曹忻 鄒云龍 徐紅偉 楊具田
摘要:【目的】明確RNA干擾(RNAi)對綿羊顆粒細胞體外培養過程中血管內皮生長因子(Vascular endothelial growth factor,VEGF)及其受體mRNA表達的影響,為開展VEGF在綿羊卵母細胞體外成熟和胚胎發育過程中信號通路的相關研究打下基礎。【方法】采用電穿孔技術將針對VEGF兩個受體Flt-1和KDR/Flk-1的兩條有效雙鏈小RNA導入綿羊顆粒細胞內,利用實時熒光定量PCR檢測體外培養綿羊顆粒細胞各培養時間VEGF、Flt-1和KDR/Flk-1 mRNA表達水平的變化。設定篩選出的Flt-1和KDR/Flk-1有效干擾片段分別為試驗組Ⅰ和試驗組Ⅱ,兩個干擾片段共同作用為試驗組Ⅲ,無效的干擾片段為對照組。【結果】綿羊顆粒細胞體外培養過程中,VEGF mRNA在各時間段的相對表達量是Flt-1 mRNA相對表達量的102倍、KDR/Flk-1 mRNA相對表達量的103倍;培養第1 d時,試驗組Ⅰ、試驗組Ⅱ和試驗組Ⅲ VEGF mRNA相對表達量分別為2.62×10-2、3.54×10-2和2.94×10-2,均極顯著高于對照組(P<0.01,下同),3個試驗組的VEGF mRNA表達量從第2 d開始降低,直到第6 d 與對照組趨于一致。試驗組ⅡFlt-1 mRNA相對表達量從培養第1 d的1.02×10-1逐漸降至第7 d 的8.99×10-4,且一直極顯著高于其他組;試驗組Ⅰ和試驗組Ⅲ在前3 d幾乎無Flt-1 mRNA表達,隨著培養時間的延長逐漸呈上升趨勢,第8 d時各組趨于一致。試驗組Ⅰ的KDR/Flk-1 mRNA相對表達量從第1 d開始極顯著低于對照組;試驗組Ⅱ和試驗組Ⅲ在前3 d幾乎無KDR/Flk-1 mRNA相對表達,隨著培養時間的延長呈上升趨勢,第9 d 時各組趨于一致。【結論】兩個有效干擾片段在綿羊顆粒細胞體外培養過程中起到很好的干擾作用,可改變VEGF、Flt-1及KDR mRNA的表達量,進而影響顆粒細胞相關生長信號的傳輸。
關鍵詞: 血管內皮生長因子(VEGF);血管內皮生長因子受體;RNA干擾(RNAi);顆粒細胞;綿羊
中圖分類號: S826.92 文獻標志碼:A 文章編號:2095-1191(2017)02-0336-05
Abstract:【Objective】The paper studied effects of RNA interference(RNAi) on mRNA expression of vascular endothelial growth factor(VEGF) and its receptors in the process of granule cells cultured in vitro, in order to lay a foundation for research in signaling pathway of VEGF during process of oocyte in vitro maturation and embryonic development. 【Method】This research used electroporation to import two double chain small interfering RNA fragments which were designed for VEGF receptors Flt-1 and KDR/Flk-1 into ovine granule cells, and detected Flt-1 mRNA and KDR/Flk-1 mRNA levels variation of ovine granule cells cultured in vitro at different times by real-time quantitative PCR. The researchers named the groups imported with Flt-1 interference fragment and KDR/Flk-1 interference fragment which were screened out in early experiment as treatment group Ⅰand treatment group Ⅱ respectively, and the group imported with both Flt-1 interference fragment and KDR/Flk-1 interference fragment as treatment group Ⅲ, and the group imported with interference fragment which had no RNAi effect as control group. 