999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

孤獨(dú)癥中不同大腦活動(dòng)相關(guān)的基因表達(dá)變化

2025-04-04 00:00:00翁玉悅翁旭初耿紅巖
心理科學(xué)進(jìn)展 2025年4期

摘 "要""大腦活動(dòng)受到基因表達(dá)的調(diào)控, 基因表達(dá)的變化可以反映大腦活動(dòng)狀態(tài)的改變。隨著腦成像基因組學(xué)的發(fā)展, 結(jié)合跨皮質(zhì)區(qū)域的功能磁共振成像和轉(zhuǎn)錄組分析, 目前已經(jīng)能夠檢測(cè)到與大腦結(jié)構(gòu)和功能相關(guān)的基因組變化。這方面的研究正逐步應(yīng)用于神經(jīng)精神疾病領(lǐng)域, 包括孤獨(dú)癥譜系障礙(Autism Spectrum Disorders, ASD)中, 以探究基因表達(dá)與大腦活動(dòng)的關(guān)系。對(duì)與大腦活動(dòng)相關(guān)的基因在ASD發(fā)病中的作用機(jī)制進(jìn)行研究, 可以為ASD腦活動(dòng)變化分析、發(fā)病機(jī)制探究和臨床治療對(duì)策開(kāi)發(fā)提供生理功能參考依據(jù)。

關(guān)鍵詞""孤獨(dú)癥, 腦成像, 大腦活動(dòng), 基因表達(dá)

分類號(hào)""B845

1""引言

孤獨(dú)癥譜系障礙(Autism Spectrum Disorders, ASD)是一類常見(jiàn)的廣泛性神經(jīng)發(fā)育障礙疾病, 在兒童發(fā)育早期就出現(xiàn)并持續(xù)終生。根據(jù)世界衛(wèi)生組織的數(shù)據(jù), 目前全世界大約每100個(gè)兒童中就有1人患有ASD (Zeidan et al., 2022)。2020年發(fā)表的中國(guó)第一個(gè)全國(guó)性ASD流行病學(xué)估測(cè)研究的數(shù)據(jù)顯示, 國(guó)內(nèi)ASD流行率為0.7%, 相當(dāng)于每143名兒童中就有1位ASD兒童(Zhou et al., 2020)。ASD患者主要表現(xiàn)出三大核心癥狀, 包括社會(huì)交往障礙、語(yǔ)言交流障礙、重復(fù)刻板行為(Harris, 2018)。根據(jù)疾病的嚴(yán)重程度, ASD會(huì)不同程度地影響兒童與照顧者的溝通和融入社會(huì)的能力, 給患者個(gè)人、家庭和社會(huì)帶來(lái)沉重負(fù)擔(dān)。

大量功能磁共振成像(functional Magnetic Resonance Imaging, fMRI)研究表明, 與同齡的正常人相比, ASD患者的大腦在結(jié)構(gòu)、功能、連接等方面都有異常的變化, 而且這些異常的大腦活動(dòng)與患者的癥狀表現(xiàn)相關(guān)。一些其它影像學(xué)研究方法如腦電圖、腦磁圖等也在近幾十年里被廣泛應(yīng)用到對(duì)ASD的研究中, 同時(shí)提供了這方面的證據(jù)(Isler et al., 2010; Khan et al., 2013; Sheikhani et"al., 2012)。與大腦左半球相比, ASD患者和健康個(gè)體的大腦活動(dòng)區(qū)域差異更常見(jiàn)于右半球, 且大腦后部和中部的活動(dòng)明顯減弱(Subbaraju et al., 2017)。枕部和顳部的局部功能紊亂, 尤其是右側(cè)顳中回和梭狀回自發(fā)腦活動(dòng)水平降低, 這將導(dǎo)致成人ASD患者的社交和溝通障礙(Itahashi et al., 2015)。ASD患兒大腦半球內(nèi)尤其左側(cè)大腦半球內(nèi)神經(jīng)連接不足(姚滔濤 等, 2020), 左側(cè)顳葉活動(dòng)減少而右側(cè)不變(Eyler et al., 2012), 這會(huì)導(dǎo)致患者語(yǔ)言交流障礙。ASD患者的楔前葉到視覺(jué)皮層、基底神經(jīng)節(jié)的連接以及后內(nèi)側(cè)皮層的局部連接都減弱, 而后扣帶與內(nèi)側(cè)和前外側(cè)顳葉皮質(zhì)連接增強(qiáng), 這些異常連接與ASD患者的社會(huì)行為損傷有關(guān)(Lynch et al., 2013)。研究ASD患者異常的大腦活動(dòng)變化可以了解其癥狀表現(xiàn)的生理基礎(chǔ), 在早期監(jiān)測(cè)ASD兒童的大腦活動(dòng)也可以為ASD的診斷提供依據(jù)、為臨床治療提供參考。

大腦活動(dòng)是通過(guò)結(jié)構(gòu)和功能不同的腦區(qū)基因表達(dá)變化進(jìn)行調(diào)控的, 腦區(qū)自身的活躍狀態(tài)、腦區(qū)間的連接和協(xié)調(diào)活動(dòng)均受到基因表達(dá)的調(diào)控(Dong et al., 2018; Seidlitz et al., 2018)。不同腦區(qū)之間協(xié)同運(yùn)作調(diào)控大腦活動(dòng)實(shí)現(xiàn)高級(jí)功能離不開(kāi)區(qū)域之間基因表達(dá)的協(xié)同變化, 因此不同腦區(qū)基因表達(dá)的相似程度在一定程度上可以反映腦區(qū)在功能實(shí)現(xiàn)上的相似性(Mochida amp; Walsh, 2004; Romero-Garcia et al., 2018; Zeng et al., 2012)。Lazarev等人觀察到ASD患者相比正常人的大腦活動(dòng)在中央、頂葉和枕骨區(qū)域的半球間一致性降低, 特別是在β波、快速α波和θ波上(Lazarev et"al., 2015)。同一個(gè)大腦功能網(wǎng)絡(luò)中的腦區(qū)在靜息狀態(tài)下會(huì)出現(xiàn)高度同步的大腦活動(dòng)和高度相似的基因表達(dá), 并且與大腦功能連接顯著相關(guān)的基因主要與離子通道和突觸功能有關(guān)(Richiardi et"al., 2015)。之后大量研究開(kāi)始探索大腦活動(dòng)和基因表達(dá)之間的關(guān)系, 并確定了一些影響腦部形態(tài)、結(jié)構(gòu)、連通性的基因位點(diǎn)(Anderson et al., 2018; Radonjic et al., 2021; Yadav et al., 2021)。對(duì)ASD患者大腦fMRI和基因轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行耦合分析可以發(fā)現(xiàn), 與健康個(gè)體相比ASD患者中的異常大腦活動(dòng)與415個(gè)基因表達(dá)情況有關(guān)(Berto et al., 2022)。研究ASD患者大腦活動(dòng)和基因表達(dá)之間的關(guān)系對(duì)于理解ASD癥狀的分子基礎(chǔ)至關(guān)重要, 可以幫助我們更好地了解基因如何調(diào)控大腦功能活動(dòng)從而導(dǎo)致不同的認(rèn)知和行為障礙, 這有助于發(fā)現(xiàn)ASD的重要調(diào)控靶點(diǎn), 為ASD的早期診斷、靶向治療提供支持。本文將針對(duì)近年來(lái)發(fā)現(xiàn)的與ASD大腦活動(dòng)差異相關(guān)基因表達(dá)機(jī)制的有關(guān)研究進(jìn)行綜述, 以期為ASD患者的腦活動(dòng)變化分析、發(fā)病機(jī)制探究和臨床治療對(duì)策開(kāi)發(fā)提供生理功能參考依據(jù)。

2 "ASD中大腦活動(dòng)變化

對(duì)個(gè)體死后的大腦進(jìn)行病理檢查可以觀察到, 與正常人相比, ASD患者很多腦區(qū)表現(xiàn)出異常的神經(jīng)解剖學(xué)變化。研究發(fā)現(xiàn), 在所有年齡段的ASD患者大腦中都觀察到了一些相同的結(jié)構(gòu)變化, 如內(nèi)嗅皮層、杏仁核、海馬體和邊緣系統(tǒng)中細(xì)胞密度增大, 同時(shí)細(xì)胞體積變小(Kemper amp; Bauman, 2002)。與健康人相比, ASD患者小腦皮質(zhì)的浦肯野細(xì)胞數(shù)量明顯減少(Arin et al., 1991)。一項(xiàng)研究發(fā)現(xiàn)幼兒患者大腦的前額葉皮層細(xì)胞數(shù)量增加(Courchesne et al., 2011)。另一項(xiàng)對(duì)患者大腦的尸檢研究還發(fā)現(xiàn)了大腦軸突密度改變和白質(zhì)中髓磷脂受損(Zikopoulos amp; Barbas, 2010)。總的來(lái)說(shuō), 相對(duì)于健康個(gè)體, ASD患者的大腦不同區(qū)域發(fā)育受限, 由此產(chǎn)生大腦活動(dòng)改變的生理基礎(chǔ)。

利用fMRI研究ASD患者的大腦活動(dòng)變化是目前使用最廣的非侵入方法。通過(guò)使用fMRI方法檢查腦容量的變化, 觀察到18至35個(gè)月的ASD嬰兒的平均腦容量相比健康個(gè)體有所增加(Aylward et al., 2002), 而成年ASD患者的平均腦容量降低或者沒(méi)有顯著變化(Carper et al., 2002), 這表明ASD患者大腦存在非典型發(fā)育問(wèn)題。同時(shí), 額葉皮層出現(xiàn)早熟和過(guò)度生長(zhǎng)的情況(Carper amp; Courchesne, 2005), 這與ASD患者的社交和情緒障礙有關(guān)。而ASD患者的小腦體積增大(Provost et"al., 2007), 則與患者的運(yùn)動(dòng)缺陷和認(rèn)知功能障礙相關(guān)。

靜息態(tài)fMRI的研究揭示了ASD患者區(qū)域網(wǎng)絡(luò)連接的異常。一項(xiàng)研究發(fā)現(xiàn)ASD患者大腦皮層和齒狀核之間的功能連接異常, 暗示小腦和大腦的社會(huì)皮層區(qū)域之間的相互作用受損(Olivito et"al., 2017)。ASD兒童大腦中獎(jiǎng)賞相關(guān)區(qū)域的連接性降低, 而且負(fù)責(zé)人類語(yǔ)音處理的顳溝連通性不足(Abrams et al., 2013)。另一項(xiàng)研究觀察到ASD患者中默認(rèn)模式網(wǎng)絡(luò)與內(nèi)側(cè)前額葉皮層和角回的連接減少(Joshi et al., 2017), 內(nèi)側(cè)前額葉皮層主要參與決策, 編碼工作記憶中任務(wù)相關(guān)的信息(Baddeley, 2003), 而角回則參與語(yǔ)義處理、默認(rèn)模式網(wǎng)絡(luò)、社會(huì)認(rèn)知以及記憶檢索和注意過(guò)程(Seghier, 2013)。

