摘 "要""孤獨癥譜系障礙(Autism spectrum disorder, ASD)是一組高度復(fù)雜的神經(jīng)發(fā)育障礙。ASD患病率日趨升高、異質(zhì)性強、會造成終生影響, 但其神經(jīng)病理機制仍不清楚。磁共振多模態(tài)腦影像為揭示ASD的影像學(xué)腦機制提供了新的手段。基于單模態(tài)磁共振腦影像的研究已經(jīng)發(fā)現(xiàn)了ASD在大腦結(jié)構(gòu)、功能及腦網(wǎng)絡(luò)層面都表現(xiàn)出了廣泛的異常, 其異常區(qū)域包括了杏仁核、梭狀回、眶額皮層、內(nèi)側(cè)前額葉、前扣帶、顳頂聯(lián)合區(qū)以及腦島等, 這些腦區(qū)大多都涉及到了“社會腦”網(wǎng)絡(luò)。雖然圖像級融合、特征級融合、決策級融合的多模態(tài)腦影像分析框架在揭示被試神經(jīng)機制過程中提供了多維度、多層級的信息, 但是基于多模態(tài)磁共振腦影像融合的ASD研究還處于起步階段。基于磁共振腦影像的ASD輔助診斷及亞型劃分有望為臨床診療提供客觀依據(jù)。未來的研究可以構(gòu)建一個融合多模態(tài)腦影像的分析框架, 結(jié)合大腦功能、結(jié)構(gòu)以及網(wǎng)絡(luò)等多維度信息, 全面刻畫ASD發(fā)生發(fā)展規(guī)律, 揭示其非典型神經(jīng)發(fā)育機制。除此之外, 未來的研究需要深入挖掘ASD “社會腦”網(wǎng)絡(luò)異常機制, 探索ASD社交障礙環(huán)路, 尋找潛在精準(zhǔn)神經(jīng)調(diào)控靶點, 助力臨床實現(xiàn)ASD精準(zhǔn)診療。
關(guān)鍵詞""孤獨癥譜系障礙, 多模態(tài)磁共振, 大腦功能和結(jié)構(gòu), 輔助診斷, 亞型分類
分類號""B845
1""引言
孤獨癥譜系障礙(Autism spectrum disorder, ASD)是一組患病率日趨升高、高異質(zhì)性且嚴(yán)重影響兒童健康的神經(jīng)發(fā)育障礙。ASD的核心癥狀表現(xiàn)為社交溝通障礙、興趣狹窄以及重復(fù)刻板行為, 同時可能伴有感知覺異常等癥狀(Lai et al., 2014)。美國疾控中心最新發(fā)布數(shù)據(jù)顯示, ASD的發(fā)病率約為1/36 (Maenner et al., 2023)。我國雖缺少全國性的ASD發(fā)病率調(diào)查數(shù)據(jù), 但2022年發(fā)布的《中國孤獨癥教育康復(fù)發(fā)展?fàn)顩r報告IV》顯示我國的ASD發(fā)病率約為1% (王培實, 2022)。由此推算, 在我國, ASD人群已超1000萬。ASD已經(jīng)成為日趨嚴(yán)重的全球公共衛(wèi)生健康問題。
現(xiàn)階段, ASD的發(fā)病機制還不清楚。現(xiàn)有研究表明ASD是多種因素共同作用的結(jié)果, 包括了遺傳因素、神經(jīng)發(fā)育問題、環(huán)境因素、免疫系統(tǒng)異常、神經(jīng)遞質(zhì)失衡等(Keil amp; Lein, 2016; Livingston amp; Happé, 2017; Quesnel-Vallieres et al., 2019; Won et al., 2013)。隨著神經(jīng)科學(xué)和人工智能技術(shù)的不斷進步, 磁共振腦影像為揭示ASD的神經(jīng)影像機制提供了新的視角, 有望為實現(xiàn)ASD精準(zhǔn)診療提供客觀依據(jù)(Duan amp; Chen, 2022)。過去十多年, 研究人員利用結(jié)構(gòu)磁共振成像(structural magnetic resonance imaging, sMRI)、功能磁共振成像(functional magnetic resonance imaging, fMRI)、彌散張量成像(diffusion tensor mapping, DTI)、磁共振波譜成像(magnetic resonance spectrum, MRS)等手段, 從多個角度揭示了ASD大腦灰質(zhì)、白質(zhì)、大腦激活、功能連接、大尺度腦功能網(wǎng)絡(luò)等指標(biāo)的異常(Duan et al., 2020; Guo et al., 2019; Guo et al.,"2021; He et al., 2018; He et al., 2021; Yeh et al., 2022; Zhao, Yang, et al., 2022)。基于以往的發(fā)現(xiàn), 研究人員提出了杏仁核理論、社交動機理論、鏡像神經(jīng)元系統(tǒng)理論等假說來解釋ASD的異常(Baron-Cohen et al., 2000; Chevallier et al., 2012; Hamilton, 2008)。另外, 隨著信息融合技術(shù)的不斷進步, 研究人員嘗試將多模態(tài)磁共振腦影像融合起來, 多層級、全方位、多角度對疾病進行表征, 以此來達到用于臨床診斷和治療評估的目的(He et al., 2020; Hirjak et al., 2022; Maglanoc et al., 2020; Park et al., 2021; Weng et al., 2020)。例如, Park等人融合功能連接及結(jié)構(gòu)連接, 基于黎曼優(yōu)化算法探究了ASD結(jié)構(gòu)與功能耦合的關(guān)系, 發(fā)現(xiàn)ASD結(jié)構(gòu)功能耦合差異反映了ASD癥狀的個體差異(Park et al., 2023)。Kim等人基于T1加權(quán)成像和DTI的特征建立了ASD輔助診斷模型, 分類準(zhǔn)確率達到了88.8%。
無論是基于單模態(tài)的研究, 還是多模態(tài)融合的研究都加深了我們對ASD大腦影像學(xué)神經(jīng)機制的理解, 但是他們都有各自的優(yōu)勢和不足。單模態(tài)腦影像研究雖然分析手段簡單明了、聚焦于特定的研究問題, 但是無法捕捉到模態(tài)之間的互補的信息, 無法多層級、全方位探索ASD大腦的功能與結(jié)構(gòu)的異常機制。多模態(tài)腦影像融合雖然整合了多維度信息, 但是也面臨著融合難、可解釋性差等問題, 而且多模態(tài)腦影像融合的分析框架在ASD研究中的應(yīng)用并不廣泛。因此, 本文評述了現(xiàn)階段ASD單模態(tài)腦影像研究的發(fā)現(xiàn), 從圖像級融合、特征級融合及決策級融合三個層面梳理了多模態(tài)腦影像融合方法及在ASD研究中的初步應(yīng)用, 總結(jié)了現(xiàn)有ASD磁共振腦影像研究的優(yōu)勢和不足, 并在文章最后提出了對未來研究的思考和展望, 為后續(xù)ASD腦影像及其他精神疾病或神經(jīng)發(fā)育障礙的研究提供重要支撐。
2 "ASD單模態(tài)腦影像研究
磁共振成像技術(shù)因其無輻射、無侵入性、高分辨率等優(yōu)勢, 在ASD研究中得到了廣泛的應(yīng)用。以往的研究不但探究了結(jié)構(gòu)和功能影像在局部特征的異常, 而且從網(wǎng)絡(luò)水平探究了結(jié)構(gòu)網(wǎng)絡(luò)或者功能網(wǎng)絡(luò)的異常。通常, 這些異常與ASD的臨床特征表現(xiàn)出了一定的關(guān)聯(lián)性, 這對理解ASD的起因、神經(jīng)機制以及促進早期診斷和指導(dǎo)康復(fù)治療都具有重要意義。
2.1 "ASD腦影像局部異常研究
2.1.1 "ASD結(jié)構(gòu)影像局部特征異常研究
結(jié)構(gòu)影像學(xué)研究通常采用T1加權(quán)成像和DTI, 其中T1加權(quán)成像常被用來測量大腦的灰質(zhì)體積以及皮層厚度等形態(tài)學(xué)指標(biāo), 而DTI常被用來評估大腦白質(zhì)纖維束的微觀結(jié)構(gòu)以及傳導(dǎo)通路。
基于T1加權(quán)成像的研究報告了ASD兒童相較于典型發(fā)育(typically developing, TD)在右側(cè)角回、左側(cè)額中回、左側(cè)額上回、左側(cè)楔前葉、左側(cè)枕下回、右側(cè)顳下回表現(xiàn)出了增加的灰質(zhì)體積; 在左側(cè)小腦以及左側(cè)中央后回表現(xiàn)出了降低的灰質(zhì)體積; 而且發(fā)現(xiàn)右側(cè)角回增加的灰體積與ASD的重復(fù)刻板行為顯著相關(guān)(Liu et al., 2017)。也有研究表明, ASD成年人相較于TD在右側(cè)枕下回、左側(cè)梭狀回、右側(cè)顳中回、雙側(cè)杏仁核、右側(cè)額下回、右側(cè)眶額皮層以及左腹內(nèi)側(cè)前額葉都表現(xiàn)出了降低的灰質(zhì)體積(Sato et al., 2017)。同時, Yang等人發(fā)現(xiàn)ASD成年人相較于TD在左側(cè)顳中回、左側(cè)顳上回、左側(cè)海馬旁回以及右側(cè)中央后回表現(xiàn)出顯著升高的灰質(zhì)體積, 而在右側(cè)小腦、左側(cè)前扣帶顯著降低的灰質(zhì)體積(Yang et al., 2016)。梳理這些異常區(qū)域可以發(fā)現(xiàn), 灰質(zhì)體積的異常區(qū)域與默認網(wǎng)絡(luò)(default model network, DMN) 有很大的重疊。DMN被認為是參與內(nèi)省和自我反思的主要網(wǎng)絡(luò)之一, 在記憶以及情感調(diào)節(jié)等過程中都扮演著重要的角色(Raichle et al., 2001; Sheline et al., 2009)。ASD在DMN區(qū)域的異常可能導(dǎo)致其在自我認知等方面存在問題, 進而影響他們對社交互動的參與和感知(Padmanabhan et al.,"2017; Washington et al., 2014)。除此之外, 基于T1加權(quán)成像的研究還報告了ASD兒童及青少年在大腦左半球表現(xiàn)出大范圍顯著增加的皮層厚度, 而ASD成年人在額葉表現(xiàn)出了降低的皮層厚度(Khundrakpam et al., 2017; Premika S.W. Boedhoe et al., 2020)。
研究所使用的被試數(shù)量以及ASD的異質(zhì)性可能會導(dǎo)致部分研究結(jié)果不一致。同時, ASD是一組神經(jīng)發(fā)育障礙, 年齡是主導(dǎo)研究結(jié)果的主要因素。回顧以往的研究發(fā)現(xiàn), ASD在不同年齡段都表現(xiàn)出了大腦灰質(zhì)體積和皮層厚度偏離TD發(fā)育軌跡的模式(Khundrakpam et al., 2017; Koolschijn amp; Geurts, 2016; van Rooij et al., 2018; Wang et al., 2017; Yamasaki et al., 2010; Zabihi et al., 2019; Zhao,"Zhu,"et al., 2022)。研究人員由此推測, ASD在早期表現(xiàn)出了過度發(fā)育, 而在兒童后期表現(xiàn)出了生長減緩甚至停滯發(fā)育, 在此之后表現(xiàn)出了大腦灰質(zhì)體積和皮層厚度加速衰減現(xiàn)象(Lange et al., 2015; Zielinski et al., 2014)。因此, 后續(xù)的研究需要建立一個發(fā)育的框架去探究ASD形態(tài)學(xué)的異常。
