHNAN V, NESTLER E J. The molecular neurobiology of depression[J]. Nature, 2008, 455(7215): 894.

[2] SHARMA A N, PISE A, SHARMA J N, et al. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats[J]. Metab Brain Dis, 2015,30(3):659.

[3] SHARMA A N, LIGADE S S, SHARMA J N, et al. GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats[J]. Metab Brain Dis, 2015,30(2):519.

[4] TOULIS K A, HANIF W, SARAVANAN P, et al. All-cause mortality in patients with diabetes under glucagon-like peptide-1 agonists: A population-based, open cohort study[J]. Diabetes Metab, 2017, 43(3):211.

[5] KELLY A S. Glucagon-Like Peptide-1 Receptor Agonist Treatment for Pediatric Obesity[J]. Endocr Dev, 2016(30):23.

[6] ZHANG Z, CHEN X, LU P, et al. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes[J]. Cardiovasc Diabetol, 2017,16(1):31.

[7] ARMSTRONG M J, HULL D, GUO K, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis[J]. Journal of Hepatology, 2016,64(2): 399

[8] DUARTE A I, CANDEIAS E, CORREIA S C, et al. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration[J]. Biochim Biophys Acta, 2013,1832(4):527.

[9] SHI L, ZHANG Z, LI L, et al. A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model[J]. Behav Brain Res, 2017(327):65.

[10] HOLST J J. The physiology of glucagon-like peptide 1[J]. Physiol Rev, 2007,87(4):1409.

[11] MUNROE D G, GUPTA A K, KOOSHESH F, et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2[J]. Proc Natl Acad Sci U S A, 1999,96(4):1569.endprint

[12] YUSTA B, HUANG L, MUNROE D, et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents[J]. Gastroenterology, 2000,119(3):744.

[13] TANG-CHRISTENSEN M, VRANG N, LARSEN P J. Glucagon-like peptide containing pathways in the regulation of feeding behaviour[J]. Int J Obes Relat Metab Disord, 2001,25(s5):42.

[14] LOVSHIN J A, HUANG Q, SEABERG R, et al. Extrahypothalamic expression of the glucagon-like peptide-2 receptor is coupled to reduction of glutamate-induced cell death in cultured hippocampal cells[J]. Endocrinology, 2004,145(7):3495.

[15] YABE D, KUWATA H, USUI R, et al. Glucagon-like peptide-1 receptor agonist therapeutics for total diabetes management: assessment of composite end-points[J]. Curr Med Res Opin, 2015,31(7):1267.

[16] GALLWITZ B. Anorexigenic effects of GLP-1 and its analogues[J]. Handb Exp Pharmacol, 2012,209(209):185.

[17] HAN L, HOLSCHER C, XUE G F, et al. A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat[J]. Neuroreport, 2016,27(1):23.

[18] DINEEN S L, MCKENNEY M L, BELL L N, et al. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle[J]. Diabetes, 2015,64(9):3321.

[19] MUSCOGIURI G, CIGNARELLI A, GIORGINO F, et al. GLP-1: benefits beyond pancreas[J]. J Endocrinol Invest, 2014,37(12):1143.

[20] IWAI T, HAYASHI Y, NARITA S, et al. Antidepressant-like effects of glucagon-like peptide-2 in mice occur via monoamine pathways[J]. Behav Brain Res, 2009,204(1):235.

[21] IWAI T, OHNUKI T, SASAKI-HAMADA S, et al. Glucagon-like peptide-2 but not imipramine exhibits antidepressant-like effects in ACTH-treated mice[J]. Behav Brain Res, 2013(243):153.

[22] ANDERBERG R H, RICHARD J E, HANSSON C, et al. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality[J]. Psychoneuroendocrinology, 2016(65):54.

[23] RASS M, VOLKE A, RUNKORG K, et al. GLP-1 receptor agonists have a sustained stimulatory effect on corticosterone release after chronic treatment[J]. Acta Neuropsychiatr, 2015,27(1):25.

[24] GULEC G, ISBIL-BUYUKCOSKUN N, KAHVECI N. Effects of centrally-injected glucagon-like peptide-1 on pilocarpine-induced seizures, anxiety and locomotor and exploratory activity in rat[J]. Neuropeptides, 2010,44(4):285.endprint

[25] KINZIG K P, D'ALESSIO D A, HERMAN J P, et al. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors[J]. J Neurosci, 2003,23(15):6163.

[26] KRASS M, RUNKORG K, VASAR E, et al. Acute administration of GLP-1 receptor agonists induces hypolocomotion but not anxiety in mice[J]. Acta Neuropsychiatr, 2012,24(5):296.