【Result】Results indicated that, during the process of ovine granule cells cultured in vitro, mRNA expression level of VEGF was 102 times higher than that of Flt-1 and 103 times higher than that of KDR/Flk-1. On the 1st day, the VEGF mRNA expression levels of treatment group Ⅰ, treatment group Ⅱ and treatment group Ⅲ were 2.62×10-2, 3.54×10-2 and 2.94×10-2 respectively, which were significantly higher than that of control group(P<0.01, the same below). The expression levels of the three treatment groups reduced since the 2nd day and tended to be similar to that of control group on the 6th day. During the culture process, Flt-1 mRNA level of treatment group Ⅱ dropped from 1.02×10-1(on the 1st day) to 8.99×10-4(on the 7th day), and it had been significantly higher than that of other groups. Flt-1 mRNA expressions of both treatment group Ⅰ and treatment group Ⅲ could be barely detected, then, as time passing by, they rose and tended to be similar to those of other groups on the 8th day. KDR/Flk-1 mRNA level of treatment group Ⅰ was significantly lower than that of control group since the 1st day. KDR/Flk-1 mRNA in both treatment group Ⅱ and treatment group Ⅲ could be barely detected from the 1st day to the 3rd day, and they rose with time passing by and tended to be similar to those of other groups on the 9th day. 【Conclusion】Two pairs of effective interference fragments have good performance on interfering during the process of ovine granule cells in vitro culture, which results in change of mRNA expression levels of VEGF, Flt-1 and KDR mRNA, and affects transmission of growth signal concerning granule cells.
Key words: vascular endothelial growth factor(VEGF); vascular endothelial growth factor receptor; RNA interference(RNAi); granule cell; ovine
0 引言