各向異性分?jǐn)?shù)(fractional anisotropy, FA)常常在DTI研究中被用來刻畫大腦白質(zhì)纖維的完整性。FA值降低反映了大腦白質(zhì)纖維束組織結(jié)構(gòu)完整性受損。對于ASD兒童以及成人, 大部分研究都發(fā)現(xiàn)ASD相較于TD表現(xiàn)出了降低的FA, 其中降低的區(qū)域包括了腹內(nèi)側(cè)前額葉皮層、眶額、前扣帶回、顳頂聯(lián)合區(qū)、雙側(cè)顳上溝、顳枕束、胼胝體(Alexander et al., 2007; Barnea-Goraly et al., 2004; Haigh et al., 2020; Lee et al., 2007; Pardini et"al., 2009; Sundaram et al., 2008; Temur et al., 2019)。但是也有研究發(fā)現(xiàn), ASD兒童在左側(cè)內(nèi)囊后肢、胼胝體膝部、胼胝體壓部、左側(cè)外囊表現(xiàn)出了升高的FA; ASD青少年在額葉、右側(cè)扣帶回、雙側(cè)腦島、右側(cè)顳上回、雙側(cè)小腦中腳表現(xiàn)出了升高的FA (Bashat et al., 2007)。除了FA, 平均彌散程度(mean diffusivity, MD)也被用來探究大腦白質(zhì)的微觀結(jié)構(gòu)。MD反映了平均彌散水平和彌散阻力的整體情況。相較于TD, ASD在胼胝體、扣帶等區(qū)域都表現(xiàn)出了MD的升高(Cai et al., 2022; Valenti et al., 2020)。ASD被試FA及MD的異常表明白質(zhì)結(jié)構(gòu)異常在其病理機制中可能扮演著重要的作用。近些年, 一些研究人員除了探究白質(zhì)的結(jié)構(gòu)外, 還開始探究白質(zhì)的功能, 然而ASD大腦白質(zhì)功能的異常還不清楚, 未來的研究還需要探究ASD白質(zhì)功能異常以及白質(zhì)功能異常與行為之間的關(guān)系(Li et al., 2019; Peer et al., 2017)。
2.1.2 "ASD功能影像局部特征異常研究
fMRI通過檢測大腦血氧飽和度的變化來反映各個部位神經(jīng)元群的活動水平, 是探測人類大腦功能活動的重要手段。在神經(jīng)影像研究中, 功能影像學(xué)研究主要包括了任務(wù)態(tài)研究以及靜息態(tài)研究兩大方向。
ASD任務(wù)態(tài)fMRI研究主要探究了其面孔加工、運動感知、語言加工以及獎賞處理等方面的異常(Hernandez et al., 2015)。在面孔加工過程中, 大部分研究發(fā)現(xiàn)ASD梭狀回和杏仁核的激活降低(Corbett et al., 2009; Kleinhans et al., 2011; Nickl-Jockschat et al., 2015; Nomi amp; Uddin, 2015), 且梭狀回的激活水平與社交焦慮存在顯著的負相關(guān)(Kleinhans et al., 2010)。然而, 有研究發(fā)現(xiàn)ASD在處理其母親面孔過程中梭狀回的激活與TD的激活水平相當(dāng), 然而在處理陌生人面孔過程中表現(xiàn)出了激活降低(Pierce amp; Redcay, 2008)。上述結(jié)果表明, ASD對陌生面孔照片處理過程中的所產(chǎn)生的焦慮可能導(dǎo)致了其社交回避情況的出現(xiàn)。在運動感知過程中, ASD在顳上溝、腹外側(cè)前額葉、顳頂聯(lián)合區(qū)都表現(xiàn)出了降低的激活(Davies et al., 2011; Koldewyn et al., 2011; von dem Hagen et al., 2013)。迅速感知生物運動可以引導(dǎo)注意力集中于出現(xiàn)的社交刺激, 而ASD對于生物運動感知的異常可能導(dǎo)致在社交場景中不能很好捕獲社交線索。在語言處理過程中, 相較于TD, ASD的Broca區(qū)域、顳葉前部表現(xiàn)出激活更強(Graves et al., 2022; Knaus et al., 2008), 而在左腹側(cè)中央溝、顳上溝的激活降低(Tanigawa et al., 2018)。同時, 有研究發(fā)現(xiàn), ASD在語言處理過程中左右半球功能分化程度降低(Deemyad, 2022; Knaus et al., 2010)。在獎賞信息處理過程中, 在金錢獎賞或者社會獎賞條件下, ASD的伏隔核、杏仁核、前扣帶、腹側(cè)紋狀體等區(qū)域都表現(xiàn)出了激活降低(Baumeister et al., 2023; Kohls et al., 2018; Kohls et al., 2013)。因此, 大腦獎賞環(huán)路的異常可能導(dǎo)致ASD對于社會性刺激的敏感程度降低, 并且導(dǎo)致其興趣狹窄等癥狀。
ASD靜息態(tài)fMRI研究主要包括了靜態(tài)功能連接研究與動態(tài)功能連接研究兩大方向。過去20年, 大量研究發(fā)現(xiàn)了ASD靜態(tài)功能連接的異常。但是, 有研究發(fā)現(xiàn)ASD表現(xiàn)出超連接, 有研究發(fā)現(xiàn)ASD表現(xiàn)出失連接, 也有研究發(fā)現(xiàn)ASD超連接和失連接兩者都存在(Di Martino et al., 2011; Hull et al., 2016; Oldehinkel et al., 2019; Reiter et al.,"2019; Uddin et al., 2013; Xiao et al., 2023)。為了解釋這一現(xiàn)象, Uddin等人梳理以往研究文獻后從發(fā)發(fā)育角度提出了“超連接?失連接”模型, 該模型表明ASD在青少年以及成年時期通常表現(xiàn)為失連接, 而在兒童時期表現(xiàn)為超連接(Uddin et al., 2013)。但是, ASD靜態(tài)功能連接從超連接轉(zhuǎn)變?yōu)槭нB接過程的具體時間節(jié)點還不清楚。另外, 越來越多的研究表明, 人類大腦的功能連接模式會隨時間而變化(Chang amp; Glover, 2010)。利用動態(tài)功能連接分析方法可以捕捉大腦功能連接的時變特性, 這將有助于理解大腦功能組織架構(gòu)和信息加工基礎(chǔ), 并且有可能調(diào)和以往靜態(tài)功能連接研究發(fā)現(xiàn)不一致的情況(Gonzalez-Castillo amp; Bandettini,"2018; Preti et al., 2017; Shine amp; Poldrack, 2018)。有研究使用滑動窗分析方法, 發(fā)現(xiàn)ASD在后扣帶和顳極中部、額下回的動態(tài)功能連接變異性升高, 而后扣帶與中央前回之間動態(tài)功能連接變異性降低, 并且后扣帶動態(tài)功能連接的異常與ASD社交癥狀嚴(yán)重程度顯著相關(guān)(He et al., 2018; Li, Zhu, "et al., 2020)。也有研究發(fā)現(xiàn), 無論在半球內(nèi)還是半球間, 相較于TD, ASD的前扣帶、內(nèi)側(cè)前額葉都表現(xiàn)出了升高的動態(tài)功能連接密度變異性, 而在梭狀回、顳下回表現(xiàn)出了降低的動態(tài)功能連接密度變異性。同時, ASD的感覺運動區(qū)在半球內(nèi)表現(xiàn)出降低的動態(tài)功能連接密度變異性(Guo et al., 2020)。動態(tài)功能連接分析為ASD腦功能探究提供了新的視角, 然而將來還需要結(jié)合動態(tài)、靜態(tài)進行分析, 探明ASD大腦功能活動異常與其癥狀、基因表達之間的關(guān)系。
2.2 "ASD腦網(wǎng)絡(luò)研究
人類大腦是一個復(fù)雜的網(wǎng)絡(luò)。研究人員通常從結(jié)構(gòu)和功能兩個角度來構(gòu)建大腦網(wǎng)絡(luò)。腦網(wǎng)絡(luò)分析提供了從系統(tǒng)水平對大腦的功能組織、信息交互甚至疾病的病理機制進行研究的手段(Bullmore amp; Sporns, 2009)。大量研究表明, ASD的腦功能網(wǎng)絡(luò)與結(jié)構(gòu)網(wǎng)絡(luò)都存在異常(Duan et al., 2020; He et al., 2018; He et al., 2021; Rudie et al., 2013; Yang et al., 2023)。
大腦的功能網(wǎng)絡(luò)通常基于功能連接來構(gòu)建。基于圖論分析的研究發(fā)現(xiàn):在全局水平, ASD功能網(wǎng)絡(luò)的聚類系數(shù)和最短路徑長度顯著降低, 這表明ASD的功能網(wǎng)絡(luò)更偏向于隨機化;在局部水平, ASD的雙側(cè)顳上溝、右背外側(cè)前額葉以及楔前葉等區(qū)域喪失了中心節(jié)點的屬性(Itahashi et al.,"2014)。同時, 也有研究發(fā)現(xiàn), ASD在雙側(cè)顳邊緣區(qū)域的度中心性增加(Di Martino et al., 2013)。另外, Menon提出了三網(wǎng)絡(luò)模型來幫助理解精神和神經(jīng)疾病的認知和情感障礙失調(diào)(Menon, 2011)。該模型認為, DMN、突顯網(wǎng)絡(luò)(salience network, SN)、額頂網(wǎng)絡(luò)(frontoparietal network, FPN)功能及其動態(tài)交互異常是包括ASD在內(nèi)的精神疾病及神經(jīng)發(fā)育障礙的起因之一。已經(jīng)有研究報道了ASD三網(wǎng)絡(luò)之間的靜態(tài)、動態(tài)的交互異常, 并且這些異常與ASD的核心癥狀顯著相關(guān)(Guo et al., 2023; Hogeveen et al., 2018; Wang, Li, et al., 2021)。大尺度功能網(wǎng)絡(luò)的分析為表征精神疾病或者神經(jīng)發(fā)育障礙提供了新的手段。但是, 未來的研究還需要分析大尺度功能網(wǎng)絡(luò)的交互異常與結(jié)構(gòu)網(wǎng)絡(luò)異常之間的潛在關(guān)系。