[27] SHARMA A N, PISE A, SHARMA J N, et al. Glucagon-like peptide-1 (GLP-1) receptor agonist prevents development of tolerance to anti-anxiety effect of ethanol and withdrawal-induced anxiety in rats[J]. Metab Brain Dis, 2015,30(3):719.

[28] KOMSUOGLU C I, MUTLU O, ULAK G, et al. Exenatide treatment exerts anxiolytic- and antidepressant-like effects and reverses neuropathy in a mouse model of type-2 diabetes[J]. Med Sci Monit Basic Res,2014,20(1):112.

[29] ISACSON R, NIELSEN E, DANNAEUS K, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test[J]. Eur J Pharmacol, 2011,650(1):249.

[30] LUTTER M, SAKATA I, OSBORNE-LAWRENCE S, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress[J]. Nat Neurosci, 2008,11(7):752.

[31] IWAI T, JIN K, OHNUKI T, et al. Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice[J]. Neuropeptides, 2015(49):7.

[32] KAGEYAMA K, YAMAGATA S, AKIMOTO K, et al. Action of glucagon-like peptide 1 and glucose levels on corticotropin-releasing factor and vasopressin gene expression in rat hypothalamic 4B cells[J]. Mol Cell Endocrinol, 2012,362(1/2):221.

[33] LANTZ K A, VATAMANIUK M Z, BRESTELLI J E, et al. Foxa2 regulates multiple pathways of insulin secretion[J]. J Clin Invest, 2004,114(4):512.

[34] GIL-LOZANO M, PEREZ-TILVE D, ALVAREZ-CRESPO M, et al. GLP-1(7-36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans[J]. Endocrinology, 2010,151(6):2629.

[35] GIL-LOZANO M, ROMANI-PEREZ M, OUTEIRINO-IGLESIAS V, et al. Effects of prolonged exendin-4 administration on hypothalamic-pituitary-adrenal axis activity and water balance[J]. Am J Physiol Endocrinol Metab, 2013,304(10):1105.

[36] GIL-LOZANO M,ROMANI-PEREZ M,OUTEIRINO-IGLESIAS V, et al. Corticotropin-releasing hormone and the sympathoadrenal system are major mediators in the effects of peripherally administered exendin-4 on the hypothalamic-pituitary-adrenal axis of male rats[J]. Endocrinology, 2014,155(7):2511.endprint

[37] DIZ-CHAVES Y, GIL-LOZANO M, TOBA L, et al. Stressing diabetes The hidden links between insulinotropic peptides and the HPA axis[J]. J Endocrinol, 2016,230(2):R77.

[38] GHOSAL S, MYERS B, HERMAN J P. Role of central glucagon-like peptide-1 in stress regulation[J]. Physiol Behav,2013,122(11):201.

[39] KELLER J, GOMEZ R, WILLIAMS G, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition[J]. Mol Psychiatry, 2017,22(4): 527.

[40] VRANG N, HANSEN M, LARSEN P J, et al. Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei[J]. Brain Res, 2007:1149.

[41] DUNLOP B W, NEMEROFF C B. The role of dopamine in the pathophysiology of depression[J]. Arch Gen Psychiatry, 2007,64(3):327.

[42] TYE K M, MIRZABEKOV J J, Warden M R, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour[J]. Nature, 2013,493(7433):537.

[43] SORENSEN G, REDDY I A, WEIKOP P, et al. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice[J]. Physiol Behav, 2015(149):262.

[44] DIXIT T S, SHARMA A N, LUCOT J B, et al. Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis[J]. Physiol Behav, 2013,115(2):38.

[45] ERREGER K, DAVIS A R, POE A M, et al. Exendin-4 decreases amphetamine-induced locomotor activity[J]. Physiol Behav, 2012,106(4):574.

[46] ROSSETTI C, HALFON O, BOUTREL B. Controversies about a common etiology for eating and mood disorders[J]. Front Psychol, 2014(5):1205.

[47] ANACKER C, ZUNSZAIN P A, CATTANEO A, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor[J]. Mol Psychiatry, 2011,16(7):738.

[48] MENDEZ-DAVID I, HEN R, GARDIER A M, et al. Adult hippocampal neurogenesis: an actor in the antidepressant-like action[J]. Ann Pharm Fr, 2013,71(3):143.

[49] HOLSCHER C. Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases[J]. J Endocrinol, 2014,221(1):T31.

[50] LI Y, PERRY T, KINDY M S, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism[J]. Proc Natl Acad Sci U S A, 2009,106(4):1285.

[51] FAIVRE E, HOLSCHER C. Neuroprotective effects of D-Ala(2)GIP on Alzheimer's disease biomarkers in an APP/PS1 mouse model[J]. Alzheimers Res Ther, 2013,5(2):20.endprint

[52] MCCLEAN P L, HOLSCHER C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease[J]. Neuropharmacology, 2014(86):241.