【研究意義】Senger等于1983年在腫瘤細胞分泌物中發現了一種促進內皮細胞增生、遷徙,抑制細胞凋亡,提高血管和微血管對大分子物質通透性的生長因子——血管內皮生長因子(Vascular endothelial growth factor,VEGF),目前,關于VEGF的研究多集中在人類醫學,尤其是腫瘤方面(Espana-Serrano and Chougule,2016;Schicho et al.,2016;Wang et al.,2016)。在本課題組前期研究基礎上推斷VEGF對綿羊卵母細胞體外成熟和胚胎發育的促進作用可能與顆粒細胞有關,顆粒細胞可通過間隙連接為卵母細胞的成熟提供有利于其代謝的營養物質。因此,探究VEGF對綿羊顆粒細胞的影響,對后期研究VEGF在綿羊卵母細胞體外成熟和胚胎發育過程中的信號通路等具有重要意義。【前人研究進展】Otani等(1999)研究推測VEGF可能以旁分泌的形式影響卵泡內血管通透性和血管發生,并以自分泌的方式作用于顆粒細胞和卵泡膜細胞,從而影響卵泡的生長和卵母細胞的成熟。Eppig(2003)研究表明人類顆粒細胞、卵泡膜細胞和卵丘細胞中有VEGF和VEGF mRNA的表達,在原始卵泡和初級卵泡的顆粒細胞中VEGF的表達量很少,伴隨卵泡的發育,顆粒細胞中VEGF的表達明顯逐漸增強。本課題組的前期研究也發現VEGF能有效促進綿羊卵母細胞體外成熟和胚胎發育,同時證實了VEGF是通過與其兩個受體Flt-1(The fms-like tyrosine kinase 1)和KDR/Flk-1(Kinase insert domain receptor/F1k-1)相結合而發揮其生物學效益,且伴隨VEGF的外源添加各自表達量有所變化;以此推斷VEGF是通過卵母細胞和顆粒細胞同時存在的自分泌和旁分泌的方式促進綿羊卵母細胞成熟過程中α-tubulin和皮質顆粒的時空遷移與重新分布,從而起到促進卵母細胞成熟的作用,進而為后期的胚胎發育打下良好基礎(曹忻等,2008,2010;Luo et al.,2008;Cao et al.,2009)。目前,至少有3種VEGF受體被鑒定,分別是VEGFR-1(Flt-1)、VEGFR-2(KDR/Flk-1)和VEGFR-3(Flt-4)。Flt-1和KDR/
Flk-1是VEGF的高親和力受體(de Vries et al.,1992),對于VEGF生物學反應而言,與受體間的結合作用至關重要。胚胎期所有內皮細胞表達Flt-1和KDR/Flk-1,兩者是胚胎期血管系統發生所必須的(Barleon et al.,1996)。【本研究切入點】RNA干擾(Interference RNA,RNAi)因其具有高度的序列特異性和抑制基因表達的高效性,已被廣泛用于探索基因功能和傳染性疾病及惡性腫瘤的治療領域(Herrera-Carrillo and Berkhout,2016;Mathur et al.,2016),但目前國內外對反芻動物VEGF受體基因RNAi的研究報道較少,在綿羊顆粒細胞和卵母細胞成熟、胚胎發育中的研究更少。【擬解決的關鍵問題】采用電穿孔技術將針對VEGF兩個受體Flt-1和KDR/Flk-1的兩條有效雙鏈小RNA導入綿羊顆粒細胞內,再用實時熒光定量PCR檢測體外培養綿羊顆粒細胞各培養時間VEGF、Flt-1和KDR/Flk-1 mRNA表達水平的變化,為后期VEGF在綿羊卵母細胞體外成熟和胚胎發育過程中信號通路的相關研究打下基礎。
1 材料與方法
1. 1 綿羊顆粒細胞采集及體外培養
于新疆石河子市牛羊定點屠宰場采集被屠宰的母羊卵巢,獲取帶有致密卵丘細胞的復合體,用透明質酸酶將顆粒細胞從卵丘細胞上分離,移除卵母細胞,將含有顆粒細胞的洗卵液2500 r/min離心5 min,棄上清液,加入PBS,吹打混勻后2500 r/min離心5 min,重復兩次后轉移至含10% FBS的DMEM/F12培養液中,于37 ℃、5% CO2、飽和濕度條件下培養,每天同一時間換1/2液體。每組試驗重復3次。
1. 2 siRNA干擾片段信息
針對Flt-1和KDR/Flk-1兩個受體基因進行干擾的雙鏈小RNA干擾片段由上海吉凱基因化學技術有限公司設計合成,見表1。
1. 3 siRNA工作液配制
在5.0 nmol的雙鏈siRNA中加入250 μL 1×universal Buffer,得到20 μmol/L的siRNA母液,母液于90 ℃保溫2 min,冷卻至室溫后置于4 ℃備用。
1. 4 電穿孔