結(jié)構(gòu)網(wǎng)絡(luò)對大腦的功能活動起著一定的約束作用。結(jié)構(gòu)連接的異常可能導(dǎo)致認知、情感功能失調(diào), 進而在臨床上表現(xiàn)出某種疾病的癥狀。大腦的結(jié)構(gòu)網(wǎng)絡(luò)通常基于白質(zhì)纖維連接來構(gòu)建。研究發(fā)現(xiàn), 對于FA值構(gòu)成的結(jié)構(gòu)網(wǎng)絡(luò), ASD的小世界屬性降低, 全局的效率升高, 并且額下回、中央后回、左側(cè)楔前葉、丘腦、雙側(cè)頂上皮質(zhì)的節(jié)點效率增加(Cai et al., 2022; Qin et al., 2018)。現(xiàn)階段, 也有研究利用灰質(zhì)體積或者皮層厚度構(gòu)建結(jié)構(gòu)協(xié)變網(wǎng)絡(luò)來探究腦區(qū)間形態(tài)學(xué)的協(xié)同變化與大腦發(fā)育、認知以及疾病病理機制之間的關(guān)系(DuPre amp; Spreng, 2017; Montembeault et al., 2016; Prasad "et al., 2022; Sha et al., 2022; Zielinski et al., 2010)。相較于TD, 研究發(fā)現(xiàn)ASD的半球間皮下區(qū)域的協(xié)變降低, 而半球內(nèi)皮下區(qū)域的協(xié)變增強(Duan et al., 2020), 并且ASD的結(jié)構(gòu)協(xié)變網(wǎng)絡(luò)在內(nèi)側(cè)額葉、頂葉以及顳?枕皮層的節(jié)點中心性降低(Balardin et al., 2015)。結(jié)構(gòu)網(wǎng)絡(luò)研究從網(wǎng)絡(luò)水平定量刻畫ASD的大腦結(jié)構(gòu), 有助于理解大腦信息傳遞及加工機制, 了解ASD大腦的發(fā)生發(fā)展規(guī)律, 可能為理解ASD的病理機制提供關(guān)鍵線索。
3 "ASD多模態(tài)腦影像融合
ASD等神經(jīng)發(fā)育障礙和精神疾病影像學(xué)研究的一個重要目的是對其進行全面表征, 揭示其神經(jīng)病理機制。少量的大腦疾病可以利用單模態(tài)影像就能實現(xiàn)精確刻畫, 但是對于大多數(shù)早期非器質(zhì)性病變的精神疾病, 單模態(tài)腦影像提供的信息具有一定局限性, 還需要融合多模態(tài)腦影像進行多層級、全方位、多角度表征, 以此來達到用于指導(dǎo)臨床診斷和治療評估的目的(Calhoun amp; Sui, 2016)。雖然研究人員早已提出了多模態(tài)腦影像融合研究的構(gòu)想, 但是如何真正做到多模態(tài)腦影像融合是該領(lǐng)域一直面臨的挑戰(zhàn)。因此, 本小節(jié)從圖像級融合、特征級融合、決策級融合三個層級梳理了多模態(tài)腦影像方法及其在ASD研究中的應(yīng)用。
3.1""圖像級融合
圖像級融合是多模態(tài)腦影像融合最底層、最簡便的融合方式。例如, T1加權(quán)成像常用于大腦解剖成像, 其很好地反映了大腦的灰質(zhì)和白質(zhì); T2加權(quán)成像常用于觀察大腦病變, 對出血較為敏感, 偽影相對較少; 而T1/T2的比率圖則可以用來反映人類大腦皮層中髓鞘化的程度。這種基于T1和T2成像融合所得到的髓鞘化圖譜已被證明與人類皮層進化擴張、非人靈長類動物的神經(jīng)元密度圖譜等具有顯著的相關(guān)性(Glasser amp; Van Essen, 2011)。分子遺傳學(xué)研究也已經(jīng)發(fā)現(xiàn)了在ASD中髓鞘化相關(guān)的基因表達異常(Richetto et al., 2017; Zhao et al., 2018)。T1和T2圖像級的融合研究為這一發(fā)現(xiàn)提供了影像學(xué)證據(jù)。Daeki等人發(fā)現(xiàn)ASD高風(fēng)險嬰兒大腦灰質(zhì)和白質(zhì)都表現(xiàn)出了廣泛的T1/T2的值降低, 而且T1/T2的值與行為發(fā)育水平表現(xiàn)出了顯著的正相關(guān)(Darki et al., 2021)。這些發(fā)現(xiàn)表明, T1/T2的值是一個對于發(fā)育較為敏感的指標(biāo), 后續(xù)的研究還需要利用該指標(biāo)探索髓鞘化異常在ASD病理機制中扮演的角色。
除了T1/T2這種融合方式, 研究人員還提出了聯(lián)合獨立成份分析(joint-independent component analysis, j-ICA)、多模態(tài)典型相關(guān)分析(multimodal canonical correlation analysis, mCCA)、偏最小二乘等多變量方法, 通過尋找被試多種模態(tài)數(shù)據(jù)之間相互獨立且共變或被試間共變最大或不同模態(tài)之間最為相關(guān)的成份(或模式)來實現(xiàn)影像數(shù)據(jù)級的融合(Qi et al., 2018; Qi et al., 2019; Sui, Adali, et al.,"2012; Sui, Yu, et al., 2012)。Qi等人利用mCCA+"jICA融合大腦灰質(zhì)與功能活動, 發(fā)現(xiàn)了ASD不同亞型之間共有的結(jié)構(gòu)與功能協(xié)同變化的腦區(qū)以及亞型間特異性變化的腦區(qū)(Qi et al., 2020)。基于mCCA+jICA方法, 研究人員融合了任務(wù)態(tài)數(shù)據(jù)與大腦灰質(zhì)數(shù)據(jù), 發(fā)現(xiàn)了與新穎性追求特征相關(guān)的腦區(qū), 實現(xiàn)了對酗酒、吸煙、注意缺陷/多動障礙、抑郁、精分等風(fēng)險因子的預(yù)測與分類(Qi et al., 2021)。然而, 這種數(shù)據(jù)驅(qū)動的多模態(tài)影像融合分析方法在ASD中的應(yīng)用并不廣泛, 未來的研究還需要挖掘ASD不同模態(tài)腦影像之間的協(xié)同變化關(guān)系, 探究具有ASD特異性的影像學(xué)標(biāo)記物。
3.2""特征級融合
特征級融合是多模態(tài)腦影像融合最常見的融合方式。不同模態(tài)的影像提供了各種各樣的特征, 例如, 可以從T1加權(quán)影像獲得灰質(zhì)體積、灰質(zhì)密度、皮層厚度、灰白質(zhì)對比度、溝回指數(shù)等特征; 可以從功能影像獲得功能連接、功能連接密度、低頻振蕩幅度、局部一致性、動態(tài)功能連接、動態(tài)功能連接變異性等指標(biāo); 可以從彌散張量影像獲得FA、MD、徑向擴散系數(shù)、軸向擴散系數(shù)、纖維束條數(shù)、纖維束密度等指標(biāo)。基于上述指標(biāo), 特征級的融合大致可以分為特征耦合模型、特征聯(lián)合篩選模型、相似性網(wǎng)絡(luò)模型以及大尺度神經(jīng)環(huán)路模型四種方式。
特征耦合模型研究中最常見的是結(jié)構(gòu)與功能之間的耦合。一般情況下, 耦合性定義為兩種指標(biāo)的相關(guān)系數(shù)(Baum et al., 2020; Zhang et al., 2011)。以往的研究表明, 耦合性這種綜合了結(jié)構(gòu)指標(biāo)與功能指標(biāo)的測量方式要比任何單一模態(tài)探測腦疾病的生理異常更為敏感。例如, Zhang等人將結(jié)構(gòu)連接與功能連接的皮爾遜相關(guān)系數(shù)定義為結(jié)構(gòu)與功能的耦合性, 研究結(jié)果發(fā)現(xiàn), 在全面性癲癇患者中, 結(jié)構(gòu)與功能連接的耦合性顯著降低, 且與病程呈現(xiàn)出負相關(guān)(Zhang et al., 2011)。在ASD研究中, Ma等人發(fā)現(xiàn)ASD的左上放射冠和內(nèi)囊左后肢白質(zhì)體積與局部一致性的耦合程度降低(Ma et al., 2022)。最近, 也有研究發(fā)現(xiàn), 在TD中, 外側(cè)前額葉的結(jié)構(gòu)與功能的耦合性與執(zhí)行功能顯著相關(guān)并且部分介導(dǎo)年齡與執(zhí)行功能的關(guān)系(Baum et al., 2020)。研究人員還提出用預(yù)測模型來刻畫結(jié)構(gòu)與功能耦合的關(guān)系, 結(jié)果表明結(jié)構(gòu)與功能從單模態(tài)區(qū)域到跨模態(tài)區(qū)域表現(xiàn)出了一種梯度變化的解耦合模式(Vázquez-Rodríguez et al., 2019)。何等人利用這種預(yù)測模型發(fā)現(xiàn), ASD的右側(cè)輔助運動區(qū)、右側(cè)腦島和左側(cè)額下回的結(jié)構(gòu)和功能耦合異常高于TD, 并且異常區(qū)域的結(jié)構(gòu)功能耦合值可以用來預(yù)測ASD的臨床癥狀(何長春, 2021)。以往這些研究表明, 結(jié)構(gòu)和功能之間的耦合關(guān)系可能為理解ASD的病理機制和臨床診療提供新思路。然而, 目前對于ASD的結(jié)構(gòu)和功能耦合關(guān)系的研究還較少, 在后續(xù)的研究中還需要繼續(xù)探索。
特征聯(lián)合篩選模型通常被用來融合多模態(tài)影像特征對被試進行分類或者預(yù)測其臨床癥狀。通常, 融合多種模態(tài)的特征將獲得更高的分類準(zhǔn)確率或者更好的預(yù)測效果(Liem et al., 2017; Meng "et al., 2017; Wang, Hu, et al., 2021)。例如, He等人利用交叉驗證遞歸特征消除法篩選了結(jié)構(gòu)網(wǎng)絡(luò)特征和功能網(wǎng)絡(luò)連接特征后, 基于支持向量回歸預(yù)測了腦年齡, 發(fā)現(xiàn)ASD在兒童期腦年齡顯著高于其實際年齡, 而在青少年期腦年齡顯著低于其實際年齡, 這表明ASD在兒童期大腦表現(xiàn)出了加速發(fā)育, 而在青春后期大腦發(fā)育開始變得遲緩(He et al., 2020)。
相似性網(wǎng)絡(luò)模型是融合多模態(tài)影像揭示大腦皮層宏觀組織結(jié)構(gòu)的一種新手段(Seidlitz et al., 2018; Yang et al., 2021)。通常利用單個被試內(nèi)區(qū)域間多個不同模態(tài)指標(biāo)的相關(guān)性來構(gòu)建相似性網(wǎng)絡(luò), 其中包括了形態(tài)學(xué)相似性和功能相似性網(wǎng)絡(luò)(Li, Seidlitz, et al., 2021; Meng et al., 2022)。相似性網(wǎng)絡(luò)分析在抑郁癥、精神分列癥等疾病中已經(jīng)得到了廣泛應(yīng)用(Li, Seidlitz, et al., 2021; Martins et al., 2022; Xue et al., 2023; Zong et al., 2023)。例如, Li等人融合皮層表面積、灰質(zhì)體積、皮層的厚度、高斯曲率、平均曲率、FA以及平均彌散程度等指標(biāo)構(gòu)建了形態(tài)學(xué)相似性網(wǎng)絡(luò), 發(fā)現(xiàn)了抑郁癥患者形態(tài)學(xué)相似性網(wǎng)絡(luò)的異常, 并找出了與形態(tài)學(xué)相似性網(wǎng)絡(luò)異常相關(guān)的基因, 發(fā)現(xiàn)這些基因主要富集在小膠質(zhì)細胞和神經(jīng)元細胞(Li, Seidlitz, et al., 2021)。相似性網(wǎng)絡(luò)模型提供了一種新穎的、穩(wěn)定的以及具有神經(jīng)可解釋性的手段去理解人類大腦的網(wǎng)絡(luò)結(jié)構(gòu)。然而, ASD形態(tài)學(xué)及功能相似性網(wǎng)絡(luò)的異常及其潛在的分子機制還不清楚。未來的研究需要從結(jié)構(gòu)及功能兩個角度出發(fā), 分別構(gòu)建相似性網(wǎng)絡(luò), 探究ASD相似性網(wǎng)絡(luò)的異常與基因表達、細胞層流分化等微觀指標(biāo)的關(guān)系。