[53] HOLSCHER C. Insulin, incretins and other growth factors as potential novel treatments for Alzheimer's and Parkinson's diseases[J]. Biochem Soc Trans, 2014,42(2):593.

[54] JI C, XUE G F, LI G, et al. Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer's disease[J]. Rev Neurosci, 2016,27(1):61.

[55] SHARMA M K, JALEWA J, HOLSCHER C. Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress[J]. J Neurochem, 2014,128(3):459.

[56] JI C, XUE G F, LIJUN C, et al. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson's disease by increasing expression of BNDF[J]. Brain Res, 2016(1634):1.

[57] LI Y, TWEEDIE D, MATTSON M P, et al. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells[J]. J Neurochem, 2010,113(6):1621.

[58] RACANIELLO M, CARDINALE A, MOLLINARI C, et al. Phosphorylation changes of CaMKII, ERK1/2, PKB/Akt kinases and CREB activation during early long-term potentiation at Schaffer collateral-CA1 mouse hippocampal synapses[J]. Neurochem Res, 2010,35(2):239.

[59] LEE Y S, JUN H S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control[J]. Mediators Inflamm, 2016,2016(12):3094642.

[60] MRAK R E, GRIFFIN W S. Glia and their cytokines in progression of neurodegeneration[J]. Neurobiol Aging, 2005,26(3):349.

[61] KOHLER O, KROGH J, MORS O, et al. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment[J]. Curr Neuropharmacol, 2016,14(7):732.

[62] GONG N, XIAO Q, ZHU B, et al. Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity[J]. J Neurosci, 2014,34(15):5322.

[63] HUANG C, YUAN L, CAO S. Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets[J]. Int J Mol Med, 2015,36(1):173.

[64] MCCLEAN P L, PARTHSARATHY V, FAIVRE E, et al. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease[J]. J Neurosci, 2011,31(17):6587.

[65] VELMURUGAN K, BALAMURUGAN A N, LOGANATHAN G, et al. Antiapoptotic actions of exendin-4 against hypoxia and cytokines are augmented by CREB[J]. Endocrinology, 2012,153(3):1116.endprint

[66] IWAI T, ITO S, TANIMITSU K, et al. Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes[J]. Neurosci Res, 2006,55(4):352.

[67] AKARTE A S, SRINIVASAN B P, GANDHI S, et al. Chronic DPP-IV inhibition with PKF-275-055 attenuates inflammation and improves gene expressions responsible for insulin secretion in streptozotocin induced diabetic rats[J]. Eur J Pharm Sci, 2012,47(2):456.

[68] AZEVEDO DA SILVA M, SINGH-MANOUX A, BRUNNER E J, et al. Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study[J]. European journal of epidemiology, 2012,27(7):537.

[69] CONN V S. Depressive Symptom Outcomes of Physical Activity Interventions: Meta-analysis Findings[J]. ANNALS OF BEHAVIORAL MEDICINE, 2010,39(2):128.

[70] LIU W, XU Y, LU J, et al. Swimming exercise ameliorates depression-like behaviors induced by prenatal exposure to glucocorticoids in rats[J]. Neuroscience Letters, 2012,524(2):119.

[71] 崔建梅, 蘇曉云, 王昕, 等. 自愿轉輪運動對抑郁模型大鼠行為學、腦組織神經Y肽及中央杏仁核一氧化氮合酶表達的影響[J]. 體育科學, 2014(5):15.

[72] UEDA S Y, YOSHIKAWA T, KATSURA Y, et al. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise[J]. J Endocrinol, 2009,203(3):357.

[73] UEDA S Y, YOSHIKAWA T, KATSURA Y, et al. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males[J]. J Endocrinol, 2009,201(1):151.

[74] MARTINS C, MORGAN L M, BLOOM S R, et al. Effects of exercise on gut peptides, energy intake and appetite[J]. J Endocrinol, 2007,193(2):251.

[75] CHANOINE J P, MACKELVIE K J, BARR S I, et al. GLP-1 and appetite responses to a meal in lean and overweight adolescents following exercise[J]. Obesity (Silver Spring), 2008,16(1):202.

[76] 王卡. 長期廣場舞運動對老年女性血清GLP-1的影響[D]. 上海:上海體育學院, 2015.

[77]付德榮, 孫小華, 劉承宜, 等. 有氧運動加谷氨酰胺補充對2型糖尿病大鼠骨骼肌炎癥因子NF-κB、MPO及MCP-1基因表達的影響[J]. 體育科學, 2012,32(12):55.

[78] KIM H G, LIM E Y, JUNG W R, et al. Effects of treadmill exercise on hypoactivity of the hypothalamo-pituitary-adrenal axis induced by chronic administration of corticosterone in rats[J]. Neurosci Lett, 2008,434(1):46.

