趙書珍
前言:數學應用題是高中數學中的必考內容之一,也是高中數學教學中的重點內容,由于應用題有較多的類型,涉及的知識面也比較廣,因此也是高中數學教學中的難點。相關資料顯示,高中學生在數學應用題上的得分率普遍較低,本文針對這個問題,對如何提高高中數學應用題解題教學效率和學生的學習技巧展開分析和研究。
一、高中數學應用題的教學策略
1.創建情境教學模式
情境教學是一種新型教學模式,也是最近幾年在課堂教學中應用比較廣泛的一種教學模式,情境教學模式能夠加深學生對知識點的理解,突出學生在課堂上的主體地位。例如,在講解幾何形概率之前,數學老師可以給學生設計這樣一個題目:將一根長為3m的木棍隨機折成3段,求這3段木棍能夠構成三角形的概率。這樣的例題貼近生活實際,學生在理解上沒有絲毫難度,數學老師接下來引導學生去尋找這道題的答案。可以將這三段木棍分別設為x、y、z,然后能夠得出如下幾個式子:x+y+z=3,x+y>z,x+z>y,y+z>x,將這幾個方程式聯立起來,就可以得到線性規劃的問題,從而找到合理的區域,即概率為1/4。這樣的情境教學模式,不僅加強了學生對數學課本知識的理解,也開發了學生的思維,提高了學生的實踐能力。數學老師要將這種教學模式積極應用到數學的課堂教學之中,帶領學生進行應用性操作,創建的情境要有實際的價值,帶有一定的感情色彩,讓學生把應用和學習聯系起來,促進他們的全面發展。
2.循序漸進的教學模式
數學內容枯燥,而且高中的數學知識點難度較大,數學教材中的知識點排列遵循由易到難的原則,且知識點與知識點之間環環相扣,學生只有掌握前一章節的內容,才能順利進入下一章節的學習之中,數學老師也應當重視這一點,在數學課堂上采取循序漸進的教學模式。數學老師可以從以下幾個方面著手:1.帶領學生打好數學基礎。數學基礎指的是數學的基本技能、基礎知識以及基本概念,數學雖然是一個重視解題過程的學科,但是一些基本的概念也必須要牢牢掌握,例如等差數列和等比數列,很多學生由于基本概念和基本公式掌握不清楚,導致在計算等差數列的時候使用等比數列的計算公式,而計算等比數列的時候使用等差數列的公式,像這種容易出現混淆的計算公式,數學老師要加強對學生的訓練,帶領學生牢牢掌握,只有“根深”才能“葉茂”,如果學生掌握的基礎不牢,就沒有辦法向更廣和更深的數學領域探究。2.指導學生積累數學經驗和數學知識。數學是一個開發思維的學科,只要學生的思維得到開發,在以后的數學學習中將會越來越輕松,而思維的開發離不開日積月累的經驗以及思考,舊的知識是新知識的基礎,例如在學習導數及其應用這一章節內容的時候,老師只有帶領學生學好“導數的計算”,再學習后面微積分和定積分的時候就會得心應手,如果學生沒有掌握導數的計算方法,在后面定積分和微積分計算的學習中就會特別吃力。因此,數學老師要運用循序漸進的教學模式,引導學生系統掌握整體知識,這樣才能將知識的整體功能發揮出來。
3.培養學生的解題歸類意識
建立模型是數學應用題的一種解題技巧,也是解題環節中的難點和重點,學生只有建立正確的模型,才能找到解題技巧,從而解決問題。因此,數學老師要根據學生的數學水平和教學的實際情況,引導學生對應用題進行歸類,即培養學生的解題歸類意識。高中的數學應用題大體上可以分為以下幾類:合力問題、排列組合問題、增長率問題、概率問題以及行程問題。學生只有將應用題進行分類,知道應用題的類型,才能根據類型建立相應的模型,從認知結構里找到解題思路,通過類比等方法,有效解決解題障礙,增強解題信心,繼而提高應用題的解題能力。
二、高中數學應用題的解題技巧
1.學會化歸轉化
化歸指利用某些手段或者方法,將較難理解或者較為復雜的應用題轉化成自身較熟悉的應用題進行解決。數學知識枯燥,且數學題目千變萬化,但是數學始終與生活有著千絲萬縷的聯系,學生只要學會化歸轉化,創設解決問題的情境,再難再復雜的應用題都會有思路可循,學生解答起來也就相對簡單得多。
2.善于使用數形結合的解題方式
數學知識點的邏輯性和實踐性比較強,學生在解決應用題的時候僅僅靠腦袋思考是完全不夠的,還要結合數學圖形進行思考,很多數學知識點比較抽象,但是利用數學圖形就會變得生動立體,往往能給學生提供解題思路和解題的靈感。例如有一道應用題如下:已知反比例函數方程式為y=k/x(k為整數且不等于0),求y與x的關系。這樣的題目,學生利用數形結合的方法進行解題將會一目了然,通過圖像,很明顯看出,當k>0時,y隨x的增大而逐漸減小,而k<0時,y隨x的增大而逐漸增大,如果不結合數學圖形,學生僅僅靠簡單的思考,不僅容易遺漏一些知識點,還會增加解題過程的難度。
結論:綜上所述,數學應用題教學是數學教學中的重要內容,數學老師應當對數學應用題的教學策略進行深入的研究,針對當前學生解題現狀改善教學方法,引導學生對應用題中包含的信息進行篩選和處理,從而找到解題思路,幫助學生提高解題技巧,達到提高數學整體教學效率和學生學習效率的目的。
參考文獻:
1.嚴莉.談高中數學應用題教學中的解題思路[J].考試周刊,2013(84).
2.唐曉熙.新課標下高中數學應用題中的最值問題研究[J].高考(綜合版),2014(05).
3.周賀亭.高中數學應用題教學應注意的幾個問題[J].考試周刊,2009(32).
(作者單位:江蘇省高郵市第二中學)