大尺度神經(jīng)環(huán)路模型是一個強有力的建立大腦微觀環(huán)路和宏觀組織關(guān)聯(lián)關(guān)系的方法(Breakspear, 2017; Kong et al., 2021; Wang, Kong, et al., 2019)。簡單來說, 該模型基于脈沖神經(jīng)網(wǎng)絡(luò)模型和血氧動力學(xué)模型, 融合結(jié)構(gòu)連接和功能連接, 模擬出了大腦微觀神經(jīng)環(huán)路的動力學(xué)特性, 包括了大腦區(qū)域內(nèi)循環(huán)(或周期)輸入、外部輸入以及神經(jīng)噪聲等。研究人員已經(jīng)基于大尺度神經(jīng)環(huán)路模型開展了多項研究, 例如, Weng等人發(fā)現(xiàn)了顳葉癲癇患者和全面性癲癇患者的循環(huán)輸入和外部刺激輸入的異常, 且發(fā)現(xiàn)不同的癲癇亞型是由不同的微觀環(huán)路特征紊亂導(dǎo)致的(Weng et al., 2020); Park等人發(fā)現(xiàn)ASD的循環(huán)輸入和外部輸入的改變與結(jié)構(gòu)連接流行的畸變相關(guān)(Park et al., 2021); Kong等人發(fā)現(xiàn)感覺運動皮層是大腦功能連接動態(tài)性的驅(qū)動器。經(jīng)顱磁刺激、經(jīng)顱直流電刺激等手段已經(jīng)在神經(jīng)調(diào)控領(lǐng)域發(fā)揮了重要作用, 但是現(xiàn)階段還缺乏可靠、穩(wěn)定、高效的個性化干預(yù)靶點(Cash et al., 2021; Cocchi amp; Zalesky, 2018)。構(gòu)建精確的大尺度神經(jīng)環(huán)路模型為我們提供了一個數(shù)字孿生腦, 如果通過數(shù)字孿生腦仿真計算出ASD神經(jīng)個體化精準(zhǔn)調(diào)控的靶點, 將可能獲得更加顯著的治療效果。
3.3""決策級融合
決策級融合是指根據(jù)一定的規(guī)則對不同模態(tài)影像的特征進行提取后構(gòu)建分類器, 再將多個分類器的判別結(jié)果進行融合后作出全局最優(yōu)的決策(黃渝萍, 李偉生, 2023)。Dimitriadis等人基于決策融合的思想, 利用多種形態(tài)學(xué)指標(biāo), 通過集成學(xué)習(xí)算法, 實現(xiàn)了對健康對照、早期輕度認知障礙、晚期輕度認知障礙、阿爾茲海默癥的多分類(Dimitriadis et al., 2018)。在ASD中也有類似的研究出現(xiàn)。例如, 有研究訓(xùn)練了基于結(jié)構(gòu)連接和功能連接的集成分類器, 在單中心內(nèi)實現(xiàn)了對ASD的精確分類; 而ElNakieb等人融合三通道的初級分類器進行綜合決策, 最后對ASD的分類準(zhǔn)確率達到了80.5% (Dekhil et al., 2019; ElNakieb et al., 2018)。現(xiàn)階段基于決策級融合的研究大多集中于結(jié)構(gòu)和功能影像, 未來的研究可以考慮納入磁共振波譜特征、電生理特征以及生化特征來綜合多角度信息進行綜合決策。
4 "ASD輔助診斷
ASD患病率日趨升高、異質(zhì)性強、診斷難、負擔(dān)重(Lai et al., 2014; Maenner et al., 2023), 早發(fā)現(xiàn)、早診斷、早干預(yù)可以明顯改善預(yù)后。如何實現(xiàn)ASD精確診斷是當(dāng)前研究的熱點問題(Kaur amp; Kaur, 2023)。以往的大多數(shù)研究都采用單模態(tài)腦影像進行分類。Anderson等人基于功能連接在小樣本上對ASD和TD進行分類, 準(zhǔn)確率達到了79% (Anderson et al., 2011)。基于小樣本數(shù)據(jù)訓(xùn)練的模型, 可能受到數(shù)據(jù)量及ASD異質(zhì)性等影響, 不具有魯棒性(Robust)和推廣性。因此, 研究人員逐漸轉(zhuǎn)向?qū)Χ嘀行拇髽颖镜姆治觯?以此來提升模型魯棒性和泛化能力。例如, Nielsen等人基于多中心公開數(shù)據(jù)庫, 在大樣本上基于功能連接實現(xiàn)了超過60%的分類準(zhǔn)確率(Nielsen et al., 2013)。除了功能連接, 一些結(jié)構(gòu)指標(biāo)也經(jīng)常被用來用于ASD的分類(Ali et al., 2022; Uddin et al., 2011)。例如, Gori等人基于灰質(zhì)體積、皮層厚度、表面積等形態(tài)學(xué)指標(biāo)實現(xiàn)了對ASD的分類(Gori et al., 2015); ElNakieb等人基于DTI數(shù)據(jù)的FA、平均彌散程度等特征實現(xiàn)了對ASD的分類(ElNakieb"et al., 2021)。
基于單模態(tài)的識別往往不能獲得優(yōu)異的分類準(zhǔn)確率, 距離臨床應(yīng)用還有很遠的距離。因此, 研究人員嘗試基于更全面的多模態(tài)影像來提升分類準(zhǔn)確率(Kim et al., 2022; Libero et al., 2015; Liu""et al., 2015)。例如, 有研究融合了結(jié)構(gòu)和功能連接數(shù)據(jù), 采用自編碼模型和多層感知機, 對ASD的分類準(zhǔn)確率達到了85.06% (Raki? et al., 2020); 而Kim等人將T1影像和DTI影像的特征融合能獲得了88.8%的分類準(zhǔn)確率(Kim et al., 2022)。
除了應(yīng)用類似于支持向量機、隨機森林、多層感知機等傳統(tǒng)的機器學(xué)習(xí)方法對ASD進行分類識別外, 深度學(xué)習(xí)技術(shù)作為機器學(xué)習(xí)的一個重要分支, 依靠其強大的學(xué)習(xí)能力也逐漸被廣泛應(yīng)用于輔助診斷的研究中。構(gòu)建多模態(tài)腦影像之間的關(guān)聯(lián)關(guān)系、建立參數(shù)共享的高效任務(wù)模型、在小樣本下實現(xiàn)精準(zhǔn)診斷分類以及如何解釋深度學(xué)習(xí)的過程都是基于深度學(xué)習(xí)的多模態(tài)腦影像模式識別研究熱點。現(xiàn)階段, 基于深度學(xué)習(xí)的ASD分類研究主要包括了基于深度神經(jīng)網(wǎng)絡(luò)和基于圖神經(jīng)網(wǎng)絡(luò)兩大類型(Cackowski et al., 2023; Guo et al., 2017; Khodatars et al., 2021; Li et al., 2018)。
深度神經(jīng)網(wǎng)絡(luò)是許多人工智能應(yīng)用的基礎(chǔ), 它利用多層無監(jiān)督隱藏層將現(xiàn)有空間的樣本逐層映射到另一個空間, 對高度復(fù)雜的函數(shù)進行擬合, 以此來實現(xiàn)對輸入特征更好的表達。有大量的研究基于功能或者結(jié)構(gòu)影像數(shù)據(jù), 利用深度神經(jīng)網(wǎng)絡(luò)及其衍生的模型對ASD進行分類(Eslami amp; Saeed, 2019; Ismail et al., 2017; Leming et al., 2020; Wang, Xiao, et al., 2019; Xiao et al., 2018)。例如, Kong等人將功能連接作為輸入, 利用深度神經(jīng)網(wǎng)絡(luò)模型對ASD的分類準(zhǔn)確率達到了90.39% (Kong et al., 2019); Pinaya等人基于結(jié)構(gòu)影像, 利用深度自編碼模型建立了標(biāo)準(zhǔn)模型, 將ASD偏離標(biāo)準(zhǔn)范圍的偏差作為特征, 實現(xiàn)了對ASD的分類(Pinaya et al., 2019); 而Mostafa等人融合了結(jié)構(gòu)和功能影像特征, 基于自編碼模型和深度神經(jīng)網(wǎng)絡(luò)對ASD的分類準(zhǔn)確率達到了79.2% (Mostafa "et al., 2020)。在這里我們發(fā)現(xiàn), 融合了多模態(tài)信息的分類準(zhǔn)確率在一些情況下并沒有優(yōu)于單模態(tài)影像特征, 這可能與樣本數(shù)量、選擇的模型、選取的特征有一定的關(guān)系。如何在有限樣本上, 訓(xùn)練具有穩(wěn)定性、可泛化性、高分類準(zhǔn)確率的深度神經(jīng)網(wǎng)絡(luò)將是下一步需要著力解決的問題。
圖神經(jīng)網(wǎng)絡(luò)是一種處理圖形結(jié)構(gòu)數(shù)據(jù)的人工神經(jīng)網(wǎng)絡(luò), 它可以對節(jié)點和邊進行建模, 并能夠在學(xué)習(xí)過程中捕捉節(jié)點之間的相互作用和全局特征。大腦是一個復(fù)雜但又高效的系統(tǒng), 它由幾百億個神經(jīng)元之間的幾萬億條突觸連接組成(Bullmore"amp; Sporns, 2009)。傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)沒有考慮不同節(jié)點之間的相互作用, 忽略了大腦功能和結(jié)構(gòu)之間的“深度關(guān)系”, 而圖神經(jīng)網(wǎng)絡(luò)展現(xiàn)出了其自身對于復(fù)雜網(wǎng)絡(luò)建模的優(yōu)勢。因此, 對于腦影像研究來說, 可以將大腦的節(jié)點抽象為圖中的節(jié)點, 而腦區(qū)之間的關(guān)系可以抽象為圖中的邊, 進而利用圖神經(jīng)網(wǎng)絡(luò)對非歐空間具有更強表達能力的優(yōu)勢來實現(xiàn)對被試特征的精準(zhǔn)預(yù)測或分類(Bessadok et al., 2022; Li, Zhou, et al., 2021; Li, Zhou, et al., 2020; Yang et al., 2019)。現(xiàn)階段, 已有研究利用圖神經(jīng)網(wǎng)絡(luò)嘗試對ASD進行識別。例如, Chen等人將感興趣區(qū)域的灰質(zhì)密度、慢4和慢5頻段的低頻振幅作為節(jié)點特征, 將感興趣區(qū)域間的功能連接作為邊構(gòu)建了多模態(tài)個體水平的圖網(wǎng)絡(luò), 基于圖神經(jīng)網(wǎng)絡(luò)模型, 在大樣本數(shù)據(jù)集上對ASD的分類準(zhǔn)確率達到了74.7% (Chen et al., 2022); 而Yin等人將大腦不同腦區(qū)的基于圖論的局部屬性等(如, 度中心性等)作為節(jié)點特征, 功能連接做為邊構(gòu)建圖, 基于圖神經(jīng)網(wǎng)絡(luò)對ASD的分類準(zhǔn)確率達到了82.3% (Yin et al., 2021)。對未來研究中的圖神經(jīng)網(wǎng)絡(luò)模型而言, 如何參考大腦的高效處理網(wǎng)絡(luò)構(gòu)建具有生理意義的圖結(jié)構(gòu)可能是獲得優(yōu)異性能的關(guān)鍵。圖神經(jīng)網(wǎng)絡(luò)與大腦網(wǎng)絡(luò)的結(jié)合, 不但可以使得我們搭建的系統(tǒng)更加靈活, 也可能幫助我們理解大腦的信息加工處理機制并找出ASD等神經(jīng)發(fā)育障礙或精神疾病特異性的神經(jīng)環(huán)路, 為臨床實現(xiàn)精準(zhǔn)醫(yī)療提供科學(xué)依據(jù)。