基于任務(wù)的fMRI的研究顯示多個(gè)腦區(qū)的功能連接發(fā)生了變化。基于認(rèn)知控制任務(wù)的fMRI研究發(fā)現(xiàn)ASD中額葉與紋狀體的功能連接障礙, 特別是在額葉回、基底神經(jīng)節(jié)和前扣帶回皮層區(qū)域(Catarino et al., 2011); 基于獎(jiǎng)勵(lì)處理任務(wù)的fMRI研究表明, ASD患者的中腦皮質(zhì)和中腦邊緣區(qū)域存在損傷(Kana amp; Wadsworth, 2012); 基于識(shí)別任務(wù)的fMRI研究發(fā)現(xiàn)了ASD 兒童大腦左側(cè)梭狀回和右側(cè)島葉之間的連接性增加(Safar et al., 2018)。在情緒任務(wù)中, ASD個(gè)體的大腦中參與高級(jí)社交的腦區(qū)(包括梭狀回、扣帶回、杏仁核、腦回、島葉)和進(jìn)行執(zhí)行處理的前額葉皮層的激活減少, 而參與調(diào)節(jié)初級(jí)運(yùn)動(dòng)和感覺(jué)處理的低級(jí)結(jié)構(gòu)的腦區(qū)激活增加(Ameis amp; Szatmari, 2012)。腦磁圖研究也發(fā)現(xiàn)ASD兒童大腦長(zhǎng)程功能連接和局部功能連接較正常兒童都有損傷, 并且局部功能連接的高低與ASD嚴(yán)重程度相關(guān)(Khan et al., 2013)。總的來(lái)說(shuō), 利用fMRI等腦成像技術(shù)可以報(bào)告ASD患者大腦活動(dòng)變化, 再結(jié)合基因表達(dá)數(shù)據(jù)進(jìn)行分析就可以發(fā)現(xiàn)與ASD中大腦活動(dòng)相關(guān)的基因, 由此通過(guò)這些基因的表達(dá)變化來(lái)探究其對(duì)腦活動(dòng)的影響和在ASD中的致病機(jī)制。

3 "ASD中大腦活動(dòng)相關(guān)基因

由于腦成像技術(shù)和基因組分析技術(shù)等的快速發(fā)展, 研究發(fā)現(xiàn)了一系列與ASD中大腦活動(dòng)相關(guān)的基因, 這些基因通過(guò)不同的功能途徑影響ASD個(gè)體的認(rèn)知和行為活動(dòng), 如ANK2、CD38等影響神經(jīng)元的發(fā)育; DIP2A、SHANK3等影響突觸傳遞; OXTR影響神經(jīng)遞質(zhì)催產(chǎn)素的結(jié)合; GABRQ、SCN1B影響大腦皮層的興奮?抑制平衡。在此, 以相關(guān)基因作用于ASD患者大腦的功能途徑做劃分, 分別從神經(jīng)元發(fā)育、突觸傳遞、神經(jīng)遞質(zhì)和興奮?抑制平衡四個(gè)角度總結(jié)分析大腦活動(dòng)差異相關(guān)基因在ASD患者中的表達(dá)變化及其對(duì)患者大腦功能和癥狀表型的影響。

3.1 "神經(jīng)元發(fā)育相關(guān)基因

大腦是一個(gè)多層次的復(fù)雜系統(tǒng), 多個(gè)神經(jīng)元、神經(jīng)元集群以及多個(gè)腦區(qū)相互連接形成了復(fù)雜的大腦結(jié)構(gòu)網(wǎng)絡(luò), 并通過(guò)神經(jīng)元、神經(jīng)系統(tǒng)之間相互配合、協(xié)調(diào)的神經(jīng)活動(dòng)來(lái)實(shí)現(xiàn)復(fù)雜的大腦功能(梁夏 等, 2010)。神經(jīng)元是大腦結(jié)構(gòu)和功能實(shí)現(xiàn)的基礎(chǔ), 神經(jīng)元發(fā)育同樣受到基因表達(dá)的調(diào)控, 如ANK2基因與神經(jīng)元的特殊膜蛋白域的構(gòu)建有關(guān)。而在ASD個(gè)體中, 一些神經(jīng)發(fā)育相關(guān)基因的表達(dá)出現(xiàn)異常, 會(huì)導(dǎo)致患者大腦活動(dòng)變化。

3.1.1 "ANK2

ANK2在ASD患者中反復(fù)發(fā)生從頭突變, 是一種高置信度的ASD風(fēng)險(xiǎn)基因(Satterstrom et al., 2020; Willsey et al., 2013)。ANK2編碼錨蛋白B, 負(fù)責(zé)將膜蛋白聚集到專門的膜結(jié)構(gòu)域中, 在細(xì)胞運(yùn)動(dòng)、活化、增殖、接觸和維持特殊膜結(jié)構(gòu)域等活動(dòng)中起關(guān)鍵作用(Kawano et al., 2022)。ANK2在大腦早期發(fā)育階段高度表達(dá), 表達(dá)水平達(dá)到峰值, 到發(fā)育后期表達(dá)水平逐漸穩(wěn)定。ANK2是早期神經(jīng)發(fā)生的調(diào)節(jié)因子, 調(diào)控神經(jīng)干細(xì)胞的分化和神經(jīng)元遷移, 參與神經(jīng)元發(fā)育過(guò)程, 并且下調(diào)ANK2基因會(huì)改變與神經(jīng)發(fā)育有關(guān)的基因表達(dá), 這表明患者的ANK2單倍不足可以通過(guò)上述兩種途徑損害神經(jīng)發(fā)育, 導(dǎo)致ASD風(fēng)險(xiǎn)增加(Kawano et al., 2022)。利用彌散張量成像對(duì)ANK2突變小鼠進(jìn)行研究發(fā)現(xiàn)在ANK2突變小鼠出生后的發(fā)育過(guò)程中, 大腦皮層中興奮性錐體神經(jīng)元軸突分支增加, 興奮性突觸數(shù)量升高, 且皮質(zhì)的整體連通性和半球間不對(duì)稱性增強(qiáng), 這些改變可能導(dǎo)致ASD患者中與高級(jí)執(zhí)行功能相關(guān)的社交行為障礙(Yang et al., 2019)。

3.1.2 "CD38

CD38基因編碼一種不受譜系限制的Ⅱ型跨膜糖蛋白, 通過(guò)合成和水解細(xì)胞內(nèi)鈣離子動(dòng)員信使環(huán)腺苷5'-二磷酸核糖, 參與細(xì)胞內(nèi)鈣離子的釋放過(guò)程, 而鈣離子的監(jiān)管是神經(jīng)發(fā)育的重要過(guò)程。研究發(fā)現(xiàn)缺乏CD38的小鼠大腦視覺(jué)皮層和齒狀回的神經(jīng)元數(shù)量和神經(jīng)元形態(tài)出現(xiàn)異常, CD38(?/?)和CD38(+/+)小鼠在視覺(jué)皮層和海馬體CA1錐體神經(jīng)元的頂樹(shù)突中存在樹(shù)狀結(jié)構(gòu)差異(Nelissen et al., 2018)。缺乏CD38的小鼠前額葉皮層發(fā)育異常、突觸可塑性受損, 大腦皮層的興奮?抑制平衡失衡并向更高的興奮性轉(zhuǎn)移(Martucci et al., 2019)。CD38與PI3K / AKT通路有關(guān)(Lee, 2006), CD38缺陷會(huì)誘發(fā)PI3K/AKT通路功能障礙, 影響正常的神經(jīng)元生長(zhǎng)和遷移, 這是支持CD38缺陷小鼠前額葉、視覺(jué)皮層和海馬體神經(jīng)元數(shù)量和形態(tài)異常的證據(jù), 揭示了CD38影響ASD癥狀的生理途徑。此外, 具有CD38風(fēng)險(xiǎn)等位基因的ASD患者大腦中CD38表達(dá)降低, 影響下丘腦分泌催產(chǎn)素的過(guò)程, CD38的表達(dá)降低還會(huì)影響其它神經(jīng)調(diào)節(jié)劑(如5-羥色胺、多巴胺)的分泌, 進(jìn)而影響大腦皮層的興奮?抑制平衡, 會(huì)加劇ASD患者的社交行為缺陷(Martucci et al., 2019; Winslow et"al., 2000)。

3.1.3 "CHD2, CHD7和CHD8

CHD基因編碼染色質(zhì)域解旋酶DNA結(jié)合蛋白, 這是一種非常重要的染色質(zhì)調(diào)節(jié)蛋白, 它可以利用三磷酸腺苷水解的能量改變核小體的定位, 進(jìn)而參與基因轉(zhuǎn)錄調(diào)控。越來(lái)越多的證據(jù)表明, CHD蛋白在發(fā)育過(guò)程中起著指導(dǎo)性和程序性的作用(Ho amp; Crabtree, 2010)。CHD基因家族共有9個(gè)亞基。CHD2主要在Pax6+放射狀膠質(zhì)細(xì)胞中高度表達(dá), 但在Tbr2中間主細(xì)胞中很少見(jiàn), CHD2通過(guò)刺激REST (抑制因子1‐沉默轉(zhuǎn)錄因子)的表達(dá)來(lái)實(shí)現(xiàn)在神經(jīng)發(fā)育中的功能(J?rgensen et al., 2009)。CHD2表達(dá)抑制已被證明可減少Pax6+放射狀膠質(zhì)細(xì)胞數(shù)量, 并促進(jìn)中間祖細(xì)胞的產(chǎn)生, 通過(guò)這一機(jī)制CHD2在祖細(xì)胞更新和皮質(zhì)發(fā)育中起著重要的平衡作用, CHD2失活將導(dǎo)致異常的神經(jīng)發(fā)育(Shen et al., 2015)。ASD患者中發(fā)生的CHD2突變與發(fā)育遲緩、智力殘疾、癲癇等其它行為問(wèn)題有關(guān)(Kasah et al., 2018)。

CHD7在染色質(zhì)重塑、細(xì)胞周期調(diào)節(jié)、細(xì)胞凋亡調(diào)控、轉(zhuǎn)錄調(diào)節(jié)和胚胎干細(xì)胞多樣性中發(fā)揮作用, 大多數(shù)CHD7突變產(chǎn)生非功能性蛋白質(zhì), 擾亂染色質(zhì)重塑和基因表達(dá)的調(diào)節(jié), 胚胎發(fā)育中基因表達(dá)的變化將導(dǎo)致包括ASD在內(nèi)的神經(jīng)發(fā)育障礙性疾病(Bouazoune amp; Kingston, 2012)。體外核小體重塑測(cè)定證實(shí)了CHD7可以沿染色質(zhì)模板易位核小體, 通過(guò)核小體重塑維持DNA可及性(Bouazoune amp; Kingston, 2012), 通過(guò)這一機(jī)制, CHD7會(huì)影響早期胚胎小腦發(fā)育。在胚胎發(fā)生結(jié)束時(shí), 小腦開(kāi)始一段主要由小腦表面外顆粒層中顆粒細(xì)胞祖細(xì)胞的增殖驅(qū)動(dòng)的快速生長(zhǎng)期(Donovan et al., 2017), CHD7缺陷會(huì)使顆粒細(xì)胞祖細(xì)胞中RELN基因位點(diǎn)和整個(gè)基因組的可及性降低, 影響其增殖進(jìn)而導(dǎo)致小腦發(fā)育不全(Whittaker et al., 2017), 由此出現(xiàn)ASD相關(guān)的癥狀表現(xiàn)。ASD患者中CHD7基因突變的單倍體不足與執(zhí)行功能障礙和智力殘疾有關(guān)(Andreae amp; Basson, 2018; Kasah et al., 2018; Wang et al., 2018)。此外, CHD7促進(jìn)大腦中的神經(jīng)干細(xì)胞在早期發(fā)育期的多能性和成年期的靜止, 干細(xì)胞分化潛能和耗竭率都與CHD7的表達(dá)水平相關(guān)(Whittaker et al., 2017)。

