【摘要】 倒立擺系統(tǒng)是一個(gè)非線性自然不穩(wěn)定系統(tǒng),介紹了二級(jí)倒立擺系統(tǒng)的硬件組成,從運(yùn)動(dòng)學(xué)的角度建立了系統(tǒng)的數(shù)學(xué)模型,并用狀態(tài)反饋對(duì)二級(jí)倒擺系統(tǒng)進(jìn)行詳細(xì)的控制設(shè)計(jì),最后設(shè)計(jì)了系統(tǒng)的全維觀測(cè)器,經(jīng)仿真驗(yàn)證得到了較好的控制效果。
【關(guān)鍵詞】 二級(jí)倒立擺;觀測(cè)器;MATLAB仿真
倒立擺是研究控制理論的典型實(shí)驗(yàn)平臺(tái),其高階次、不穩(wěn)定、變量、非線性和強(qiáng)耦合的特性吸引了眾多研究者??刂破鞯脑O(shè)計(jì)是倒立擺系統(tǒng)的核心內(nèi)容,因?yàn)榈沽[是一個(gè)絕對(duì)不穩(wěn)定的系統(tǒng),為使其保持穩(wěn)定,我們應(yīng)用現(xiàn)代控制理論知識(shí)進(jìn)行分析。
一、物理模型
一個(gè)典型的二級(jí)倒立擺系統(tǒng)主要由機(jī)電裝置和控制裝置兩部分組成。機(jī)電裝置的結(jié)構(gòu)主要由:光滑的導(dǎo)軌、小車(chē)、下擺桿、上擺桿及連接軸等構(gòu)成(如圖1所示)。設(shè)系統(tǒng)中擺桿是勻質(zhì)剛體,擺桿豎直向上時(shí),下擺桿角位移、上擺桿角位移均為零,擺桿順時(shí)針旋轉(zhuǎn)為正。
二、數(shù)學(xué)模型
將二級(jí)倒立擺系統(tǒng)分為小車(chē),擺桿1,擺桿2三部分。由受力分析可得在平衡點(diǎn)(?茲1≈0,?茲2≈0)的線性方程:
(m+m1+m2)x+(m1L1+m2L)?茲2+m2L2?茲2=F(2-1)
(m1L1+m2L)x+(J1+m1L12+m2L2)?茲1+m2LL2?茲2=(m1L1+m2L)g?茲1(2-2)
m2L2x+m2LL2?茲1+(J2+m2L22)?茲2=m2gL2?茲2(2-3)
其中,m=2.3287kg為小車(chē)質(zhì)量,下擺桿質(zhì)量m1=0.22kg,轉(zhuǎn)動(dòng)慣量J1≈0,下擺桿重心到轉(zhuǎn)軸a間的長(zhǎng)度L1=0.32m,上擺桿質(zhì)量m2=0.16kg,轉(zhuǎn)動(dòng)慣量J2≈0,上擺桿重心到轉(zhuǎn)軸b間的長(zhǎng)度L2=0.26m,上下擺桿長(zhǎng)度為L(zhǎng)=0.5m,重力加速度g。取:x1=x,x2=x,x3=?茲1,x4=?茲\"1,x5=?茲2,x6=?茲\"2代入?yún)?shù)后得到如下?tīng)顟B(tài)方程:
三、基于狀態(tài)反饋的二級(jí)倒立擺系統(tǒng)設(shè)計(jì)
(1)能控性判別。判斷能控性矩陣TC=ctrb(A,B)的秩R(TC)=6,故系統(tǒng)狀態(tài)完全可控。
(2)閉環(huán)系統(tǒng)極點(diǎn)配置?!?br>