無論是基于單模態(tài)腦影像, 還是基于多模態(tài)腦影像融合技術(shù); 無論是利用傳統(tǒng)的機器學(xué)習(xí)框架, 還是利用最新的深度學(xué)習(xí)技術(shù), 建立高特異性、高靈敏性的ASD輔助診斷系統(tǒng)是研究人員一直追求的目標(biāo)。以多模態(tài)腦影像為核心, 建立符合中國國情、具有高穩(wěn)定性、高推廣性、可在ASD專業(yè)診斷人員匱乏地區(qū)進行推廣的ASD輔助診斷平臺是未來需要著力發(fā)展的方向。
5 "ASD亞型識別
ASD不是單一的臨床實體, 是一組具有高度異質(zhì)性的神經(jīng)發(fā)育障礙(Masi et al., 2017)。異質(zhì)性是理解ASD神經(jīng)病理機制及實現(xiàn)精準(zhǔn)診療的最大阻礙之一(Georgiades et al., 2013)。亞型劃分是ASD異質(zhì)性研究中最常采用的手段。以往對于ASD的亞型劃分大多基于行為學(xué)的表現(xiàn)。例如, 美國精神障礙診斷與統(tǒng)計手冊(The diagnostic and statistical manual of mental disorders, DSM)-III和DSM-IV將ASD劃分為阿斯伯格綜合征、未分類的廣泛性發(fā)育障礙以及典型孤獨癥(Kim, 2020)。過去十多年, 臨床上基于行為學(xué)的亞型劃分將ASD劃分為幾個言語水平、認知能力、社交溝通水平、重復(fù)刻板水平等具有差異的亞組, 這雖然有助于揭示ASD的癥狀發(fā)育軌跡的異質(zhì)性(Kim et al., 2018)。但是, 行為學(xué)的亞型對于揭示ASD的神經(jīng)機制及指導(dǎo)臨床實現(xiàn)精準(zhǔn)診療的作用似乎有限。近年來, 隨著腦影像分析手段的不斷進步, 劃分ASD影像學(xué)亞型對于理解其神經(jīng)機制顯示出了一定的優(yōu)勢。盡管使用的數(shù)據(jù)、分析手段都各不相同, 但是現(xiàn)有的研究表明基于腦影像可以將ASD劃分為2~4種亞型(Chen et al., 2019; Easson et al., 2019; Hong et al., 2018; Hong et al., 2020; Stefanik et al., 2018; Wang, 2022)。例如, Easson等人基于功能連接將ASD劃分為具有2種不同連接模式的亞型(Easson et al., 2019); Chen等人將ASD大腦灰質(zhì)相較于TD的差異作為特征, 發(fā)現(xiàn)了3種具有不同臨床癥狀和功能連接模式的ASD亞型(Chen et al., 2019); Hrdlicka等人將額葉的皮層厚度, 紋狀體、海馬、尾狀核及杏仁核的大小等特征進行聚類, 發(fā)現(xiàn)了4種具有不同感興趣區(qū)域特征的ASD亞型(Hrdlicka et al., 2005)。總結(jié)以往的研究, 發(fā)現(xiàn)有的ASD亞型在特定的腦影像特征上相較于TD表現(xiàn)出了增加, 而有的亞型表現(xiàn)出減少的情況, 這表明異質(zhì)性在影像研究中是不可忽略的因素。另外, 基于功能連接的亞型研究發(fā)現(xiàn), DMN和額頂網(wǎng)絡(luò)的異常在不同的亞型中都是一致存在的, 這表明這些高級認知網(wǎng)絡(luò)的異常可能是導(dǎo)致ASD社交溝通功能受損的原因。
DSM-5將ASD的診斷劃分為一種譜系障礙, 希望研究人員及臨床醫(yī)生采用更具維度的方法來研究ASD這種連續(xù)變化的譜系障礙, 而不是將ASD劃分為獨立的亞型(Kim, 2020)。Tang等人基于這一觀點提出了一種全新的分析框架, 將ASD的異常功能連接模式分解成了三種因子, 不同的ASD被試對于這三種因子表達程度不同, 且不同因子的表達程度與臨床癥狀相關(guān)(Tang et al., 2020)。Tang等人提出的分析框架對于揭示ASD的異質(zhì)性向前邁進了一步, 后續(xù)的研究還需要探索這種基于功能連接獲得的ASD維度特征背后的分子機制及在實現(xiàn)ASD精準(zhǔn)診療過程中的作用。
基于亞型及維度劃分的ASD腦影像研究致力于探索ASD高度異質(zhì)性的神經(jīng)機制。然而, 大多數(shù)研究都是基于單模態(tài)腦影像。如何融合多模態(tài)的磁共振腦影像, 建立亞型/維度與ASD臨床癥狀、神經(jīng)干預(yù)療效等這些臨床指標(biāo)之間的關(guān)系, 探索適合不同亞型/維度的個體化診療策略是未來ASD研究的一個重要方向。
6""小結(jié)與展望
本文從ASD單模態(tài)腦影像研究、多模態(tài)腦影像融合研究、輔助診斷、亞型識別幾個方面總結(jié)了現(xiàn)有的研究結(jié)果。回顧以往的研究發(fā)現(xiàn), 多模態(tài)磁共振腦影像研究豐富了我們對ASD神經(jīng)病理機制的認識, 為揭示ASD的神經(jīng)機制提供了強有力的手段, 有望推動孤獨癥臨床診療從依據(jù)主觀判斷到客觀指標(biāo)的轉(zhuǎn)變。然而, 影像學(xué)的發(fā)現(xiàn)距離臨床實現(xiàn)精準(zhǔn)診療還具有很遠的距離, 未來的研究還需要繼續(xù)著力關(guān)注以下幾個問題:
6.1 "融合多模態(tài)腦影像實現(xiàn)ASD全面表征
現(xiàn)階段, ASD的影像學(xué)研究大多是單模態(tài)、小樣本研究, 獲得的結(jié)果往往具有一定的差異, 且無法全面刻畫ASD大腦結(jié)構(gòu)與功能的細微變化。基于大樣本、多中心的多模態(tài)腦影像融合技術(shù)為多尺度、多層級對ASD進行表征提供了新的手段。然而, 無論是利用圖像級融合、特征級融合還是決策級融合的ASD研究都處于起步階段。未來的研究可以基于多模態(tài)腦影像融合技術(shù), 發(fā)展低維度、個體化、參數(shù)化的分析框架, 全面揭示ASD的異常神經(jīng)常制, 尋找具有分類識別能力的影像學(xué)標(biāo)記物, 為實現(xiàn)ASD的輔助診斷及亞型分類提供客觀依據(jù)。
再者, 基于腦電的研究發(fā)現(xiàn)ASD的頻譜功率、相干性以及半球不稱性均存在異常(Wang et al., 2013); 基于眼動追蹤的研究發(fā)現(xiàn)ASD相較于TD對面孔圖片以及社會性圖片都表現(xiàn)出了異常的注視模式(Kou et al., 2019; Wang et al., 2020); 腸道菌群的研究也發(fā)現(xiàn)ASD腸道菌群失調(diào)可能通過免疫反應(yīng)、腸胃系統(tǒng)等通路來影響腦與行為之間的關(guān)系(McElhanon et al., 2014; Noriega amp; Savelkoul, 2014; Vuong amp; Hsiao, 2017)。腦電、眼動追蹤、腸道菌群等多源數(shù)據(jù)也有望為揭示ASD病理機制提供支撐。在今后的研究中, 除了多模態(tài)腦影像數(shù)據(jù), 還可以納入電生理、眼動追蹤數(shù)據(jù)、生化指標(biāo)這些多源信息來構(gòu)建多中心、大樣本、多源異構(gòu)數(shù)據(jù)庫, 有效利用各模態(tài)的數(shù)據(jù)優(yōu)勢, 加強信息互補, 多維度、全方位探索ASD發(fā)生發(fā)展規(guī)律。
6.2""揭示“社會腦”網(wǎng)絡(luò)異常機制
回顧ASD腦影像的研究, 發(fā)現(xiàn)大多數(shù)的異常區(qū)域都集中在了“社會腦”網(wǎng)絡(luò), “社會腦”網(wǎng)絡(luò)是ASD大腦在不同層次上受影響最大的腦區(qū)。以往的結(jié)果在一定程度上支持了ASD的社交動機理論假說。“社會腦”網(wǎng)絡(luò)主要包括的區(qū)域有內(nèi)側(cè)前額葉、腹內(nèi)側(cè)前額葉、后顳上溝、楔前葉、梭狀回、額下回、額葉?腦島皮質(zhì)、杏仁核(Li, He,"et al., 2021; Misra, 2014; Sato amp; Uono, 2019)。這些腦區(qū)主要負責(zé)處理社會性刺激, 例如, 面孔識別、情感加工處理、眼睛注視、心智理論等(Sato amp; Uono, 2019), 這恰好與ASD的社交溝通等高級認知功能損傷相符合, 因此“社會腦”網(wǎng)絡(luò)的異常可能導(dǎo)致大腦信息處理和整合障礙, 進而影響ASD的社交、溝通以及行為表現(xiàn)。后續(xù)的研究可以融合多模態(tài)腦影像, 著力揭示ASD “社會腦”網(wǎng)絡(luò)的影像學(xué)機制。
在過去的十多年, 經(jīng)顱磁刺激作為一種非入侵性的神經(jīng)調(diào)控技術(shù), 在臨床研究中得到了廣泛的應(yīng)用, 成為了對包括ASD在內(nèi)的神經(jīng)發(fā)育障礙及精神疾病治療的新選擇(Iglesias, 2020; Kang""et al., 2019; Memon, 2021)。選擇恰當(dāng)?shù)拇碳ぐ悬c是取得預(yù)期調(diào)控效果的關(guān)鍵。例如, 初級運動皮層被用來提升運動控制、進行康復(fù)訓(xùn)練以及治療運動障礙; 前額葉皮層被用來改善執(zhí)行功能、工作記憶、決策能力以及情緒調(diào)節(jié); 顳葉區(qū)域被用來治療言語障礙以及情緒障礙等。然而, 現(xiàn)有神經(jīng)調(diào)控研究中對于ASD社交核心癥狀的改善程度有限。基于現(xiàn)有的ASD腦影像研究結(jié)果, 我們推薦將來研究可以將“社會腦”網(wǎng)絡(luò)中的關(guān)鍵節(jié)點(例如, 背外側(cè)前額葉)作為刺激區(qū)域, 以此來改善ASD的社交障礙。然而, 未來還需要大量的臨床實證來驗證這一推論。
6.3""助力臨床實現(xiàn)精準(zhǔn)診療
早期精確診斷可以為ASD兒童提供更早的干預(yù)治療, 有助于制定個性化的教育和康復(fù)方案。然而, ASD兒童異質(zhì)性強, 且傳統(tǒng)診斷方式需要經(jīng)驗豐富的專業(yè)人員進行評估, 這使得早期診斷變得更加復(fù)雜。多模態(tài)磁共振腦影像為ASD的輔助診療提供了新的手段, 但是還面臨著樣本量小、模型參數(shù)維度高、可解釋性差、泛化能力差、多模態(tài)數(shù)據(jù)融合難、多中心數(shù)據(jù)協(xié)調(diào)沒有完善策略、早期預(yù)警難、異質(zhì)性強等諸多問題。因此, 將來的研究需要基于多中心、大樣本數(shù)據(jù)深入挖掘具有早期診斷能力的影像學(xué)標(biāo)記物, 建立具有可推廣性、穩(wěn)定性的ASD早期預(yù)警及診斷模型, 從而實現(xiàn)早診斷、早干預(yù)。在此基礎(chǔ)上, 建立基于多模態(tài)腦影像的療效評估模型, 針對ASD不同亞型/維度制定不同干預(yù)策略, 優(yōu)化傳統(tǒng)單一的治療方案, 為臨床實現(xiàn)精準(zhǔn)診療提供客觀依據(jù)。