CHD8編碼蛋白的特征是一個(gè)SNF2樣結(jié)構(gòu)域和兩個(gè)染色質(zhì)組織修飾域, 已被證實(shí)在包括DNA轉(zhuǎn)錄調(diào)控、表觀遺傳重塑、細(xì)胞增殖促進(jìn)和RNA合成調(diào)控等幾個(gè)過(guò)程中發(fā)揮作用(Yuan et al., 2007), 同時(shí)大量文獻(xiàn)研究證明ASD患者中的CHD8基因發(fā)生了突變(Stolerman et al., 2016; Zahir et al., 2007), CHD8是ASD中最常突變和滲透性最強(qiáng)的基因之一。CHD8突變可導(dǎo)致輕度智力殘疾、早期運(yùn)動(dòng)缺陷和語(yǔ)言延遲, 與ASD的行為特征一致, 同時(shí)伴隨大頭畸形、面部畸形和胃腸道紊亂等身體特征(Merner et al., 2016; Zahir et"al., 2007)。CHD8突變雜合子小鼠的胚胎神經(jīng)發(fā)育延遲, 大腦中基因表達(dá)水平發(fā)生微小但整體的變化, 突變小鼠表現(xiàn)出焦慮增加、重復(fù)行為、社會(huì)行為改變等類似ASD的行為特征, 而且出現(xiàn)腦容量增加、胃腸道紊亂等身體特征(Katayama et al., 2016)。CHD8參與多種轉(zhuǎn)錄因子活性的調(diào)節(jié), 例如通過(guò)與轉(zhuǎn)錄因子hStaf的相互作用激活由U6啟動(dòng)子驅(qū)動(dòng)的基因轉(zhuǎn)錄, 而且它對(duì)于主要的轉(zhuǎn)錄抑制因子CTCF也是必需的(Yuan et al., 2007)。由于CHD8在DNA轉(zhuǎn)錄中發(fā)揮核心作用, 將CHD8表達(dá)抑制到與單個(gè)等位基因缺失相當(dāng)?shù)乃綍?huì)導(dǎo)致1756個(gè)基因的表達(dá)發(fā)生改變, 并且與ASD患者大腦活動(dòng)相關(guān)的基因在表達(dá)下調(diào)的CHD8共表達(dá)基因中強(qiáng)烈富集(Andreae amp; Basson, 2018; Sugathan et al., 2014)。CHD8還參與到細(xì)胞發(fā)育周期調(diào)節(jié)的過(guò)程中, 能促進(jìn)多種人類衍生細(xì)胞的增殖, CHD8與DNA合成期依賴啟動(dòng)子結(jié)合并招募控制細(xì)胞周期調(diào)控的轉(zhuǎn)錄因子E2F (Subtil-Rodríguez et al., 2014), CHD8基因敲除的細(xì)胞DNA合成期細(xì)胞數(shù)量大幅減少, 細(xì)胞分裂第一階段細(xì)胞數(shù)量增加(Rodríguez-Paredes et al., 2009), 這一機(jī)制是造成CHD8突變相關(guān)的ASD患者巨頭畸形的原因。

3.1.4 "CNTNAP2

CNTNAP2編碼接觸蛋白相關(guān)蛋白樣2 (一種神經(jīng)外聯(lián)蛋白相關(guān)細(xì)胞粘附蛋白), 其最突出的功能是定位于近結(jié)側(cè)區(qū)并聚集鉀離子通道(Poliak et"al., 2003)。CNTNAP2主要在前額葉皮層興奮性神經(jīng)元中表達(dá), 在神經(jīng)系統(tǒng)發(fā)育過(guò)程中介導(dǎo)神經(jīng)元和膠質(zhì)細(xì)胞之間的相互作用。CNTNAP2 已被確定為主要影響額葉連通性的ASD風(fēng)險(xiǎn)基因(Arking et al., 2008; Zeeland et al., 2010)。CNTNAP2在中間神經(jīng)元中強(qiáng)烈表達(dá), 它參與皮質(zhì)中間神經(jīng)元的樹(shù)突生長(zhǎng), CNTNAP2敲除小鼠的成熟中間神經(jīng)元都出現(xiàn)樹(shù)突分支和樹(shù)突長(zhǎng)度的減少(Gao et al., 2020)。一些研究表明, CNTNAP2基因的缺失降低了體內(nèi)/體外樹(shù)突棘的密度, 它參與到樹(shù)突棘動(dòng)力學(xué)的過(guò)程中, 而這對(duì)大腦可塑性至關(guān)重要(Gdalyahu et al., 2015; Lazaro et al., 2019; Varea et al., 2015)。通過(guò)和健康個(gè)體的fMRI對(duì)比研究發(fā)現(xiàn), 一些ASD患者中CNTNAP2的表達(dá)發(fā)生了c.3709DelG突變, 這導(dǎo)致灰質(zhì)中的神經(jīng)祖細(xì)胞過(guò)度增殖, 患者出現(xiàn)大腦過(guò)度生長(zhǎng)的臨床癥狀(de Jong et al., 2021)。ASD個(gè)體中常見(jiàn)的CNTNAP2變體的表達(dá)導(dǎo)致右側(cè)扣帶回的白質(zhì)體積減少, 這與ASD患者更嚴(yán)重的社會(huì)意識(shí)缺陷有關(guān)(Chien et al., 2021)。CNTNAP2缺陷小鼠表現(xiàn)出海馬PV+中間神經(jīng)元密度降低和胞外抑制, 導(dǎo)致海馬γ振蕩和尖波波紋空間活動(dòng)的改變, 這與ASD患者依賴海馬的空間記憶缺陷有關(guān)(Paterno et al., 2021)。利用大鼠研究發(fā)現(xiàn), CNTNAP2基因敲除的大鼠聽(tīng)覺(jué)皮層不成熟, 對(duì)聽(tīng)覺(jué)刺激的時(shí)間分辨率變差, 而且存在過(guò)度興奮現(xiàn)象(Scott et al., 2022)。進(jìn)一步研究發(fā)現(xiàn), 語(yǔ)言發(fā)育未延遲的ASD兒童接受語(yǔ)言的能力下降也與CNTNAP2基因多態(tài)性有關(guān)(Shiota et al., 2022)。

3.2""突觸傳遞相關(guān)基因

3.2.1 "DIP2A

DIP2A編碼斷開(kāi)相互作用蛋白質(zhì)同源物2A, 參與乙酰化輔酶A的合成, 通過(guò)調(diào)節(jié)皮質(zhì)醇乙酰化促進(jìn)樹(shù)突棘發(fā)育和突觸傳遞(Ma, Chen, et al., 2019)。DIP2A主要在錐體神經(jīng)元數(shù)量豐富的腦區(qū)表達(dá), 如大腦皮層、海馬、杏仁核(Zhang et al., 2015)。一項(xiàng)對(duì)DIP2A基因敲除小鼠進(jìn)行全細(xì)胞記錄分析的研究發(fā)現(xiàn), DIP2A與突觸后肌動(dòng)蛋白結(jié)合蛋白Cortactin相互作用, 它的缺失會(huì)導(dǎo)致大腦皮層中樹(shù)突棘形態(tài)缺陷、突觸后密度結(jié)構(gòu)改變、錐體神經(jīng)元數(shù)突觸傳遞減少以及微型興奮性突觸后電流振幅降低、皮質(zhì)乙酰化減少, 影響大腦活動(dòng)興奮性, DIP2A缺失的小鼠出現(xiàn)社交興趣缺失、過(guò)度重復(fù)行為、發(fā)聲時(shí)間減少等類ASD癥狀(Ma, Zhang, et al., 2019)。此外, DIP2A在大腦皮層神經(jīng)元的線粒體中富集(Ma, Chen, et al., 2019), 進(jìn)一步研究發(fā)現(xiàn)DIP2A參與了超氧化物歧化酶介導(dǎo)的抗氧化反應(yīng), DIP2A敲除小鼠中發(fā)現(xiàn)超氧化物歧化酶的活性受到抑制、大腦皮層活性氧水平增加(Bai et al., 2021)。這揭示了DIP2A在抗氧化保護(hù)的功能, 為DIP2A介導(dǎo)的ASD病理生理學(xué)提供了另一種可能的解釋。

3.2.2 "SHANK3

SHANK基因突變約占臨床ASD病例中的1%, SHANK3是其中最常見(jiàn)的基因變異(Balaan et al., 2019)。SHANK3主要在大腦皮層的神經(jīng)元, 特別是神經(jīng)元突觸中表達(dá), 編碼突觸后致密物中的多域支架蛋白, 負(fù)責(zé)將神經(jīng)遞質(zhì)受體、離子通道蛋白和其他膜蛋白連接到肌動(dòng)蛋白細(xì)胞骨架和信號(hào)蛋白中, 在突觸形成和樹(shù)突棘成熟過(guò)程中起著重要作用(Uchino amp; Waga, 2013)。SHANK3缺失影響谷氨酸受體亞基表達(dá)水平, 谷氨酸能的突觸傳遞顯著降低, 突觸密度降低, 樹(shù)突的復(fù)雜性增加, SHANK3缺失的小鼠社交能力降低并且表現(xiàn)出伴有自殘的焦慮行為(Peca et al., 2011)。對(duì)SHANK3缺失小鼠進(jìn)行fMRI分析, 發(fā)現(xiàn)其前額葉和額葉的遠(yuǎn)距離和局部功能連接中斷, 這與社會(huì)溝通缺陷密切相關(guān)(Pagani et al., 2019)。ASD患者中SHANK3會(huì)出現(xiàn)擴(kuò)增、突變和甲基化的情況(張小飛, 2020)。SHANK3基因主要位于22號(hào)染色體長(zhǎng)臂末端, 其在ASD患者中會(huì)出現(xiàn)明顯的擴(kuò)增, 從而導(dǎo)致認(rèn)知遲緩、社交障礙等一系列神經(jīng)功能障礙(Ponna et al., 2018; Vollert et al., 2018)。ASD患者中SHANK3的突變和甲基化會(huì)導(dǎo)致大腦皮層中突觸功能障礙, 進(jìn)而產(chǎn)生社交障礙(Bey et al., 2018; Liu et al., 2018; Uchino amp; Waga, 2013)。