采用Amaxa Nucleofector電穿孔儀(Lonza公司)將1 μL 20 μmol/L siRNA母液導入到顆粒細胞內,所導入的細胞分別為對照組(無干擾效果的siRNA片段)、試驗組Ⅰ(干擾片段Flt-1-siRNA)、試驗組Ⅱ(干擾片段KDR/Flk-1-siRNA)和試驗組Ⅲ(干擾片段Flt-1-siRNA和KDR/Flk-1-siRNA)。96孔板37 ℃、5% CO2、飽和濕度條件下培養。
1. 5 RNA提取與cDNA合成
采用FastLine Cell cDNA kit試劑盒[天根生化科技(北京)有限公司],對顆粒細胞進行RNA提取及cDNA第一鏈合成。
1. 6 實時熒光定量PCR
針對NCBI提供的mRNA序列,采用Primer 5.0及在線BLAST軟件設計引物,GAPDH為內參。GAPDH(119 bp)上游5'-CCTGCCAAGTATGATGAGAT-3',下游5'-TGAGTGTCGCTGTTGAAGT-3';Flt-1(114 bp)上游5'-TGGCACAAAGACCCAAAAGA-3',下游5'-GG
CGTTGAGCGGAATGTAG-3'; KDR/Flk-1(110 bp)上游5'-CCCCTGATTACACCACACCA-3',下游5'-CAGA
TTTCCCAGATGCTCCAC-3';VEGF(340 bp)上游5'-
TGCTCTCTTGGGTACATTGG-3',下游5'-CCTATGT
GCTGGCTTTGGTG-3',引物均由生工生物工程(上海)股份有限公司合成。
采用羅氏480II實時熒光定量PCR儀進行實時定量PCR擴增。PCR反應體系為Light Cycle 480 SYBR Green I Master 96模塊標準反應體系,PCR擴增條件為Light Cycle 480 SYBR Green I Master 96模塊標準擴增條件(退火溫度60 ℃)。mRNA相對表達量采用2-△△Ct進行計算。
1. 7 統計分析
試驗數據采用SPSS 22.0進行單因素方差分析和多重比較。
2 結果與分析
2. 1 VEGF mRNA相對表達量的變化
從表2可看出,綿羊顆粒細胞體外培養第1 d時,試驗組Ⅰ、試驗組Ⅱ和試驗組Ⅲ的VEGF mRNA相對表達量分別為2.62×10-2、3.54×10-2和2.94×10-2,均極顯著高于對照組(P<0.01,下同)。在綿羊顆粒細胞體外培養過程中,試驗組Ⅲ的VEGF mRNA相對表達量基本高于試驗組Ⅰ和試驗組Ⅱ。從培養第2 d開始,各試驗組VEGF mRNA相對表達量均降低,到第6 d時與對照組基本保持一致,之后趨于穩定。
3 討論
卵母細胞和顆粒細胞間存在一種相互依存的關系。卵母細胞的發育需要特異性地與顆粒細胞接觸,而顆粒細胞也能通過間隙連接為卵母細胞成熟提供所需營養,以調控卵母細胞發育。體外培養研究發現,將卵母細胞與顆粒細胞分離培養,卵母細胞不能很好地發育(Cecconi et al.,2004)。在卵泡的發育過程中,卵泡顆粒細胞是部分營養供給部位,同時顆粒細胞是卵泡中VEGF的主要來源(Barboni et al.,2000)。但目前僅針對綿羊顆粒細胞體外培養過程中VEGF有效干擾片段對VEGF與其兩個受體Flt-1和KDR/Flk-1 mRNA影響的相關報道甚少。本研究采用電穿孔技術將針對VEGF兩個受體的兩條有效雙鏈小RNA導入到綿羊顆粒細胞內,該技術不存在RNAi的延遲,較常用的脂質體轉染法更加快速有效、便于操作,并有效降低試驗成本。
1992年,de Vries等、Terman等分別證明了Flt-1和KDR/Flk-1是VEGF的特異受體。正常組織中的血管內皮細胞中均有Flt-1和KDR/Flk-1分布。Flt-1與胚胎期內皮細胞形態形成有關,促進VEGF的促細胞移動能力;KDR/Flk-1與胚胎內皮細胞分化有關,其受體調節VEGF促細胞分裂能力,其表達可引起細胞形態改變,并對血管形成起重要調節作用(Barleon et al.,1996)。本研究檢測出單獨體外培養綿羊顆粒細胞過程中存在VEGF及其兩受體Flt-1和KDR/Flk-1的mRNA表達,說明綿羊顆粒細胞在正常情況下分泌的VEGF及其受體可經自分泌或旁分泌途徑作用于顆粒細胞的發育,與Einspanier等(1999)發現在牛顆粒細胞中有VEGF的表達結果相同,且Einspanier等(2002)還在牛顆粒細胞表面檢測到VEGF受體。本研究結果顯示,VEGF mRNA相對表達量基本是Flt-1 mRNA相對表達量的102倍、是KDR/Flk-1 mRNA相對表達量的103倍,推斷綿羊顆粒細胞積累是VEGF的一大重要來源,在卵母細胞成熟過程中VEGF可通過顆粒細胞與卵母細胞的間隙鏈接促進卵母細胞成熟,與Barboni等(2000)在豬卵泡發育過程的發現相一致,即顆粒細胞是卵泡中VEGF的主要來源。