參考文獻
何長春. (2021). 基于磁共振成像的孤獨癥譜系障礙腦連接異常發(fā)育模式研究"[博士學(xué)位論文]. 電子科技大學(xué), 成都.
黃渝萍, 李偉生. (2023). 醫(yī)學(xué)圖像融合方法綜述. 中國圖象圖形學(xué)報, 28(1), 118?143.
王培實. (2022). 中國孤獨癥教育康復(fù)行業(yè)發(fā)展?fàn)顩r報告IV. 光明日報出版社.
Alexander, A. L., Lee, J. E., Lazar, M., Boudos, R., DuBray, M. B., Oakes, T. R., ... Lainhart, J. E. (2007). Diffusion tensor imaging of the corpus callosum in autism. Neuroimage, 34(1), 61?73.
Ali, M. T., ElNakieb, Y., Elnakib, A., Shalaby, A., Mahmoud, A., Ghazal, M., ... El-Baz, A. (2022). The role of structure MRI in diagnosing autism. Diagnostics, 12(1), 165.
Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J., Cariello, A. N., ... Lainhart, J. E. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134(12), 3742?3754.
Balardin, J. B., Comfort, W. E., Daly, E., Murphy, C., Andrews, D., Murphy, D. G., ... Sato, J. R. (2015). Decreased centrality of cortical volume covariance networks"in autism spectrum disorders. Journal of Psychiatric Research, 69, 142?149.
Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., amp; Reiss, A. L. (2004). White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biological Psychiatry, 55(3), 323?326.
Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., amp; Williams, S. C. (2000). The amygdala theory of autism. Neuroscience and Biobehavioral Reviews, 24(3), 355?364.
Bashat, D. B., Kronfeld-Duenias, V., Zachor, D. A., Ekstein, P. M., Hendler, T., Tarrasch, R., ... Sira, L. B. (2007). Accelerated maturation of white matter in young children with autism: A high b value dwi study. Neuroimage, 37(1), 40?47.
Baum, G. L., Cui, Z., Roalf, D. R., Ciric, R., Betzel, R. F., Larsen, B., ... Satterthwaite, T. D. (2020). Development of structure-function coupling in human brain networks during youth. Proceedings of the National Academy of Sciences, 117(1), 771?778.
Baumeister, S., Moessnang, C., Bast, N., Hohmann, S., Aggensteiner, P., Kaiser, A., ... EU-AIMS LEAP Group. (2023). Processing of social and monetary rewards in autism spectrum disorders. The British Journal of Psychiatry, 222(3), 100?111.
Bessadok, A., Mahjoub, M. A., amp; Rekik, I. (2022). Graph neural networks in network neuroscience. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5833?5848.
Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20(3), 340?352.
Bullmore, E., amp; Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186?198.
Cackowski, S., Barbier, E. L., Dojat, M., amp; Christen, T. (2023). Imunity: A generalizable vae-gan solution for multicenter MR image harmonization. Medical Image Analysis, 88, 102799.
Cai, Y., Zhao, J., Wang, L., Xie, Y., amp; Fan, X. (2022). Altered topological properties of white matter structural network in adults with autism spectrum disorder. Asian Journal of Psychiatry, 75, 103211.
Calhoun, V. D., amp; Sui, J. (2016). Multimodal fusion of brain imaging data: A key to finding the missing link (s) in complex mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(3), 230?244.
Cash, R. F., Cocchi, L., Lv, J., Wu, Y., Fitzgerald, P. B., amp; Zalesky, A. (2021). Personalized connectivity‐guided dlpfc‐tms for depression: Advancing computational feasibility, precision and reproducibility. Human Brain Mapping, 42(13), 4155?4172.
Chang, C., amp; Glover, G. H. (2010). Time?frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 81?98.
Chen, H., Uddin, L. Q., Guo, X., Wang, J., Wang, R., Wang, X., ... Chen, H. (2019). Parsing brain structural heterogeneity in males with autism spectrum disorder reveals distinct clinical subtypes. Human Brain Mapping, 40(2), 628?637.
Chen, Y., Yan, J., Jiang, M., Zhang, T., Zhao, Z., Zhao, W., ... Jiang, X. (2022, March). Adversarial learning based node-edge graph attention networks for autism spectrum disorder identification. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/ TNNLS.2022.3154755
Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., amp; Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231?239.
Cocchi, L., amp; Zalesky, A. (2018). Personalized transcranial magnetic stimulation in psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(9), 731? 741.
Corbett, B. A., Carmean, V., Ravizza, S., Wendelken, C., Henry, M. L., Carter, C., amp; Rivera, S. M. (2009). A functional and structural study of emotion and face processing in children with autism. Psychiatry Research: Neuroimaging, 173(3), 196?205.
Darki, F., Nystr?m, P., McAlonan, G., B?lte, S., amp; Falck-Ytter, T. (2021). T1-weighted/T2-weighted ratio mapping at 5"months captures individual differences in behavioral development and differentiates infants at familial risk for autism from controls. Cerebral Cortex, 31(9), 4068?4077.
Davies, M. S., Dapretto, M., Sigman, M., Sepeta, L., amp; Bookheimer, S. Y. (2011). Neural bases of gaze and emotion processing in children with autism spectrum disorders. Brain and Behavior, 1(1), 1?11.
Deemyad, T. (2022). Lateralized changes in language associated auditory and somatosensory cortices in autism. Frontiers in Systems Neuroscience, 16, 787448.