3.3""神經(jīng)遞質(zhì)催產(chǎn)素相關(guān)基因

催產(chǎn)素是一種具有悠久進(jìn)化史的九肽, 在動(dòng)物和人類的社會(huì)認(rèn)知和行為活動(dòng)中廣泛發(fā)揮作用(Uzefovsky et al., 2019), 催產(chǎn)素作為神經(jīng)遞質(zhì)在“社會(huì)腦”中起著重要作用, 這種影響由催產(chǎn)素受體介導(dǎo)(Kanat et al., 2014)。在以往的研究中, 編碼催產(chǎn)素受體蛋白的OXTR基因已經(jīng)被證明在大腦額葉皮層、杏仁核、下丘腦和嗅核都有表達(dá)(Bethlehem et al., 2017), 并且與ASD人群的社會(huì)認(rèn)知, 尤其是認(rèn)知移情有關(guān)(Uzefovsky et al., 2015; Weisman et al., 2015)。進(jìn)一步的研究發(fā)現(xiàn), OXTR單核苷酸多態(tài)性中有兩個(gè)位點(diǎn)(rs2268491和rs2254298)在ASD個(gè)體大腦右側(cè)邊緣上回的表達(dá)下調(diào), 導(dǎo)致右側(cè)邊緣上回的激活降低(Kohlhoff et al., 2022; Uzefovsky et al., 2019)。右側(cè)邊緣上回負(fù)責(zé)與移情相關(guān)的自我?他者區(qū)分活動(dòng)(Steinbeis, 2016), ASD個(gè)體中OXTR的rs2268491和rs2254298位點(diǎn)表達(dá)下調(diào)會(huì)導(dǎo)致社交中的自我?他者區(qū)分障礙, 影響社交移情。同時(shí), 催產(chǎn)素受體OXTR與蛋白激酶D1的相互磷酸化特異性調(diào)控內(nèi)側(cè)杏仁核介導(dǎo)的長(zhǎng)時(shí)程社交記憶, 這與ASD患者的社交記憶損傷有關(guān)(Wang et al., 2022)。與健康個(gè)體和患ASD的男性個(gè)體相比, 患ASD女性個(gè)體的大腦黑質(zhì)中OXRT的表達(dá)水平顯著降低, OXTR局部轉(zhuǎn)錄失調(diào)或內(nèi)化增加會(huì)導(dǎo)致ASD女性患者和男性患者的社會(huì)癥狀差異(Frehner et al., 2022)。同時(shí), 相對(duì)男性患者而言, ASD 女性患者的OXTR攜帶較多 ASD相關(guān)風(fēng)險(xiǎn)等位基因, 她們的伏隔核、前額葉和運(yùn)動(dòng)學(xué)習(xí)相關(guān)皮層下大腦區(qū)域之間功能連接性更強(qiáng), 這說(shuō)明OXTR基因可能對(duì)ASD女性患者的大腦功能連接進(jìn)行了差異性調(diào)節(jié), 這或許是ASD兩性差異的一個(gè)新見(jiàn)解(Hernandez et al., 2020)。

3.4""興奮?抑制失衡相關(guān)基因

3.4.1 "GABRQ

一項(xiàng)將ASD患者和健康個(gè)體的fMRI數(shù)據(jù)進(jìn)行對(duì)比分析的研究發(fā)現(xiàn)了一些和ASD患者異常的大腦活動(dòng)顯著相關(guān)的基因, 其中GABRQ、SCN1B置信度較高(Berto et al., 2022)。GABRQ編碼一種γ-氨基丁酸(γ-Aminobutyric acid, GABA)受體亞基, GABA能是成人大腦中的主要抑制性神經(jīng)遞質(zhì)。GABRQ在大腦頂葉、小腦和額葉區(qū)域都有表達(dá)(Fatemi et al., 2009)。在一些不同的ASD動(dòng)物模型研究中發(fā)現(xiàn)了共同的GABA能信號(hào)功能障礙, 這導(dǎo)致選擇性腦回路中的興奮?抑制平衡改變(Cellot amp; Cherubini, 2014)。ASD患者中GABRQ的表達(dá)下調(diào)會(huì)導(dǎo)致大腦頂葉、小腦和額葉區(qū)域GABA受體亞基數(shù)量降低, 影響腦區(qū)神經(jīng)回路中GABA介導(dǎo)的神經(jīng)元的活性(Masuda et al., 2019), 這是ASD中大腦皮層興奮?抑制失衡的生理基礎(chǔ), 進(jìn)而造成患者行為失調(diào)。最近的一項(xiàng)將ASD患者和健康個(gè)體的fMRI數(shù)據(jù)進(jìn)行對(duì)比分析的研究也發(fā)現(xiàn)了同樣的現(xiàn)象, GABRQ可以影響大腦皮層的興奮?抑制平衡, 導(dǎo)致ASD患者的認(rèn)知及情緒障礙(Berto et al., 2022)。

3.4.2 "SCN1B

SCN1B編碼電壓門控鈉離子通道的β-1亞基, 調(diào)節(jié)鈉離子通道的失活, 從而影響動(dòng)作電位的發(fā)放。在與ASD患者異常大腦活動(dòng)顯著相關(guān)的基因篩查研究中發(fā)現(xiàn)了SCN1B的表達(dá)異常(Berto et al., 2022)。SCN1B在快速放電的小清蛋白陽(yáng)性(Parvalbumin+, PV+)抑制性中間神經(jīng)元中高度表達(dá), 而PV+抑制性中間神經(jīng)元與皮層網(wǎng)絡(luò)活動(dòng)的調(diào)節(jié)密切相關(guān)。PV+抑制性中間神經(jīng)元能夠?qū)γ}沖時(shí)間等進(jìn)行微調(diào)控制, 從而產(chǎn)生并調(diào)節(jié)伽馬范圍內(nèi)的節(jié)律, 這對(duì)于感官知覺(jué)和注意力非常重要(Filice et al., 2020)。同時(shí)PV+抑制性中間神經(jīng)元是一種GABA能中間神經(jīng)元亞型, 其釋放的GABA與鄰近神經(jīng)元突觸上受體結(jié)合后會(huì)使該神經(jīng)元無(wú)法釋放神經(jīng)遞質(zhì), 抑制進(jìn)一步的信息傳遞, 對(duì)維持皮層的興奮?抑制平衡至關(guān)重要(Hashemi et al., 2018)。而ASD患者腦內(nèi)SCN1B在PV+抑制性中間神經(jīng)元中異常表達(dá), 這導(dǎo)致患者皮層中PV+抑制性中間神經(jīng)元活動(dòng)異常, 引發(fā)皮層興奮?抑制失衡, 并引起患者認(rèn)知情緒障礙。SCN1B基因在ASD患者腦內(nèi)表達(dá)失常, 影響到皮層的興奮?抑制平衡和γ范圍內(nèi)的節(jié)律, 進(jìn)而導(dǎo)致患者的感知覺(jué)、注意力和認(rèn)知失調(diào)(Al-Ward et al., 2020; Berto et al., 2022)。

除了上述提及的基因外, 還有許多基因會(huì)影響ASD患者的大腦活動(dòng)。比如ARHGAP6和C19orf21促進(jìn)肌動(dòng)蛋白的形成, 為神經(jīng)元發(fā)育和突觸可塑性提供支持, 與ASD患者大腦功能連接激發(fā)機(jī)制不平衡有關(guān)(Long et al., 2022); CYFIP1影響胼胝體神經(jīng)元軸突發(fā)育, 與ASD患者運(yùn)動(dòng)協(xié)調(diào)、感覺(jué)運(yùn)動(dòng)門控和感覺(jué)知覺(jué)異常有關(guān)(Domínguez-Iturza et al., 2019); NUAK1參與皮質(zhì)連接發(fā)育過(guò)程, 在ASD患者大腦皮層中表達(dá)下調(diào)導(dǎo)致空間記憶鞏固缺陷、社交新奇缺陷和異常的感覺(jué)運(yùn)動(dòng)門控(Courchet et al., 2018); NRXN1-α影響神經(jīng)元的分化、增殖, 在ASD患者中表達(dá)缺失導(dǎo)致神經(jīng)元發(fā)育受損, 鈣信號(hào)活性顯著降低(Lam et al., 2019); NRF2影響鈷胺狀態(tài), 在ASD患者額葉皮質(zhì)中表達(dá)減少導(dǎo)致鈷胺狀態(tài)功能失調(diào)(Schrier et al., 2022)等等。影響ASD的病理生理學(xué)機(jī)制的基因很多, 因?yàn)槠邢蓿?當(dāng)下僅總結(jié)近幾年報(bào)道較多的相關(guān)基因, 但是其它未提及的基因介導(dǎo)ASD的功能仍然不可忽視。

4""總結(jié)與展望

本文總結(jié)了通過(guò)fMRI研究發(fā)現(xiàn)的與健康個(gè)體相比ASD患者大腦結(jié)構(gòu)和功能活動(dòng)的變化, 同時(shí)總結(jié)分析了一些近幾年研究報(bào)道的和ASD患者大腦活動(dòng)差異相關(guān)的基因, 以及這些基因在ASD患者大腦中的表達(dá)機(jī)制, 包括ANK2、CD38、CHD2、CHD7、CHD8、CNTNAP2、DIP2A、SHANK3、OXTR、GABRQ和SCN1B。與健康個(gè)體相比, ASD患者很多腦區(qū)表現(xiàn)出異常的神經(jīng)解剖學(xué)變化, 如前額葉皮層細(xì)胞數(shù)量增加、小腦浦肯野細(xì)胞數(shù)量減少、大腦皮層軸突密度改變等。fMRI研究結(jié)果發(fā)現(xiàn), ASD患者的大腦存在幼兒患者腦容量增加、額葉皮層早熟、小腦體積增大等非典型發(fā)育問(wèn)題。此外, 患者多個(gè)腦區(qū)的功能連接發(fā)生了變化, 例如默認(rèn)模式網(wǎng)絡(luò)與內(nèi)側(cè)前額葉皮層和角回的連接減少, 額葉與紋狀體的功能連接障礙, 一些腦區(qū)在任務(wù)中的激活減少。結(jié)合fMRI等腦成像技術(shù)報(bào)告的大腦活動(dòng)變化和基因表達(dá)數(shù)據(jù), 可以探究影響ASD腦活動(dòng)的基因表達(dá)機(jī)制變化。近幾年這方面的研究報(bào)道了大量與ASD大腦活動(dòng)差異相關(guān)的基因, 這些基因通過(guò)不同的功能途徑影響大腦活動(dòng)。基因?qū)SD大腦活動(dòng)的影響可以分成兩個(gè)主要的功能組:參與神經(jīng)元通訊(包括突觸結(jié)構(gòu)和功能)和參與基因表達(dá)調(diào)節(jié)(包括染色質(zhì)調(diào)節(jié)因子和轉(zhuǎn)錄因子) (Satterstrom et al., 2020)。按照這種分類, 本文探討的幾種基因主要屬于參與神經(jīng)元通訊的功能組, 在此基礎(chǔ)上根據(jù)在神經(jīng)元通訊中的具體作用對(duì)基因進(jìn)行了細(xì)分, 將其分為神經(jīng)元發(fā)育、突觸傳遞、神經(jīng)遞質(zhì)和興奮?抑制平衡四類。盡管有些基因在不同功能方面有交叉作用, 但細(xì)化分析對(duì)于研究不同基因如何影響大腦活動(dòng), 以及如何引起ASD發(fā)病的探究具有更重要的現(xiàn)實(shí)意義。