兩受體Flt-1和KDR/Flk-1的干擾片段無論以單一形式或共同方式導入綿羊顆粒細胞中,VEGF在培養第1 d都有表達量的增加,直到第6 d基本與對照組一致。說明干擾后受體Flt-1和KDR/Flk-1任何一個mRNA表達量的驟降,均能提高VEGF mRNA的表達,可能是因為影響了VEGF與受體的結合效率,造成VEGF轉錄水平升高,也可能是由于兩受體mRNA表達量降低,反而刺激VEGF轉錄水平升高,致使VEGF的作用通路受到影響,但這種影響在第1 d最顯著。該結論充分說明VEGF是通過與兩受體Flt-1和KDR/ Flk-1結合調節作用而發揮其生物學效應。
本研究結果表明,Flt-1 mRNA相對表達量基本是KDR/Flk-1 mRNA相對表達量的10倍,說明顆粒細胞體外培養各階段中Flt-1待轉錄的mRNA量較KDR/ Flk-1高,推斷KDR/Flk-1受體途徑與Flt-1受體途徑相比,在整個綿羊顆粒細胞體外培養過程中與VEGF結合更充分,從而進一步發揮其生物學效應。當Flt-1干擾片段導入綿羊顆粒細胞中后,KDR/Flk-1 mRNA相對表達量有所下降,但受影響程度遠不及Flt-1受KDR/Flk-1干擾片段的影響程度。當KDR/Flk-1干擾片段導入顆粒細胞中,Flt-1 mRNA相對表達量急劇上升,在培養前3 d與VEGF mRNA表達水平相當,甚至在第1 d達到10-1數量級,極顯著高于VEGF表達量的10-2數量級。說明KDR/Flk-1調控著Flt-1的表達,可能是KDR/Flk-1對Flt-1存在競爭抑制作用。Flt-1較KDR/Flk-1對KDR/Flk-1干擾片段調控作用的反饋更加敏銳,受影響更大,而KDR/Flk-1 mRNA表達更加穩定。由此推測,在綿羊顆粒細胞體外培養過程中KDR/Flk-1受體途徑較Flt-1受體途徑發揮更主要的作用。此外,兩干擾片段同時導入至顆粒細胞中對Flt-1和KDR/Flk-1 mRNA的干擾效果顯著,但尚未特別影響到VEGF mRNA表達,說明在受體mRNA水平檢測不到的情況下,VEGF還能通過自分泌的方式表達。
4 結論
兩個有效干擾片段在綿羊顆粒細胞體外培養過程中起到很好的干擾作用,可改變VEGF、Flt-1及KDR mRNA的表達量,進而影響顆粒細胞相關生長信號的傳輸。
參考文獻:
曹忻,羅海玲,石國慶,趙有璋. 2008. 血管內皮生長因子對綿羊卵母細胞體外受精及胚胎發育的影響[J]. 甘肅農業大學學報,43(4):27-31.
Cao X,Luo H L,Shi G Q,Zhao Y Z. 2008. Effects of VEGF on the ovine oocytes maturation and the early embryo development in vitro[J]. Journal of Gansu Agricultural University,43(4):27-31.
曹忻,趙有璋,羅海玲,石國慶. 2010. 血管內皮生長因子對體外成熟綿羊卵母細胞超微結構變化的影響[J]. 畜牧獸醫學報,41(2):167-173.
Cao X,Zhao Y Z,Luo H L,Shi G Q. 2010. Effects of VEGF on the ultrastructure of ovine oocytes cultured in vitro[J]. Acta Veterinaria et Zootechnica Sinica,41(2):167-173.
Barboni B,Turriani M,Galeati G,Spinaci M,Bacci M L,Forni M,Mattioli M. 2000. Vascular endothelial growth factor production in growing pig antral follicles[J]. Biology of Reproduction,63(3):858-864.
Barleon B,Sozzani S,Zhou D,Weich H A,Mantovani A,Marmé D. 1996. Migration of human monocytes in response to vascular endothelial growth factor(VEGF) is mediated via the VEGF receptor Flt-1[J]. Blood,87(8):3336-3343.
