高德達
【摘 要】高中數學思維主要是指高中學生在數學感性的認識上,運用類比,歸納,綜合,分析等一系列思維的方式,最終理解和掌握高中階段抽象的數學內容,學會運用數學的思維認識其本質和規律。
【關鍵詞】高中 數學 思維障礙
【中圖分類號】G633.6 【文獻標識碼】A 【文章編號】2095-3089(2016)17-0265-02
在學習高中數學過程中,我們經常聽到學生反映上課聽老師講課,聽得很“明白”,但到自己解題時,總感到困難重重,無從入手;有時,在課堂上待我們把某一問題分析完時,常常看到學生拍腦袋:“唉,我怎么會想不到這樣做呢?”事實上,有不少問題的解答,同學發生困難,并不是因為這些問題的解答太難以致學生無法解決,而是其思維形式或結果與具體問題的解決存在著差異,也就是說,這時候,學生的數學思維存在著障礙。這種思維障礙,有的是來自于我們教學中的疏漏,而更多的則來自于學生自身,來自于學生中存在的非科學的知識結構和思維模式。因此,研究高中學生的數學思維障礙對于增強高中學生數學教學的針對性和實效性有十分重要的意義。
一、高中學生數學思維障礙的形成原因
根據布魯納的認識發展理論,學習本身是一種認識過程,在這個課程中,個體的學習總是要通過已知的內部認知結構,對“從外到內”的輸入信息進行整理加工,以一種易于掌握的形式加以儲存,也就是說學生能從原有的知識結構中提取最有效的舊知識來吸納新知識,即找到新舊知識的“媒介點”,這樣,新舊知識在學生的頭腦中發生積極的相互作用和聯系,導致原有知識結構的不斷分化和重新組合,使學生獲得新知識。但是這個過程并非總是一次性成功的。一方面,如果在教學過程中,教師不顧學生的實際情況(即基礎)或不能察覺到學生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學,則到學生自己去解決問題時往往會感到無所適從;另一方面,當新的知識與學生原有的知識結構不相符時或者新舊知識中間缺乏必要的“媒介點”時,這些新知識就會被排斥或經“校正”后吸收。
二、數學知識體系中思維障礙的實際體現
1.數學思維中不同程度的表淺性。高中學生在進行數學思維時,會有意識地參考自身的思維習慣、擅長方向和理解優勢等多種因素,因此學生在熟悉、理解和總結的過程中會產生很大的差異。隨著思維方式的改變,學生在學習時就更客觀抽象地理解數學原理。在研究數學思維時,很多學生都會出現不同程度的表淺性,所以難深入摸索數學事物的本質,從而造成了不同高中生各有特點的思維方式。
2.陷入僵化的慣性思維。經歷了小學和初中階段里對數學的接觸和學習,高中生在教師的指導和自身的摸索中,已經總結出一些解題思維、方法和答題模版等想法。因為數學經驗的干預,學生在分析數學問題或回答數學題目時,會反思自身印象中的解決方案,往往會潛意識地習慣因果思維方向,有明顯傾向地針對問題的某一方面去思考,造成了高中數學學習階段中學生容易陷入的僵化的慣性思維。例如:例題:把命題“相似的三角形一定是全等三角形”寫成“若p則q”的形式,并寫出它的逆命題、否命題與逆否命題。常見錯解:原命題可看成:若兩個三角形相似,則它們一定都是全等三角形。逆命題:若兩個三角形是全等三角形,則它們是相似的。否命題:若兩個三角形不一定相似,則它們不一定是全等三角形。逆否命題:若兩個三角形不一定是全等三角形,則它們不一定相似。錯因:受到慣性思維的干預,對“一定”的否定把握不準。因此,把“一定”的否定看成是“一定不”。但在高中數學的邏輯知識中,求否定可看成是求補集,同時,“不一定”包含“一定”的意義。因此,以上答題中,否命題與逆否命題都出錯。其正確做法如下:否命題:若兩個三角形不相似,則它們不是全等三角形。逆否命題:若兩個三角形不是全等三角形,則它們不相似。
三、高中學生數學思維障礙的突破
1.在高中數學起始教學中,教師必須著重了解和掌握學生的基礎知識狀況,尤其在講解新知識時,要嚴格遵循學生認知發展的階段性特點,照顧到學生認知水平的個性差異,強調學生的主體意識,發展學生的主動精神,培養學生良好的意志品質;同時要培養學生學習數學的興趣。興趣是最好的老師,學生對數學學習有了興趣,才能產生數學思維的興奮灶,也就是更大程度地預防學生思維障礙的產生。教師可以幫助學生進一步明確學習的目的性,針對不同學生的實際情況,因材施教,分別給他們提出新的更高的奮斗目標,使學生有一種“跳一跳,就能摸到桃”的感覺,提高學生學好高中數學的信心。
2.重視數學思想方法的教學,指導學生提高數學意識。數學意識是學生在解決數學問題時對自身行為的選擇,它既不是對基礎知識的具體應用,也不是對應用能力的評價,數學意識是指學生在面對數學問題時該做什么及怎么做,至于做得好壞,當屬技能問題,有時一些技能問題不是學生不懂,而是不知怎么做才合理,有的學生面對數學問題,首先想到的是套那個公式,模仿那道做過的題目求解,對沒見過或背景稍微陌生一點的題型便無從下手,無法解決,這是數學意識落后的表現。數學教學中,在強調基礎知識的準確性、規范性、熟練程度的同時,我們應該加強數學意識教學,指導學生以意識帶動雙基,將數學意識滲透到具體問題之中。如:設x2+y2=25,求u=的取值范圍。
3.誘導學生暴露其原有的思維框架,消除思維定勢的消極作用。在高中數學教學中,我們不僅僅是傳授數學知識,培養學生的思維能力也應是我們的教學活動中相當重要的一部分。而誘導學生暴露其原有的思維框架,包括結論、例證、推論等對于突破學生的數學思維障礙會起到極其重要的作用。
現階段隨著新課改的進行,對我們傳統的高中數學學習提出了更高的要求,更加注重我們學生自身主體作用的發揮,要注重提高自身的學習主動性,將老師引導作為一種輔助的工具。當前很多高中學生在學習數學上存在思維障礙,對其學習成績產生了巨大的影響,所以針對這一問題我們要結合高中數學的具體特點,每個學生要進行針對性的分析和解決,克服自身的思維障礙,有效的提高數學成績。
參考文獻:
[1]孫寶娟.高中數學教學如何突破學生思維障礙[J].2010
[2]肖倩閩.淺議如何突破高中數學思維障礙[J].2012,(14)
[3]王志華.如何克服學生數學學習的思維障礙[J].2012,(16)