ANK2、CD38、CHD2、CHD7、CHD8和CNTNAP2通過(guò)參與神經(jīng)元發(fā)育過(guò)程影響大腦結(jié)構(gòu)和功能。ANK2是早期神經(jīng)發(fā)生的調(diào)節(jié)因子, 調(diào)控神經(jīng)干細(xì)胞的分化和神經(jīng)元遷移, 并且其表達(dá)水平會(huì)影響與神經(jīng)發(fā)育有關(guān)的其它基因表達(dá)(Kawano et al., 2022); ANK2突變會(huì)使大腦皮層興奮性突觸數(shù)量升高、整體連通性增強(qiáng), 這與ASD患者中與高級(jí)執(zhí)行功能相關(guān)的社交行為障礙有關(guān)(Yang et al., 2019)。CD38參與細(xì)胞內(nèi)鈣離子釋放, 影響大腦皮層的興奮?抑制平衡, 同時(shí)其缺陷會(huì)誘發(fā)PI3K/AKT通路功能障礙, 影響正常的神經(jīng)元生長(zhǎng)和遷移, CD38表達(dá)降低會(huì)加劇ASD患者社交行為缺陷(Martucci et al., 2019; Winslow et al., 2000)。CHD2、CHD7和CHD8則通過(guò)不同的轉(zhuǎn)錄因子參與到大腦祖細(xì)胞、皮層和腦區(qū)的發(fā)育中, 其缺陷會(huì)導(dǎo)致發(fā)育遲緩、智力殘疾、執(zhí)行功能障礙等ASD相關(guān)的癥狀表現(xiàn)(Andreae amp; Basson, 2018; Kasah et al., 2018; Katayama et al., 2016; Shen et al., 2015)。CNTNAP2主要在前額葉皮層興奮性神經(jīng)元中表達(dá), 參與皮質(zhì)中間神經(jīng)元的樹(shù)突生長(zhǎng), 已被確定為主要影響額葉連通性的ASD風(fēng)險(xiǎn)基因(Arking et al., 2008; Zeeland et al., 2010)。此外, CHD8作為轉(zhuǎn)錄因子, 參與DNA轉(zhuǎn)錄和轉(zhuǎn)錄延伸的過(guò)程, CHD8的表達(dá)不僅影響大腦神經(jīng)元發(fā)育, 而且與其它ASD相關(guān)基因的表達(dá)有關(guān)。CHD8表達(dá)抑制會(huì)導(dǎo)致大量基因的表達(dá)下調(diào), 其中ASD大腦活動(dòng)相關(guān)基因在這些下調(diào)的CHD8共表達(dá)基因中強(qiáng)烈富集(Sugathan et al., 2014)。這說(shuō)明CHD8的表達(dá)不僅影響大腦的神經(jīng)元發(fā)育, 而且參與ASD相關(guān)基因的表達(dá)調(diào)節(jié)過(guò)程, 暗示了ASD發(fā)病機(jī)制中基因表達(dá)調(diào)節(jié)因子和共表達(dá)基因的協(xié)同影響, 這為臨床治療研究提供了新的思路。

DIP2A和SHANK3影響神經(jīng)元的突觸傳遞功能。DIP2A與突觸后肌動(dòng)蛋白結(jié)合蛋白Cortactin相互作用, 它的缺失會(huì)導(dǎo)致大腦皮層中樹(shù)突棘形態(tài)缺陷、突觸后密度結(jié)構(gòu)改變、錐體神經(jīng)元數(shù)突觸傳遞減少、微型興奮性突觸后電流振幅降低和皮質(zhì)乙酰化減少, 影響大腦活動(dòng)興奮性, 導(dǎo)致社交興趣缺失、過(guò)度重復(fù)行為、發(fā)聲時(shí)間減少等類ASD癥狀(Ma, Zhang, et al., 2019)。SHANK3主要在大腦皮層的神經(jīng)元, 特別是神經(jīng)元突觸中表達(dá), 編碼突觸后致密物中的多域支架蛋白, 在突觸形成和樹(shù)突棘成熟過(guò)程中起著重要作用(Uchino amp; Waga, 2013)。ASD患者中SHANK3的突變和甲基化會(huì)導(dǎo)致大腦皮層中突觸功能障礙, 進(jìn)而產(chǎn)生社交障礙(Bey et al., 2018; Liu et al., 2018)。OXTR影響神經(jīng)遞質(zhì)催產(chǎn)素的結(jié)合, 催產(chǎn)素受體OXTR與蛋白激酶D1的相互磷酸化特異性調(diào)控內(nèi)側(cè)杏仁核介導(dǎo)的長(zhǎng)時(shí)程社交記憶(Wang et al., 2022), OXTR表達(dá)下調(diào)會(huì)導(dǎo)致右側(cè)邊緣上回的激活降低(Uzefovsky et al., 2019), 影響與移情相關(guān)的自我?他者區(qū)分活動(dòng)(Steinbeis, 2016), 由此OXTR影響ASD患者的社交記憶和社交移情。GABRQ和SCN1B影響大腦皮層的興奮?抑制平衡。ASD患者中GABRQ的表達(dá)下調(diào), 導(dǎo)致大腦頂葉、小腦和額葉區(qū)域GABA受體亞基數(shù)量降低, 影響腦區(qū)神經(jīng)回路中GABA介導(dǎo)的神經(jīng)元的活性(Masuda et al., 2019), 這是ASD中大腦皮層興奮?抑制失衡的生理基礎(chǔ), 進(jìn)而造成患者行為失調(diào)。SCN1B在PV+抑制性中間神經(jīng)元中異常表達(dá), 導(dǎo)致ASD患者皮層中PV+抑制性中間神經(jīng)元活動(dòng)異常, 引發(fā)皮層興奮?抑制失衡, 并可引起ASD患者的認(rèn)知情緒障礙(Hashemi et al., 2018)。

ASD是一種復(fù)雜的多基因、多因素疾病, 它的廣泛表型與某個(gè)或某組相關(guān)基因的突變、缺失等差異表達(dá)有關(guān), 并且受到環(huán)境、社會(huì)等外在因素的共同影響。我們探討了近些年來(lái)基于基因影像學(xué)發(fā)現(xiàn)的ASD患者異常的大腦活動(dòng)以及與其相關(guān)的風(fēng)險(xiǎn)基因, 并對(duì)這些風(fēng)險(xiǎn)基因的致病機(jī)制進(jìn)行了分類討論。雖然ASD尚無(wú)有效的物理或藥物治療途徑, 但對(duì)基因致病機(jī)制的分類也為治療提供了潛在思路。在對(duì)ASD風(fēng)險(xiǎn)基因的研究中, 研究個(gè)體罕見(jiàn)突變的數(shù)量遠(yuǎn)遠(yuǎn)超過(guò)了共同等位基因的發(fā)現(xiàn), 目前已經(jīng)確定了100多個(gè)與ASD表型顯著相關(guān)的基因(Sanders et al., 2015; Satterstrom et al., 2020), 主要基于罕見(jiàn)的自發(fā)種系突變映射到基因組的遺傳部分。編碼和非編碼表達(dá)模式輔以全外顯子組測(cè)序和基因拷貝數(shù)變異數(shù)據(jù)的表觀遺傳信號(hào)將有助于更好地了解遺傳學(xué)在ASD中的作用, 特別是對(duì)于具有相似遺傳背景、模式和種族的較大個(gè)體隊(duì)列研究, 這些研究方法的結(jié)合能夠幫助識(shí)別大效應(yīng)致病變異、促進(jìn)基因型?表型相關(guān)性分析比較。這些遺傳學(xué)分析方法可以確定具有基因相互作用的分子功能以及更具ASD特異性的分子途徑。目前, 沒(méi)有已知在受到干擾時(shí)與ASD唯一相關(guān)的分子途徑。一些基因變異與神經(jīng)發(fā)育障礙更相關(guān), 而不具有ASD的特異性。某些神經(jīng)發(fā)育相關(guān)的基因變異也會(huì)以不同的方式影響基因功能, 包括神經(jīng)回路, 具體途徑則取決于個(gè)體的遺傳背景差異。接下來(lái)更具有挑戰(zhàn)性的研究方向會(huì)是研究單獨(dú)引起ASD且不能歸因于其他神經(jīng)發(fā)育或精神疾病的基因變異分類, 明確其作用腦區(qū)和分子靶點(diǎn), 在最常受ASD影響的腦區(qū)(例如海馬、小腦等)或許會(huì)發(fā)現(xiàn)更有用的信息。

特殊類型的變異, 如錯(cuò)義突變和無(wú)義突變, 會(huì)在蛋白質(zhì)水平上產(chǎn)生不同的影響。編碼特定氨基酸的單個(gè)基因變異可能會(huì)對(duì)特定氨基酸位置上具有特定特征的更重要的蛋白質(zhì)區(qū)域或結(jié)構(gòu)域產(chǎn)生較小的影響, 而其他氨基酸位置可能對(duì)蛋白質(zhì)功能更重要。日后可以利用改進(jìn)的遺傳技術(shù)、數(shù)據(jù)分析、基因型?表型相關(guān)性分析手段來(lái)研究這些基因變異與蛋白質(zhì)的關(guān)系。鑒于受 ASD 影響的男性多于女性, 應(yīng)考慮進(jìn)一步研究嵌合體或組織特異性的基因表達(dá), 特別是 X 連鎖基因, 還應(yīng)該檢查激素介導(dǎo)的性別影響或大腦中的差異表達(dá)是否存在 ASD 失調(diào), 包括 X 染色體上大腦表達(dá)基因的甲基化狀態(tài)等。同時(shí)很多ASD風(fēng)險(xiǎn)基因的表達(dá)變化也會(huì)增加其它疾病的風(fēng)險(xiǎn), 如智力殘疾(Mefford et al., 2009)、癲癇(Bochukova et al., 2010)、精神分裂癥(Carper amp; Courchesne, 2005)、注意力缺陷障礙(Antshel amp; Russo, 2019)等, 這將是下一步研究需要關(guān)注的方向。近幾十年來(lái), 基因影像學(xué)領(lǐng)域的研究逐年增加, 這是彌合基因、環(huán)境和不同 ASD 行為表型之間差距的重要手段, 結(jié)合AI算法或者軟件等更多的數(shù)據(jù)分析方法可以更好地整合數(shù)據(jù), 這也是目前基因影像學(xué)領(lǐng)域的一個(gè)熱門研究方向。ASD研究中更復(fù)雜的問(wèn)題是臨床異質(zhì)性和診斷不確定性的混雜效應(yīng), 這需要進(jìn)一步表征和評(píng)估, 以便在ASD的臨床評(píng)估、遺傳學(xué)和治療方法方面獲得更多經(jīng)驗(yàn)。總之, 雖然關(guān)于ASD的研究進(jìn)行了幾十年, 但現(xiàn)在仍具有相當(dāng)?shù)奶魬?zhàn)性, 對(duì)于ASD風(fēng)險(xiǎn)基因的研究而言重要的是尋找在大樣本量的不同研究中表現(xiàn)出一致變化的基因, 彌合不同方法間的差異。

參考文獻(xiàn)

梁夏, 王金輝, 賀永. (2010). 人腦連接組研究: 腦結(jié)構(gòu)網(wǎng)絡(luò)和腦功能網(wǎng)絡(luò). 科學(xué)通報(bào), 55(16), 1565?1583.