[79] ZHENG H, LIU Y, LI W, et al. Beneficial effects of exercise and its molecular mechanisms on depression in rats[J]. Behav Brain Res, 2006,

168(1):47.

[80] SINGH B, SINGH D, GOEL R K. Dual protective effect of Passiflora incarnata in epilepsy and associated post-ictal depression[J]. J Ethnopharmacol, 2012,139(1):273.endprint

[81] MEEUSEN R, THORRE K, CHAOULOFF F, et al. Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats[J]. Brain Res, 1996,740(1/2):245.

[82] CHAOULOFF F, LAUDE D, MERINO D, et al. Amphetamine and alpha-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat[J]. Neuropharmacology, 1987,26(8):1099.

[83] LIU W, ZHOU C. Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning[J]. Psychoneuroendocrinology, 2012,37(7):1057.

[84] DRENTH J P, VAN UUM S H, VAN DEUREN M, et al. Endurance run increases circulating IL-6 and IL-1ra but downregulates ex vivo TNF-alpha and IL-1 beta production[J]. J Appl Physiol , 1995,79(5):1497.

[85] KOHUT M L, MCCANN D A, RUSSELL D W, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults[J]. Brain Behav Immun, 2006,20(3):201.endprint

猜你喜歡
抑郁癥
心理護理干預對抑郁癥患者臨床療效的影響
細致化護理在改善抑郁癥患者心理狀態中的作用分析
聯合家屬健康干預對社區糖尿病伴抑郁癥患者療效的影響
年輕人患“抑郁癥”的背后
科學養生(2016年12期)2016-12-19 17:28:06
三種抗抑郁癥藥物治療伴軀體疼痛癥狀的抑郁癥患者的對比研究
對一例因抑郁癥有自殺傾向的案例分析
人間(2016年26期)2016-11-03 16:11:24
文拉法辛聯合米氮平治療老年抑郁癥的效果及安全性
西酞普蘭治療抑郁癥的療效及安全性
抑郁癥患者腦電圖檢查的臨床應用
主站蜘蛛池模板: 精品丝袜美腿国产一区| 538国产视频| 中文字幕亚洲无线码一区女同| 亚洲国产精品美女| 伊人激情综合网| 午夜毛片免费观看视频 | 国产精品青青| 伊人久久久久久久| 国产精品女在线观看| 无码精品福利一区二区三区| 国产91全国探花系列在线播放| 无码高潮喷水在线观看| 台湾AV国片精品女同性| 国产欧美日韩综合在线第一| 国产成人调教在线视频| 最新亚洲人成无码网站欣赏网| 日韩a在线观看免费观看| 综合亚洲色图| 国产精品2| 99资源在线| 亚洲综合激情另类专区| 亚洲最大福利视频网| AV在线天堂进入| 丁香综合在线| 亚洲国产精品一区二区第一页免 | 国产精品自在线拍国产电影| 国产不卡网| 亚洲欧美精品日韩欧美| 99久视频| 日本午夜影院| 色久综合在线| 99九九成人免费视频精品| 99在线国产| 中文字幕在线视频免费| 69av在线| 亚洲精品视频网| 亚洲美女一区二区三区| 国产美女丝袜高潮| 大乳丰满人妻中文字幕日本| 亚洲国产黄色| 久久精品只有这里有| 亚洲AV永久无码精品古装片| 第一页亚洲| 天堂成人在线| 午夜日本永久乱码免费播放片| 日韩二区三区| 99精品一区二区免费视频| 欧美高清国产| 日韩经典精品无码一区二区| 中文字幕无码电影| h视频在线观看网站| 午夜国产精品视频| 国产va欧美va在线观看| 少妇极品熟妇人妻专区视频| 日韩在线网址| 国产18在线播放| 啊嗯不日本网站| 亚洲国产精品国自产拍A| 国产理论最新国产精品视频| 午夜精品一区二区蜜桃| 伊人久久大线影院首页| 午夜毛片免费观看视频 | 久久精品中文字幕少妇| 亚洲一级毛片免费看| 国产综合色在线视频播放线视| 福利在线不卡一区| 亚洲高清日韩heyzo| 亚洲无码高清一区| 九九热精品视频在线| 一级毛片免费的| 人妻无码AⅤ中文字| 亚洲国产成人精品青青草原| 午夜久久影院| 91久久国产综合精品女同我| 免费观看三级毛片| 国产综合精品日本亚洲777| 亚洲一区二区三区国产精品| 欧美va亚洲va香蕉在线| 久久91精品牛牛| 国产成人毛片| 国产午夜不卡| 国产乱子伦精品视频|