Cao X,Zhou P,Luo H L,Zhao Y Z,Shi G Q. 2009. The effect of VEGF on the temporal-spatial change of alpha-tubulin and cortical granules of ovine oocytes matured in vitro[J]. Animal Reproduction Science,113(1-4):236-250.
Cecconi S,Ciccarelli C,Barberi M,Macchiarelli G,Canipari R. 2004. Granulosa cell-oocyte interactions[J]. European Journal of Obstetrics,Gynecology,and Reproductive Biology,115(S1):19-22.
de Vries C,Escobedo J A,Ueno H,Houck K,Ferrara N,Williams L T. 1992. The fms-like tyrosine kinase,a receptor for vascular endothelial growth factor[J]. Science,255(5047):989-991.
Einspanier R,Gabler C,Bieser B,Einspanier A,Berisha B,Kosmann M,Wollenhaupt K,Schams D. 1999. Growth factors and extracellular matrix proteins in interactions of cumulus-oocyte complex,spermatozoa and oviduct[J]. Journal Reproduction and Fertility Supplyment,54:359-365.
Einspanier R,Schnfelder M,Müller K,Stojkovic M,Kosmann M,Wolf E,Schams D. 2002. Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus-oocyte complexes(COC)[J]. Molecular Reproduction and Deve-
lopment,62(1):29-36.
Eppig J. 2003. Growth and development of the mammalian oocyte granulosa cell complex in culture[M]//Trounson A O, Gosden R G. Biology and Pathology of the Oocyte. Cambridge: Cambridge University Press: 273-282.
Espana-Serrano L,Chougule M B. 2016. Enhanced anticancer activity of PF-04691502,a dual PI3K/mTOR inhibitor,in combination with VEGF siRNA against non-small-cell lung cancer[J]. Molecular Therapy Nucleic Acids,5: e384.
Herrera-Carrillo E,Berkhout B. 2016. Attacking HIV-1 RNA versus DNA by sequence-specific approaches:RNAi versus CRISPR-Cas[J]. Biochemical Society Transactions,44(5):1355-1365.
Luo H L,Cao X,ZhaoY Z,Zhou P,Shi G Q. 2008. Effects of VEGF on the early development and the polyspermy rate of ovine embryo in different culture systems in vitro(abs)[J]. Reproduction Fertility & Development,21(1):204.
Mathur K,Anand A,Dubey S K,Sanan-Mishra N,Bhatnagar R K,Sunil S. 2016. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference(RNAi) suppressor activity[J]. Scientific Reports,6:38065.
Otani N,Minami S,Yamoto M,Shikone T,Otani H,Nishiyama R,Otani T,Nakano R. 1999. The vascular endothelial growth factor/fms-like tyrosine kinase system in human ovary du-
ring the menstrual cycle and early pregnancy[J]. The Journal of Clinical Endocrinology and Metabolism,84(10):3845-3851.
Schicho A,Hellerbrand C,Krüger K,Beyer L P,Wohlgemuth W,Niessen C,Hohenstein E,Stroszczynski C,Pereira P L,Wiggermann P. 2016. Impact of different embolic agents for transarterial chemoembolization(TACE) procedures on systemic vascular endothelial growth factor(VEGF) levels[J]. Journal of Clinical and Translational Hepatology,4(4):288-292.
Senger D R,Galli S J,Dvorak A M,Perruzzi C A,Harvey V S,Dvorak H F. 1983. Tumor cells secrete a vascular permea-
bility factor that promotes accumulation of ascites fluid[J]. Science,219(4583):983-985.
Terman B I,Dougher-Vermanzen M,Carrion M E,Dimitrov D,Armellino D C,Gospodarowicz D,B■hlen P. 1992. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor[J]. Biochemical and Biophysical Research Communications,187(3):1579-1586.
Wang F,Li S,Zhao Y,Yang K,Chen M,Niu H,Yang J,Luo Y,Tang W,Sheng M. 2016. Predictive role of the overexpression for CXCR4,C-Met,and VEGF-C among breast cancer patients:A meta-analysis[J]. Breast,28:45-53.
(責任編輯 羅 麗)