姚滔濤, 陳卓銘, 張書晨. (2020). 孤獨(dú)癥患兒神經(jīng)連接異常的影像特征. 中國(guó)康理論與實(shí)踐, 26(4), 472?478.

張小飛. (2020). 孤獨(dú)癥相關(guān)基因Shank3在神經(jīng)病理性痛中的機(jī)制研究"[碩士學(xué)位論文]. 湖北醫(yī)藥學(xué)院, 十堰.

Abrams, D. A., Lynch, C. J., Cheng, K. M., Phillips, J., Supekar, K., Ryali, S., Uddin, L. Q., amp; Menon, V. (2013). Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 12060?12065. https://doi.org/10.1073/ pnas.1302982110

Al-Ward, H., Liu, C. Y., Liu, N., Shaher, F., Al-Nusaif, M., Mao, J., amp; Xu, H. (2020). Voltage-Gated Sodium Channel β1 Gene: An Overview. Human Heredity, 85(3-6), 101?109. https://doi.org/10.1159/000516388

Ameis, S. H., amp; Szatmari, P. (2012). Imaging-genetics in autism spectrum disorder: advances, translational impact, and future directions. Frontiers in Psychiatry, 3, 46. https://doi.org/10.3389/fpsyt.2012.00046

Anderson, K. M., Krienen, F. M., Choi, E. Y., Reinen, J. M., Yeo, B. T. T., amp; Holmes, A. J. (2018). Gene expression links functional networks across cortex and striatum. Nature Communications, 9(1), 1428. https://doi.org/10. 1038/s41467-018-03811-x

Andreae, L. C., amp; Basson, M. A. (2018). Sex bias in autism: New insights from Chd8 mutant mice? Nature Neuroscience, 21(9), 1144?1146. https://doi.org/10.1038/ s41593-018-0217-y

Antshel, K. M., amp; Russo, N. (2019). Autism spectrum disorders and ADHD: Overlapping phenomenology, diagnostic issues, and treatment considerations. Current Psychiatry Reports, 21(5), 34. https://doi.org/10.1007/ s11920-019-1020-5

Arin, D., Bauman, M., amp; Kemper, T. (1991). The distribution of Purkinje cell loss in the cerebellum in autism. Neurology, 41(suppl 1), 307.

Arking, D. E., Cutler, D. J., Brune, C. W., Teslovich, T. M., West, K., Ikeda, M., ... Cook Jr, E. H. (2008). A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. The American Journal of Human Genetics, 82(1), 160?164.

Aylward, E. H., Minshew, N. J., Field, K., Sparks, B., amp; Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59(2), 175?183.

Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829?839.

Bai, L. L., Zhang, L. Q., Ma, J., Li, J., Tian, M., Cao, R. J., ... Zhu, X. J. (2021). DIP2A is involved in SOD-mediated antioxidative reactions in murine brain. Free Radical Biology Medicine, 168, 6?15. https://doi.org/10.1016/ j.freeradbiomed.2021.03.027

Balaan, C., Corley, M. J., Eulalio, T., Leite-Ahyo, K., Pang, A. P. S., Fang, R., ... Ward, M. A. (2019). Juvenile Shank3b deficient mice present with behavioral phenotype relevant to autism spectrum disorder. Behavvioural Brain Research, 356, 137?147. https://doi.org/10.1016/j.bbr. 2018.08.005

Berto, S., Treacher, A. H., Caglayan, E., Luo, D., Haney, J. R., Gandal, M. J., ... Konopka, G. (2022). Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nature Communications, 13(1), 3328. https://doi.org/ 10.1038/s41467-022-31053-5

Bethlehem, R. A. I., Lombardo, M. V., Lai, M. C., Auyeung, B., Crockford, S. K., Deakin, J., ... Baron-Cohen, S. (2017). Intranasal oxytocin enhances intrinsic corticostriatal"functional connectivity in women. Translational Psychiatry, 7(4), e1099. https://doi.org/10.1038/tp.2017.72

Bey, A. L., Wang, X., Yan, H., Kim, N., Passman, R. L., Yang, Y., ... Jiang, Y. H. (2018). Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Translational Psychiatry, 8(1), 94. https://doi.org/10.1038/ s41398-018-0142-6

Bochukova, E. G., Huang, N., Keogh, J., Henning, E., Purmann, C., Blaszczyk, K., ... Farooqi, I. S. (2010). Large, rare chromosomal deletions associated with severe early-onset obesity. Nature, 463(7281), 666?670. https:// doi.org/10.1038/nature08689

Bouazoune, K., amp; Kingston, R. E. (2012). Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19238?19243. https://doi.org/10.1073/ pnas.1213825109

Carper, R. A., amp; Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57(2), 126?133.

Carper, R. A., Moses, P., Tigue, Z. D., amp; Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. Neuroimage, 16(4), 1038?1051.

Catarino, A., Luke, L., Waldman, S., Andrade, A., Fletcher, P. C., amp; Ring, H. (2011). An fMRI investigation of detection of semantic incongruities in autistic spectrum conditions. European Journal of Neuroscience, 33(3), 558?567.

Cellot, G., amp; Cherubini, E. (2014). GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in Pediatrics, 2, 70."https://doi.org/10.3389/fped.2014. 00070

Chien, Y. L., Chen, Y. C., amp; Gau, S. S. (2021). Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder. Neuroimage Clinical, 31, 102729. https://doi.org/10.1016/j.nicl.2021.102729

Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., Barnes, C. C., amp; Pierce, K. (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 2001? 2010.

Courchet, V., Roberts, A. J., Meyer-Dilhet, G., Del Carmine, P., Lewis, T. L., Polleux, F., amp; Courchet, J. (2018). Haploinsufficiency of autism spectrum disorder candidate gene NUAK1 impairs cortical development and behavior in mice. Nature Communications, 9(1), 4289. https://doi. org/10.1038/s41467-018-06584-5

de Jong, J. O., Llapashtica, C., Genestine, M., Strauss, K., Provenzano, F., Sun, Y., ... Markx, S. (2021). Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nature Communications, 12(1), 4087. https://doi.org/10.1038/ s41467-021-24358-4

Domínguez-Iturza, N., Lo, A. C., Shah, D., Armendáriz, M., Vannelli, A., Mercaldo, V., ... Bagni, C. (2019). The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nature Communications, 10(1), 3454. https://doi.org/10. 1038/s41467-019-11203-y

Dong, D., Wang, Y., Chang, X., Luo, C., amp; Yao, D. (2018). Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Schizophrenia Bulletin, 44(1), 168?181. https://doi.org/10.1093/schbul/sbx034

Donovan, A. P., Yu, T., Ellegood, J., Riegman, K. L., De Geus, C., van Ravenswaaij-Arts, C., ... Basson, M. A. (2017). Cerebellar vermis and midbrain hypoplasia upon conditional deletion of Chd7 from the embryonic mid-hindbrain region. Frontiers in Neuroanatomy, 11, 86.

Eyler, L. T., Pierce, K., amp; Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain, 135(3), 949?960. https://doi.org/10.1093/brain/awr364

Fatemi, S. H., Reutiman, T. J., Folsom, T. D., amp; Thuras, P. D. (2009). GABAA receptor downregulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39(2), 223?230.

Filice, F., Schwaller, B., Michel, T. M., amp; Grunblatt, E. (2020). Profiling parvalbumin interneurons using iPSC: Challenges and perspectives for Autism Spectrum Disorder (ASD). Molecular Autism, 11(1), 10. https:// doi.org/10.1186/s13229-020-0314-0

Frehner, S. S., Dooley, K. T., Palumbo, M. C., Smith, A. L., Goodman, M. M., Bales, K. L., amp; Freeman, S. M. (2022). Effect of sex and autism spectrum disorder on oxytocin receptor binding and mRNA expression in the dopaminergic pars compacta of the human substantia nigra. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1858), 20210118. https://doi.org/ 10.1098/rstb.2021.0118

Gao, R., Pratt, C. P., Yoon, S., Martin-de-Saavedra, M. D., Forrest, M. P., amp; Penzes, P. (2020). CNTNAP2 is targeted to endosomes by the polarity protein PAR3. European Journal of Neuroscience, 51(4), 1074?1086. https:// doi.org/10.1111/ejn.14620

Gdalyahu, A., Lazaro, M., Penagarikano, O., Golshani, P., Trachtenberg, J. T., amp; Geschwind, D. H. (2015). Correction: The Autism related protein contactin- associated protein-like 2 (CNTNAP2) stabilizes new spines: An in vivo mouse Study. PLoS One, 10(5), e0129638. https://doi.org/10.1371/journal.pone.0129638

Harris, J. (2018). Leo Kanner and autism: A 75-year perspective. International Review of Psychiatry, 30(1), 3?17. https://doi.org/10.1080/09540261.2018.1455646

Hashemi, E., Ariza, J., Rogers, H., Noctor, S. C., amp; Martinez-"Cerdeno, V. (2018). The number of parvalbumin- expressing interneurons is decreased in the prefrontal cortex in autism. Cerebral Cortex, 28(2), 690. https:// doi.org/10.1093/cercor/bhx063

Hernandez, L. M., Lawrence, K. E., Padgaonkar, N. T., Inada, M., Hoekstra, J. N., Lowe, J. K., ... Dapretto, M. (2020). Imaging-genetics of sex differences in ASD: Distinct effects of OXTR variants on brain connectivity. Translational Psychiatry, 10(1), 82. https://doi.org/ 10.1038/s41398-020-0750-9

Ho, L., amp; Crabtree, G. R. (2010). Chromatin remodelling during development. Nature, 463(7280), 474?484. https:// doi.org/10.1038/nature08911

Isler, J. R., Martien, K. M., Grieve, P. G., Stark, R. I., amp; Herbert, M. R. (2010). Reduced functional connectivity in visual evoked potentials in children with autism spectrum disorder. Clinical Neurophysiology, 121(12), 2035?2043. https://doi.org/10.1016/j.clinph.2010.05.004

Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Ohta, H., Kanai, C., ... Hashimoto, R. (2015). Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder. Molecular"Autism, 6, 30. https://doi.org/10.1186/s13229-015-0026-z

J?rgensen, H. F., Terry, A., Beretta, C., Pereira, C. F., Leleu, M., Chen, Z. F., ... Fisher, A. G. (2009). REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development, 136(5), 715?721. https://doi.org/10.1242/dev.028548

Joshi, G., Arnold Anteraper, S., Patil, K. R., Semwal, M., Goldin, R. L., Furtak, S. L., ... Biederman, J. (2017). Integration and segregation of default mode network resting-state functional connectivity in transition-age males with high-functioning autism spectrum disorder: A proof-of-concept study. Brain Connectivity, 7(9), 558?573.

