魏丹慧
摘 要: 數學教育的傳統中,積極的作用與消極的影響并存。中國數學教育有一些特點,例如注重教學的具體目標、長于由“舊知”引出“新知”、注重對新知識的深入理解、強調解題、關注方法和技巧、重視及時鞏固、課后練習、記憶有法,等等,有好有壞,不分對錯。本文主要對中國學生學習數學的一些特點進行分析,并嘗試著給出建議。
關鍵詞: 數學教育 中國學生 特點 建議
典型案例:1995年和2000年,蔡金法共運用了4類任務檢測美國學生和中國學生的數學表現。包括計算、簡單問題解決、過程受限的復雜問題解決、過程開放的復雜問題解決四個類型的題目。美國學生在過程開放的任務上的表現明顯勝于中國學生,而中國學生則在其他三個方面遙遙領先。但是開放性題目最具有新奇性,需要做更多的探索解釋這些差異。因為往往不能夠通過一種算法就可以算出來,而是需要對問題情景分析探索,從不同角度進行分析,而且允許存在多種答案。其他題型則往往通過實施標準算法就能解決。
無可否認,中國學生的基本功很扎實,記憶能力很強。在各種國際級的數學競賽中,屢次獲得大獎,數學水平遠遠超過同年齡段其他國家和地區的學生。但這是中國學生花費大量時間,投入大量精力,甚至以學習興趣的喪失為代價所獲得的。學生數學學習總是停留在記憶、模仿、練習、考試等缺乏主動性的層面,缺乏創造性,在標新立異方面往往沒有突破。最顯著的一個問題是,那么多中國學生怎么就得不到菲爾茲獎?這個問題說明中國數學教育改革仍然是硬道理。向國外學習先進的數學教育理論和實踐,仍然是一項緊迫的任務。下面將從三個方面作介紹。
一、評價體系特點與不足
記得從小學到現在,數學試卷上的題,都是結果做得正確,就給個大大的對號。不管過程中存在多少曲折,或者是思維誤差。而有的學生做的數學題目結果錯了,但是過程中清晰的步驟、嚴謹的思維表現,評價者很少顧及。我國評價體系在逐漸完善,但單一模式的定量評價還是占主導地位。
數學評價應倡導多元化、人性化,除了對結果作出定量分析外,我們更應該關注對過程的定性分析。這樣學生對每個任務的回答都會在認知方面得到檢測,就像解題方法,策略,邏輯思維,推理判斷,數學錯誤,數學表征等。這些識別出了解題表現中的差異,有助于解釋和澄清那種定量分析所得到的結果,而且對于同樣的答案可以有更多的思考和假設,這些都對今后的進一步研究有促進作用。
二、學生的問題意識、觀察力不強
在數學解題過程中,如果說觀察力強的話,那么多的角度,總會在“燈火闌珊處”發現新奇之處,而不是一味地遵照標準模式、標準答案解題。這是傳統數學教學中存在的問題,遺留下來的病根,我們對此還是缺乏真正的改革。
劉墉先生在《中國學生的通病》一文中提到:中國學生“好奇但不愛發問”。這種現象在中國已是司空見慣,他們怕過于突出被人認為是愛出風頭,有句話說“棒打露頭青”,所以為了安全起見,還是低調點好。以至于學生都是等著別人問,自己只管聽。沒有自己的問題,也反映了學生很少深入地思考、分析。對問題的思考非常膚淺,不能抓住關鍵,提出有創意的問題。歸根結底,都是一種錯誤的中庸思想在作怪,即把中庸解釋為“不偏之謂中,不易之謂庸”。即平衡的原則,反對變化和動蕩。事實上,中庸之道在于不偏執,在矛盾兩極間找到最佳途徑。在諸多可選擇的可能性中取得最佳的、最合情合理的選擇。也可理解為應保守時則保守,應激進時則激進,應受中道時則守中道。知道何時順情理,何時順事理,該理智時理智,該動情時動情。所以,當務之急,探究學生學習數學的心理狀態及方法態度以求轉變學生的思想,提高教學質量。
三、思想上的限制
自古以來,我們的儒家學者的倫理學,在當時的農業社會是適用的,有些還是超前的。例如,儒家強調勤奮,將成功歸因于努力,拼搏的精神,堅信熟能生巧。孔子認為人的生命是有限的,但是可以通過“三不朽”包括立德、立功、立言來延續生命。到了西漢時期“罷黜百家,獨尊儒術”,以儒家宗法思想為中心,包含了神權、君權、父權、夫權等成套的體系,三綱五常等重要儒家理論。統治者利用這些東西,使得他們具有很大的權威性,把一些道德上的和觀念賦予了法律的權威,把平淡的理論極端化了,必有其弊端。平常百姓不得不服從,對舊的條條框框不敢有所突破,在潛意識中,就一直在尋找著某種標準。這種不好的現象要改,但不是一蹴而就,而是需要從思想上的突破開始,落實到個人就是,突破那種自我設限。
自我設限是指個體針對可能到來的失敗威脅而事先設置障礙,以達到自我保護或自我提升的目的,是一種消極的應對方式。中學生學習負擔重,心理壓力大,學業自我設限行為較為普遍。自我設限的行為會帶來比失敗本身更嚴重的不良后果。我們應該盡力幫助每個學生排除自我設限,走出學業困境,從容應對學習中的困難和挑戰。
參考文獻:
[1]喻平.數學教學心理學[M].廣西教育出版社,2008.
[2]鳳凰出版傳媒集團.華人如何學習數學[M].江蘇教育出版社,2005.
[3]呂世虎.中國當代中學數學課程發展的歷程及其啟示[D].東北師范大學,2009.