Dekhil, O., Ali, M., El-Nakieb, Y., Shalaby, A., Soliman, A., Switala, A., ... Casanova, M. F. (2019). A personalized autism diagnosis cad system using a fusion of structural MRI and resting-state functional MRI data. Frontiers in Psychiatry, 10, 392.
Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., ... Milham, M. P. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry, 69(9), 847?856.
Di Martino, A., Zuo, X.-N., Kelly, C., Grzadzinski, R., Mennes, M., Schvarcz, A., ... Milham, M. P. (2013). Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biological Psychiatry, 74(8), 623?632.
Dimitriadis, S. I., Liparas, D., Tsolaki, M. N., amp; Alzheimer's Disease Neuroimaging Initiative. (2018). Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) database. Journal of Neuroscience Methods, 302, 14?23.
Duan, X., amp; Chen, H. (2022). Mapping brain functional and structural abnormities in autism spectrum disorder: Moving toward precision treatment. Psychoradiology, 2(3), 78?85.
Duan, X., Wang, R., Xiao, J., Li, Y., Huang, X., Guo, X., ... Chen, H. (2020). Subcortical structural covariance in young children with autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 99, 109874.
DuPre, E., amp; Spreng, R. N. (2017). Structural covariance networks across the life span, from 6 to 94 years of age. Network Neuroscience, 1(3), 302?323.
Easson, A. K., Fatima, Z., amp; McIntosh, A. R. (2019). Functional connectivity-based subtypes of individuals with and without autism spectrum disorder. Network Neuroscience, 3(2), 344?362.
ElNakieb, Y., Ali, M. T., Dekhil, O., Khalefa, M. E., Soliman, A., Shalaby, A., ... El-Baz, A. (2018, December). Towards accurate personalized autism diagnosis using different imaging modalities: sMRI, fMRI, and DTI. 2018 IEEE International Symposium on Signal Processing and Information Technology, Louisville, USA.
ElNakieb, Y., Ali, M. T., Elnakib, A., Shalaby, A., Soliman, A., Mahmoud, A., ... El-Baz, A. (2021). The role of diffusion tensor mr imaging (dti) of the brain in diagnosing autism spectrum disorder: Promising results. Sensors, 21(24), 8171.
Eslami, T., amp; Saeed, F. (2019, September). Auto-ASD- network: A technique based on deep learning and support vector machines for diagnosing autism spectrum disorder using fMRI data. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Niagara Falls, USA.
Georgiades, S., Szatmari, P., Boyle, M., Hanna, S., Duku, E., Zwaigenbaum, L., ... Pathways in ASD Study Team. (2013). Investigating phenotypic heterogeneity in children with autism spectrum disorder: A factor mixture modeling approach. Journal of Child Psychology and Psychiatry, 54(2), 206?215.
Glasser, M. F., amp; Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. Journal of Neuroscience, 31(32), 11597?11616.
Gonzalez-Castillo, J., amp; Bandettini, P. A. (2018). Task-based dynamic functional connectivity: Recent findings and open questions. Neuroimage, 180, 526?533.
Gori, I., Giuliano, A., Muratori, F., Saviozzi, I., Oliva, P., Tancredi, R., ... Retico, A. (2015). Gray matter alterations in young children with autism spectrum disorders: Comparing morphometry at the voxel and regional level. Neuroimaging, 25(6), 866?874.
Graves, W. W., Levinson, H., Coulanges, L., Cahalan, S., Cruz, D., Sancimino, C., ... Rosenberg-Lee, M. (2022). Neural differences in social and figurative language processing on the autism spectrum. Neuropsychologia, 171, 108240.
Guo, X., Cao, Y., Liu, J., Zhang, X., Zhai, G., Chen, H., amp; Gao, L. (2023). Dysregulated dynamic time-varying triple-network segregation in children with autism spectrum disorder. Cerebral Cortex, 33(9), 5717?5726.
Guo, X., Dominick, K. C., Minai, A. A., Li, H., Erickson, C. A., amp; Lu, L. J. (2017). Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Frontiers in Neuroscience, 11, 460.
Guo, X., Duan, X., Chen, H., He, C., Xiao, J., Han, S., ... Chen, H. (2020). Altered inter- and intrahemispheric functional connectivity dynamics in autistic children. Human Brain Mapping, 41(2), 419?428.
Guo, X., Duan, X., Suckling, J., Chen, H., Liao, W., Cui, Q., amp; Chen, H. (2019). Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder. Human Brain Mapping, 40(4), 1264?1275.
Guo, X., Duan, X., Suckling, J., Wang, J., Kang, X., Chen, H., ... Chen, H. (2021). Mapping progressive gray matter alterations in early childhood autistic brain. Cerebral Cortex, 31(3), 1500?1510.
Haigh, S. M., Keller, T. A., Minshew, N. J., amp; Eack, S. M. (2020). Reduced white matter integrity and deficits in neuropsychological functioning in adults with autism spectrum disorder. Autism Research, 13(5), 702?714.
Hamilton, A. F. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61(1), 101?115.
He, C., Chen, H., Uddin, L. Q., Erramuzpe, A., Bonifazi, P., Guo, X., ... Duan, X. (2020). Structure-function connectomics reveals aberrant developmental trajectory occurring at preadolescence in the autistic brain. Cerebral Cortex, 30(9), 5028?5037.
He, C., Chen, Y., Jian, T., Chen, H., Guo, X., Wang, J., ... Duan, X. (2018). Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain. Autism Research, 11(11), 1479?1493.
He, C., Cortes, J. M., Kang, X., Cao, J., Chen, H., Guo, X., ... Xiao, J. (2021). Individual‐based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Human Brain Mapping, 42(10), 3282?3294.
Hernandez, L. M., Rudie, J. D., Green, S. A., Bookheimer, S., amp; Dapretto, M. (2015). Neural signatures of autism spectrum disorders: Insights into brain network dynamics. Neuropsychopharmacology, 40(1), 171?189.
Hogeveen, J., Krug, M. K., Elliott, M. V., amp; Solomon, M. (2018). Insula-retrosplenial cortex overconnectivity increases internalizing via reduced insight in autism. Biological Psychiatry, 84(4), 287?294.
Hong, S. J., Valk, S. L., Di Martino, A., Milham, M. P., amp; Bernhardt, B. C. (2018). Multidimensional neuroanatomical subtyping of autism spectrum disorder. Cerebral Cortex, 28(10), 3578?3588.
Hong, S. J., Vogelstein, J. T., Gozzi, A., Bernhardt, B. C., Yeo, B. T. T., Milham, M. P., amp; Di Martino, A. (2020). Toward neurosubtypes in autism. Biological Psychiatry, 88(1), 111?128.
Hrdlicka, M., Dudova, I., Beranova, I., Lisy, J., Belsan, T., Neuwirth, J., ... Urbanek, T. (2005). Subtypes of autism by cluster analysis based on structural MRI data."European Child amp; Adolescent Psychiatry, 14(3), 138?144.
Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., amp; Van Horn, J. D. (2016). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205.
Iglesias, A. H. (2020). Transcranial magnetic stimulation as treatment in multiple neurologic conditions. Current Neurology and Neuroscience Reports, 20(1), 1?9.
Ismail, M., Barnes, G., Nitzken, M., Switala, A., Shalaby, A., Hosseini-Asl, E., ... El-Baz, A. (2017, September). A new deep-learning approach for early detection of shape variations in autism using structural mri. 2017 IEEE International Conference on Image Processing, Beijing, China.
Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Jimbo, D., Shioda, S., ... Hashimoto, R. (2014). Altered network topologies and hub organization in adults with autism: A resting-state fMRI study. PloS one, 9(4), e94115.
Kang, J. N., Song, J. J., Casanova, M. F., Sokhadze, E. M., amp; Li, X. L. (2019). Effects of repetitive transcranial magnetic stimulation on children with low-function autism. CNS Neuroscience amp; Therapeutics, 25(11), 1254?1261.
Kaur, P., amp; Kaur, A. (2023). Review of progress in diagnostic studies of autism spectrum disorder using neuroimaging. Interdisciplinary Sciences: Computational Life Sciences, 1?20.
Keil, K. P., amp; Lein, P. J. (2016). DNA methylation: A mechanism linking environmental chemical exposures to risk of autism spectrum disorders? Environmental Epigenetics, 2(1), dvv012.
Khodatars, M., Shoeibi, A., Sadeghi, D., Ghaasemi, N., Jafari, M., Moridian, P., ... Berk, M. (2021). Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review. Computers in Biology and Medicine, 139, 104949.
Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F., amp; Evans, A. C. (2017). Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale MRI study. Cerebral Cortex, 27(3), 1721?1731.
Kim, J. I., Bang, S., Yang, J.-J., Kwon, H., Jang, S., Roh, S., ... Kim, B.-N. (2022). Classification of preschoolers with low-functioning autism spectrum disorder using multimodal MRI data. Journal of Autism and Developmental Disorders, 53(1), 25?37.
Kim, S. H. (2020). Decomposing heterogeneity in autism spectrum disorder through neurosubtyping. Biological Psychiatry, 87(12), e37?e38.
Kim, S. H., Bal, V. H., Benrey, N., Choi, Y. B., Guthrie, W., Colombi, C., amp; Lord, C. (2018). Variability in autism symptom trajectories using repeated observations from 14 to 36 months of age. Journal of the American Academy of Child amp; Adolescent Psychiatry, 57(11), 837?848. e832.
Kleinhans, N. M., Richards, T., Johnson, L. C., Weaver, K. E., Greenson, J., Dawson, G., amp; Aylward, E. (2011). fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. Neuroimage, 54(1), 697?704.
Kleinhans, N. M., Richards, T., Weaver, K., Johnson, L. C., Greenson, J., Dawson, G., amp; Aylward, E. (2010). Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia, 48(12), 3665?3670.
Knaus, T. A., Silver, A. M., Kennedy, M., Lindgren, K. A., Dominick, K. C., Siegel, J., amp; Tager-Flusberg, H. (2010). Language laterality in autism spectrum disorder and typical controls: A functional, volumetric, and diffusion tensor MRI study. Brain and Language, 112(2), 113?120.
Knaus, T. A., Silver, A. M., Lindgren, K. A., Hadjikhani, N., amp; Tager-Flusberg, H. (2008). fMRI activation during a language task in adolescents with ASD. Journal of the International Neuropsychological Society, 14(6), 967? 979.
Kohls, G., Antezana, L., Mosner, M. G., Schultz, R. T., amp; Yerys, B. E. (2018). Altered reward system reactivity for personalized circumscribed interests in autism. Molecular autism, 9, 9.