Kana, R. K., amp; Wadsworth, H. M. (2012). “The archeologist's career ended in ruins”: Hemispheric differences in pun comprehension in autism. Neuroimage, 62(1), 77?86.

Kanat, M., Heinrichs, M., amp; Domes, G. (2014). Oxytocin and the social brain: Neural mechanisms and perspectives in human research. Brain Research, 1580, 160?171. https://doi.org/10.1016/j.brainres.2013.11.003

Kasah, S., Oddy, C., amp; Basson, M. A. (2018). Autism-linked CHD gene expression patterns during development predict multi-organ disease phenotypes. Journal of Anatomy, 233(6), 755?769. https://doi.org/10.1111/joa.12889

Katayama, Y., Nishiyama, M., Shoji, H., Ohkawa, Y., Kawamura, A., Sato, T., ... Nakayama, K. I. (2016). CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature, 537(7622), 675?679. https://doi.org/10. 1038/nature19357

Kawano, S., Baba, M., Fukushima, H., Miura, D., Hashimoto, H., amp; Nakazawa, T. (2022). Autism-associated ANK2 regulates embryonic neurodevelopment. Biochemical and Biophysical Research Communications, 605, 45?50. https://doi.org/10.1016/j.bbrc.2022.03.058

Kemper, T. L., amp; Bauman, M. L. (2002). Neuropathology of infantile autism. Molecular Psychiatry, 7, S12?13. https:// doi.org/10.1038/sj.mp.4001165

Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., ... Kenet, T. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 3107?3112. https://doi.org/10.1073/pnas.1214533110

Kohlhoff, J., Cibralic, S., Hawes, D. J., amp; Eapen, V. (2022). Oxytocin receptor gene (OXTR) polymorphisms and social, emotional and behavioral functioning in children and adolescents: A systematic narrative review. Neuroscience amp; Biobehavioral Reviews, 135, 104573. https://doi.org/10.1016/j.neubiorev.2022.104573

Lam, M., Moslem, M., Bryois, J., Pronk, R. J., Uhlin, E., Ellstrom, I. D., ... Falk, A. (2019). Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. Experimental Cell Research, 383(1), 111469. https://doi.org/10.1016/j.yexcr. 2019.06.014

Lazarev, V. V., Pontes, A., Mitrofanov, A. A., amp; deAzevedo, L. C. (2015). Reduced interhemispheric connectivity in childhood autism detected by electroencephalographic photic driving coherence. Journal of Autism and Developmental Disorders."45(2), 537?547.

Lazaro, M. T., Taxidis, J., Shuman, T., Bachmutsky, I., Ikrar, T., Santos, R., ... Golshani, P. (2019). Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Reports, 27(9), 2567?2578. https://doi.org/10.1016/j.celrep.2019. 05.006

Lee, H. C. (2006). Structure and enzymatic functions of human CD38. Molecular Medicine, 12(11-12), 317?323. https://doi.org/10.2119/2006?00086.Lee

Liu, X., Zhang, L., Jin, L., Tan, Y., Li, W., amp; Tang, J. (2018). HCN2 contributes to oxaliplatin-induced neuropathic pain through activation of the CaMKII/CREB cascade in spinal neurons. Molecular Pain, 14, 1744806918778490. https://doi.org/10.1177/1744806918778490

Long, J., Lu, F., Yang, S., Zhang, Q., Chen, X., Pang, Y., ... Chen, H. (2022). Different functional connectivity optimal frequency in autism compared with healthy controls and the relationship with social communication deficits: Evidence from gene expression and behavior symptom analyses. Human Brain Mapping, 44(1), 258?268."https://doi.org/10.1002/hbm.26011

Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., amp; Menon, V. (2013). Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits. Biological Psychiatry, 74(3), 212?219. https://doi.org/10.1016/j.biopsych.2012. 12.013

Ma, J., Chen, L., He, X. X., Wang, Y. J., Yu, H. L., He, Z. X., ... Zhu, X. J. (2019). Functional prediction and characterization of Dip2 gene in mice. Cell Biology International, 43(4), 421?428. https://doi.org/10.1002/ cbin.11106

Ma, J., Zhang, L. Q., He, Z. X., He, X. X., Wang, Y. J., Jian, Y. L., ... Zhu, X. J. (2019). Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin. PLoS Biology, 17(10), e3000461. https://doi.org/10.1371/ journal.pbio.3000461

Martucci, L. L., Amar, M., Chaussenot, R., Benet, G., Bauer, O., de Zelicourt, A., ... Cancela, J. M. (2019). A multiscale analysis in CD38(-/-) mice unveils major prefrontal cortex dysfunctions. FASEB Journal, 33(5), 5823?5835. https://doi.org/10.1096/fj.201800489R

Masuda, F., Nakajima, S., Miyazaki, T., Yoshida, K., Tsugawa, S., Wada, M., … Noda, Y. (2019). Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: a systematic review. Translational Psychiatry, 9(1), 110. https://doi.org/10.1038/s41398-019-0444-3

Mefford, H. C., Cooper, G. M., Zerr, T., Smith, J. D., Baker, C., Shafer, N., ... Eichler, E. E. (2009). A method for rapid, targeted CNV genotyping identifies rare variants associated with neurocognitive disease. Genome Research, 19(9), 1579?1585. https://doi.org/10.1101/gr.094987.109

Merner, N., Forgeot d'Arc, B., Bell, S. C., Maussion, G., Peng, H., Gauthier, J., ... Mottron, L. (2016). A de novo frameshift mutation in chromodomain helicase DNA‐binding domain 8 (CHD8): A case report and literature review. American Journal of Medical Genetics Part A, 170(5), 1225?1235.

Mochida, G. H., amp; Walsh, C. A. (2004). Genetic basis of developmental malformations of the cerebral cortex. Archives of Neurology, 61(5), 637?640.

Nelissen, T. P., Bamford, R. A., Tochitani, S., Akkus, K., Kudzinskas, A., Yokoi, K., ... Oguro-Ando, A. (2018). CD38 is required for dendritic organization in visual cortex and hippocampus. Neuroscience, 372, 114?125. https://doi.org/10.1016/j.neuroscience.2017.12.050

Olivito, G., Clausi, S., Laghi, F., Tedesco, A. M., Baiocco, R., Mastropasqua, C., ... Leggio, M. (2017). Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. The Cerebellum, 16(2), 283?292.

Pagani, M., Bertero, A., Liska, A., Galbusera, A., Sabbioni, M., Barsotti, N., ... Gozzi, A. (2019). Deletion of autism risk gene Shank3 disrupts prefrontal connectivity. The Journal of Neuroscience, 39(27), 5299?5310. https:// doi.org/10.1523/JNEUROSCI.2529-18.2019

Paterno, R., Marafiga, J. R., Ramsay, H., Li, T., Salvati, K. A., amp; Baraban, S. C. (2021). Hippocampal gamma and sharp-wave ripple oscillations are altered in a Cntnap2 mouse model of autism spectrum disorder. Cell Reports, 37(6), 109970. https://doi.org/10.1016/j.celrep.2021.109970

Peca, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N., ... Feng, G. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344), 437?442. https://doi.org/ 10.1038/nature09965

Poliak, S., Salomon, D., Elhanany, H., Sabanay, H., Kiernan, B., Pevny, L., ... Peles, E. (2003). Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1."Journal of Cell Biology, 162(6), 1149?1160. https://doi.org/10.1083/jcb.200305018

Ponna, S. K., Ruskamo, S., Myllykoski, M., Keller, C., Boeckers, T. M., amp; Kursula, P. (2018). Structural basis for PDZ domain interactions in the post-synaptic density scaffolding protein Shank3. Journal of Neurochemistry, 145(6), 449?463. https://doi.org/10.1111/jnc.14322

Provost, B., Lopez, B. R., amp; Heimerl, S. (2007). A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental"concerns. Journal of Autism and Developmental Disorders, 37(2), 321?328.

Radonjic, N. V., Hess, J. L., Rovira, P., Andreassen, O., Buitelaar, J. K., Ching, C. R. K., ... Faraone, S. V. (2021). Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Molecular Psychiatry, 26(6), 2101?2110. https://doi.org/10.1038/s41380-020-01002-z

Richiardi, J., Altmann, A., Milazzo, A. C., Chang, C., Chakravarty, M. M., Banaschewski, T., ... consortium, I. (2015). Correlated gene expression supports synchronous activity in brain networks. Science, 348(6240), 1241?1244. https://doi.org/10.1126/science.1255905

Rodríguez-Paredes, M., Ceballos-Chávez, M., Esteller, M., García-Domínguez, M., amp; Reyes, J. C. (2009). The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Research, 37(8)2449?2460. https://doi.org/10.1093/nar/gkp101

Romero-Garcia, R., Whitaker, K. J., Vasa, F., Seidlitz, J., Shinn, M., Fonagy, P., ... Vertes, P. E. (2018). Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. Neuroimage, 171, 256?267. https://doi.org/10.1016/j. neuroimage.2017.12.060

Safar, K., Wong, S. M., Leung, R. C., Dunkley, B. T., amp; Taylor, M. J. (2018). Increased functional connectivity during emotional face processing in children with autism spectrum disorder. Frontiers in Human Neuroscience, 12, 408.

Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., ... State, M. W. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci."Neuron, 87(6), 1215?1233. https://doi.org/10.1016/j.neuron.2015.09.016

Satterstrom, F. K., Kosmicki, J. A., Wang, J., Breen, M. S., De Rubeis, S., An, J. Y., ... Buxbaum, J. D. (2020). Large-Scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 180(3), 568?584e523. https://doi.org/10. 1016/j.cell.2019.12.036

Schrier, M. S., Zhang, Y., Trivedi, M. S., amp; Deth, R. C. (2022). Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie, 192, 1?12. https://doi.org/10.1016/j.biochi. 2021.09.006

Scott, K. E., Mann, R. S., Schormans, A. L., Schmid, S., amp; Allman, B. L. (2022). Hyperexcitable and immature-like neuronal activity in the auditory cortex of adult rats lacking the language-linked CNTNAP2 gene. Cerebral Cortex, 32(21), 4797?4817. https://doi.org/10.1093/cercor/"bhab517

Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43?61.

Seidlitz, J., Vasa, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J., Vertes, P. E., ... Bullmore, E. T. (2018). Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron, 97(1), 231?247. https://doi.org/10. 1016/j.neuron.2017.11.039

Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M., amp; Mohammadi, M. (2012). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36(2), 957?963. https://doi.org/10. 1007/s10916-010-9560-6

Shen, T., Ji, F., Yuan, Z., amp; Jiao, J. (2015). CHD2 is required for embryonic neurogenesis in the developing cerebral cortex. Stem Cells, 33(6), 1794?1806.

Shiota, Y., Hirosawa, T., Yoshimura, Y., Tanaka, S., Hasegawa, C., Iwasaki, S., ... Kikuchi, M. (2022). Effect of CNTNAP2 polymorphism on receptive language in children with autism spectrum disorder without language developmental delay. Neuropsychopharmacol Reports, 42(3), 352?355. https://doi.org/10.1002/npr2.12267

Steinbeis, N. (2016). The role of self-other distinction in understanding others' mental and emotional states: Neurocognitive mechanisms in children and adults. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150074. https://doi.org/ 10.1098/rstb.2015.0074

Stolerman, E. S., Smith, B., Chaubey, A., amp; Jones, J. R. (2016). CHD8 intragenic deletion associated with autism spectrum disorder. European Journal of Medical Genetics, 59(4), 189?194.

Subbaraju, V., Suresh, M. B., Sundaram, S., amp; Narasimhan, S. (2017). Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: A spatial filtering approach. Medical Image Analysis, 35, 375?389. https://doi.org/10.1016/j.media.2016.08.003

Subtil-Rodríguez, A., Vázquez-Chávez, E., Ceballos-Chávez, M., Rodríguez-Paredes, M., Martín-Subero, J. I., Esteller, M., amp; Reyes, J. C. (2014). The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes. Nucleic Acids Research, 42(4), 2185?2196. https://doi.org/10.1093/nar/gkt1161

Sugathan, A., Biagioli, M., Golzio, C., Erdin, S., Blumenthal, I., Manavalan, P., ... Talkowski, M. E. (2014). CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4468?4477. https://doi.org/10.1073/pnas.1405266111

Uchino, S., amp; Waga, C. (2013). SHANK3 as an autism spectrum disorder-associated gene. Brain and Development,"35(2), 106?110. https://doi.org/10.1016/j.braindev.2012. 05.013

Uzefovsky, F., Bethlehem, R. A. I., Shamay-Tsoory, S., Ruigrok, A., Holt, R., Spencer, M., ... Baron-Cohen, S. (2019). The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Molecular Autism, 10, 12. https://doi.org/10.1186/s13229-019-0258-4

Uzefovsky, F., Shalev, I., Israel, S., Edelman, S., Raz, Y., Mankuta, D., Knafo-Noam, A., amp; Ebstein, R. P. (2015). Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67, 60?65. https:// doi.org/10.1016/j.yhbeh.2014.11.007

Varea, O., Martin-de-Saavedra, M. D., Kopeikina, K. J., Schürmann, B., Fleming, H. J., Fawcett-Patel, J. M., ... Penzes, P. (2015). Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 6176?6181. https://doi.org/10.1073/ pnas.1423205112

Vollert, J., Magerl, W., Baron, R., Binder, A., Enax-Krumova, E. K., Geisslinger, G., ... Treede, R. D. (2018). Pathophysiological mechanisms of neuropathic pain: Comparison of sensory phenotypes in patients and human surrogate pain models. Pain, 159(6), 1090?1102. https://doi.org/10.1097/j.pain.0000000000001190

Wang, F., Yin, X. S., Lu, J., Cen, C., amp; Wang, Y. (2022). Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Science Signal, 15(719), eabd0033. https://doi.org/10.1126/scisignal.abd0033

Wang, J., Liu, J., Gao, Y., Wang, K., amp; Jiang, K. (2018). Autism spectrum disorder early in development associated with CHD8 mutations among two Chinese children. BMC Pediatrics, 18(1), 338. https://doi.org/10.1186/s12887- 018-1307-4

Weisman, O., Pelphrey, K. A., Leckman, J. F., Feldman, R., Lu, Y., Chong, A., ... Ebstein, R. P. (2015). The association between 2D:4D ratio and cognitive empathy is contingent on a common polymorphism in the oxytocin receptor gene (OXTR rs53576). Psychoneuroendocrinology,"58, 23?32. https://doi.org/10.1016/j.psyneuen.2015.04.007

Whittaker, D. E., Riegman, K. L., Kasah, S., Mohan, C., Yu, T., Sala, B. P., ... Michetti, C. (2017). The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. The Journal of Clinical Investigation, 127(3), 874?887.

Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle, R. A., ... State, M. W. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155(5), 997?1007. https://doi.org/10.1016/j.cell.2013.10.020

Winslow, J. T., Hearn, E. F., Ferguson, J., Young, L. J., Matzuk, M. M., amp; Insel, T. R. (2000). Infant vocalization, adult aggression, and fear behavior of an oxytocin 1 mutant mouse. Hormones and Behavior, 37(2), 145?155.

Yadav, S. K., Bhat, A. A., Hashem, S., Nisar, S., Kamal, M., Syed, N., ... Haris, M. (2021). Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Translational Psychiatry, 11(1), 349. https://doi.org/10.1038/s41398-021-01473-w

Yang, R., Walder-Christensen, K. K., Kim, N., Wu, D., Lorenzo, D. N., Badea, A., ... Bennett, V. (2019). ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proceedings of the National Academy of Sciences of the United States of America, 116(30), 15262?15271. https://doi.org/10.1073/ pnas.1904348116

Yuan, C. -C., Zhao, X., Florens, L., Swanson, S. K., Washburn, M. P., amp; Hernandez, N. (2007). CHD8 associates with human staf and contributes to efficient U6 RNA polymerase III transcription. Molecular and Cellular Biology, 27(24), 8729?8738. https://doi.org/10.1128/mcb. 00846-07

Zahir, F., Firth, H. V., Baross, A., Delaney, A. D., Eydoux, P., Gibson, W. T., ... Marra, M. A. (2007). Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children. Journal of Medical Genetics, 44(9), 556?561.

Zeeland, S. -V., Abrahams, B. S., Alvarez-Retuerto, A. I., Sonnenblick, L. I., Rudie, J. D., Ghahremani, D., ... Geschwind, D. H. (2010). Bookheimer, SY 2010. Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Science Translational Medicine, 2(56), 56ra80.

Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M. S., Saxena, S., ... Elsabbagh, M. (2022). Global prevalence of autism: A systematic review update. Autism Research, 15(5), 778?790. https://doi.org/10.1002/ aur.2696

Zeng, H., Shen, E. H., Hohmann, J. G., Oh, S. W., Bernard, A., Royall, J. J., ... Guillozet-Bongaarts, A. L. (2012). Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell, 149(2), 483?496. https://doi.org/10.1016/j.cell.2012. 02.052

Zhang, L., Mabwi, H. A., Palange, N. J., Jia, R., Ma, J., Bah, F. B., ... Zheng, Y. (2015). Expression patterns and potential biological roles of Dip2a. PLoS One, 10(11), e0143284. https://doi.org/10.1371/journal.pone.0143284

Zhou, H., Xu, X., Yan, W., Zou, X., Wu, L., Luo, X., ... Team, L. -N. S. (2020). Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years. Neuroscience Bulletin, 36(9), 961?971. https://doi.org/10.1007/s12264- 020-00530-6

Zikopoulos, B., amp; Barbas, H. (2010). Changes in prefrontal axons may disrupt the network in autism. Journal of Neuroscience, 30(44), 14595?14609.

Altered gene expression associated with different brain activities"in autism spectrum disorder

WENG Yuyue, WENG Xuchu, GENG Hongyan

Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510898, China

Abstract: Brain activity is regulated by gene expression, and altered gene expression can reflect the transformed brain state. With the development of brain imaging genomics, it is now possible to detect genomic changes associated with brain structure and function, combined with the functional magnetic resonance imaging (fMRI) and transcriptome analysis across cortical regions. At present, this research approach has been gradually applied to neuropsychiatric diseases, including autism spectrum disorders (ASD), to explore the relationship between gene expression and brain activity. The study of the mechanism of genes related to brain activity in the pathogenesis of ASD can provide physiological reference"for the analysis of brain activity changes, the exploration of pathogenesis and the development of clinical treatment strategies of ASD patients.

Keywords:"autism, brain imaging, brain activity, gene expression

主站蜘蛛池模板: 日韩精品无码免费一区二区三区| 国产欧美综合在线观看第七页| 免费又黄又爽又猛大片午夜| 久久中文电影| 免费啪啪网址| 国产成人啪视频一区二区三区| 亚洲av中文无码乱人伦在线r| 欧美笫一页| 欧美色综合网站| 亚洲精品国产综合99| 国产精品无码久久久久久| 日韩国产高清无码| 国产福利一区视频| 成人毛片在线播放| 国产乱子伦精品视频| 白浆视频在线观看| 成人福利在线观看| 亚洲日韩精品伊甸| 最近最新中文字幕免费的一页| 欧美 国产 人人视频| 日本三级黄在线观看| 国产精品女熟高潮视频| 色男人的天堂久久综合| 久久夜色精品国产嚕嚕亚洲av| 欧美精品综合视频一区二区| 成年女人18毛片毛片免费| 亚洲毛片一级带毛片基地| 色综合网址| 国产精女同一区二区三区久| 性网站在线观看| 亚洲综合久久成人AV| 美女无遮挡拍拍拍免费视频| 欧美在线一二区| 亚洲精品在线观看91| 欧美午夜网站| 中文字幕佐山爱一区二区免费| 精品一区二区三区视频免费观看| 成人av专区精品无码国产| 日韩亚洲高清一区二区| 亚洲精品福利网站| 国产美女丝袜高潮| 欧洲亚洲一区| 欧美a在线视频| 色婷婷色丁香| 国产精品三级专区| 97青青青国产在线播放| 国产毛片高清一级国语| 国产91精品久久| 国产大片喷水在线在线视频 | 欧美一区精品| yy6080理论大片一级久久| 中文字幕无码av专区久久| 亚洲女同一区二区| 中文字幕欧美日韩| 日韩毛片在线播放| 青青草原国产av福利网站| 无码精品国产dvd在线观看9久| 国产福利免费视频| 亚洲中文制服丝袜欧美精品| 亚洲国产天堂在线观看| 91成人试看福利体验区| 谁有在线观看日韩亚洲最新视频| 无码中文字幕乱码免费2| 久久香蕉国产线| 不卡的在线视频免费观看| 婷婷激情五月网| 国产内射在线观看| a毛片免费看| 九色视频最新网址| 中文字幕人妻av一区二区| 尤物视频一区| 中文字幕亚洲精品2页| www.狠狠| 亚洲综合久久成人AV| 91精品专区国产盗摄| 国产精品丝袜视频| 日韩欧美中文| 天堂岛国av无码免费无禁网站| 欧美亚洲一区二区三区导航| 色婷婷成人| 久久黄色影院| 美女扒开下面流白浆在线试听|