Kohls, G., Schulte-Rüther, M., Nehrkorn, B., Müller, K., Fink, G. R., Kamp-Becker, I., ... Konrad, K. (2013). Reward system dysfunction in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 8(5), 565?572.
Koldewyn, K., Whitney, D., amp; Rivera, S. M. (2011). Neural correlates of coherent and biological motion perception in autism. Developmental Science, 14(5), 1075?1088.
Kong, X., Kong, R., Orban, C., Wang, P., Zhang, S., Anderson, K., ... Thomas Yeo, B. T (2021). Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nature Communications, 12(1), 6373.
Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., amp; Liu, J. (2019). Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing, 324, 63?68.
Koolschijn, P. C. M., amp; Geurts, H. M. (2016). Gray matter characteristics in mid and old aged adults with ASD. Journal of Autism and Developmental Disorders, 46(8), 2666?2678.
Kou, J., Le, J., Fu, M., Lan, C., Chen, Z., Li, Q., ... Kendrick, K. M. (2019). Comparison of three different eye‐tracking tasks for distinguishing autistic from typically developing children and autistic symptom severity. Autism Research, 12(10), 1529?1540.
Lai, M.-C., Lombardo, M. V., amp; Baron-Cohen, S. (2014). Autism. The Lancet, 383(9920), 896?910.
Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B., Froehlich, A. L., Nielsen, J. A., ... Lainhart, J. E. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6?35 years. Autism Research, 8(1), 82?93.
Lee, J. E., Bigler, E. D., Alexander, A. L., Lazar, M., DuBray, M. B., Chung, M. K., ... Lainhart, J. E. (2007). Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neuroscience Letters, 424(2), 127?132.
Leming, M., Górriz, J. M., amp; Suckling, J. (2020). Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks. International Journal of Neural Systems, 30(7), 2050012.
Li, J., Biswal, B. B., Wang, P., Duan, X., Cui, Q., Chen, H., amp; Liao, W. (2019). Exploring the functional connectome in white matter. Human Brain Mapping, 40(15), 4331?4344.
Li, J., Seidlitz, J., Suckling, J., Fan, F., Ji, G. J., Meng, Y., ... Liao, W. (2021). Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nature Communications, 12(1), 1647.
Li, L., He, C., Jian, T., Guo, X., Xiao, J., Li, Y., ... Duan, X. (2021). Attenuated link between the medial prefrontal cortex and the amygdala in children with autism spectrum disorder: Evidence from effective connectivity within the “social brain”. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 111, 110147.
Li, X., Dvornek, N. C., Zhuang, J., Ventola, P., amp; Duncan, J. S. (2018, September)."Brain biomarker interpretation in ASD using deep learning and fMRI. Medical Image Computing and Computer Assisted Intervention?MICCAI 2018: 21st International Conference, Granada, Spain.
Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., ... Duncan, J. S. (2021). Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74, 102233.
Li, X., Zhou, Y., Dvornek, N. C., Zhang, M., Zhuang, J., Ventola, P., amp; Duncan, J. S. (2020, October). Pooling regularized graph neural network for fmri biomarker analysis. Medical Image Computing and Computer Assisted Intervention?MICCAI 2020: 23rd International Conference, Lima, Peru.
Li, Y., Zhu, Y., Nguchu, B. A., Wang, Y., Wang, H., Qiu, B., amp; Wang, X. (2020). Dynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorder. Autism Research, 13(2), 230?243.
Libero, L. E., DeRamus, T. P., Lahti, A. C., Deshpande, G., amp; Kana, R. K. (2015). Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex, 66, 46?59.
Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., ... Margulies, D. S. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 148, 179? 188.
Liu, J., Yao, L., Zhang, W., Xiao, Y., Liu, L., Gao, X., ... Lui, S. (2017). Gray matter abnormalities in pediatric autism spectrum disorder: A meta-analysis with signed differential mapping. European Child amp; Adolescent Psychiatry, 26(8), 933?945.
Liu, S., Cai, W., Liu, S., Zhang, F., Fulham, M., Feng, D., ... Kikinis, R. (2015). Multimodal neuroimaging computing: A review of the applications in neuropsychiatric disorders. Brain Informatics, 2(3), 167?180.
Livingston, L. A., amp; Happé, F. (2017). Conceptualising compensation in neurodevelopmental disorders: Reflections from autism spectrum disorder. Neuroscience amp; Biobehavioral Reviews, 80, 729?742.
Ma, L., Liu, M., Xue, K., Ye, C., Man, W., Cheng, M., ... Wang, J. (2022). Abnormal regional spontaneous brain activities in white matter in patients with autism spectrum disorder. Neuroscience, 490, 1?10.
Maenner, M. J., Warren, Z., Williams, A. R., Amoakohene, E., Bakian, A. V., Bilder, D. A., ... Shaw, K. A. (2023). Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, united states, 2020. MMWR Surveill Summ, 72(2), 1?14.
Martins, D., Dipasquale, O., Veronese, M., Turkheimer, F., Loggia, M. L., McMahon, S., ... Williams, S. C. (2022). Transcriptional and cellular signatures of cortical morphometric remodelling in chronic pain. Pain, 163(6), e759.
Masi, A., DeMayo, M. M., Glozier, N., amp; Guastella, A. J. (2017). An overview of autism spectrum disorder, heterogeneity and treatment options. Neuroscience Bulletin, 33(2), 183?193.
McElhanon, B. O., McCracken, C., Karpen, S., amp; Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 133(5), 872?883.
Memon, A. M. (2021). Transcranial magnetic stimulation in treatment of adolescent attention deficit/hyperactivity disorder: A narrative review of literature. Innovations in Clinical Neuroscience, 18(1?3), 43?46.
Meng, X., Jiang, R., Lin, D., Bustillo, J., Jones, T., Chen, J., ... Sui, J. (2017). Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data. Neuroimage, 145, 218?229.
Meng, Y., Yang, S., Xiao, J., Lu, Y., Li, J., Chen, H., amp; Liao, W. (2022). Cortical gradient of a human functional similarity network captured by the geometry of cytoarchitectonic organization. Communications Biology, 5(1), 1152.
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483?506.
Misra, V. (2014). The social brain network and autism. Annals of Neurosciences, 21(2), 69?73.
Montembeault, M., Rouleau, I., Provost, J.-S., amp; Brambati, S. M. (2016). Altered gray matter structural covariance networks in early stages of Alzheimer's disease. Cerebral Cortex, 26(6), 2650?2662.
Mostafa, S., Yin, W., amp; Wu, F.-X. (2020, November). Autoencoder based methods for diagnosis of autism spectrum disorder. Computational Advances in Bio and Medical Sciences: 9th International Conference, Miami, USA.
Nickl-Jockschat, T., Rottschy, C., Thommes, J., Schneider, F., Laird, A. R., Fox, P. T., amp; Eickhoff, S. B. (2015). Neural networks related to dysfunctional face processing in autism spectrum disorder. Brain Structure and Function, 220, 2355?2371.
Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E. D., ... Anderson, J. S. (2013). Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in Human Neuroscience, 7, 599.
Nomi, J. S., amp; Uddin, L. Q. (2015). Face processing in autism spectrum disorders: From brain regions to brain networks. Neuropsychologia, 71, 201?216.
Noriega, D. B., amp; Savelkoul, H. F. (2014). Immune dysregulation in autism spectrum disorder. European Journal of Pediatrics, 173(1), 33?43.
Oldehinkel, M., Mennes, M., Marquand, A., Charman, T., Tillmann, J., Ecker, C., ... Zwiers, M. P. (2019). Altered connectivity between cerebellum, visual, and sensory- motor networks in autism spectrum disorder: Results from the eu-aims longitudinal european autism project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 260?270.
Padmanabhan, A., Lynch, C. J., Schaer, M., amp; Menon, V. (2017). The default mode network in autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(6), 476?486.
Pardini, M., Garaci, F., Bonzano, L., Roccatagliata, L., Palmieri, M., Pompili, E., ... Emberti Gialloreti, L. (2009). White matter reduced streamline coherence in young men with autism and mental retardation. European Journal of Neurology, 16(11), 1185?1190.
Park, B. Y., Hong, S. J., Valk, S. L., Paquola, C., Benkarim, O., Bethlehem, R. A. I., ... Bernhardt, B. C. (2021). Differences in subcortico-cortical interactions identified from connectome and microcircuit models in autism. Nature Communications, 12(1), 2225.
Peer, M., Nitzan, M., Bick, A. S., Levin, N., amp; Arzy, S. (2017). Evidence for functional networks within the human brain's white matter. Journal of Neuroscience, 37(27), 6394?6407.
Pierce, K., amp; Redcay, E. (2008). Fusiform function in children with an autism spectrum disorder is a matter of “who”. Biological Psychiatry, 64(7), 552?560.
Pinaya, W. H., Mechelli, A., amp; Sato, J. R. (2019). Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study. Human Brain Mapping, 40(3), 944?954.
Prasad, K., Rubin, J., Mitra, A., Lewis, M., Theis, N., Muldoon, B., ... Cape, J. (2022). Structural covariance networks in schizophrenia: A systematic review part i. Schizophrenia Research, 240, 1?21.
Premika S.W. Boedhoe, Daan van Rooij, Martine Hoogman, Jos W.R. Twisk, Lianne Schmaal, Yoshinari Abe, ... van den Heuvel, O. A. (2020). Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: Findings from the ENIGMA ADHD, ASD, and OCD working groups. American Journal of Psychiatry, 177(9), 834?843.
Preti, M. G., Bolton, T. A., amp; Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage, 160, 41?54.
Qi, S., Calhoun, V. D., van Erp, T. G. M., Bustillo, J., Damaraju, E., Turner, J. A., ... Sui, J. (2018). Multimodal fusion with reference: Searching for joint neuromarkers of working memory deficits in schizophrenia. IEEE Transactions on Medical Imaging, 37(1), 93?105.
Qi, S., Morris, R., Turner, J. A., Fu, Z., Jiang, R., Deramus, T. P., ... Sui, J. (2020). Common and unique multimodal covarying patterns in autism spectrum disorder subtypes. Molecular Autism, 11(1), 90.
Qi, S., Schumann, G., Bustillo, J., Turner, J. A., Jiang, R., Zhi, D., ... Whelan, R. (2021). Reward processing in novelty seekers: A transdiagnostic psychiatric imaging biomarker. Biological Psychiatry, 90(8), 529?539.
Qi, S., Sui, J., Chen, J., Liu, J., Jiang, R., Silva, R., ... Calhoun, V. D. (2019). Parallel group ica+ica: Joint estimation of linked functional network variability and structural covariation with application to schizophrenia. Human Brain Mapping, 40(13), 3795?3809.
Qin, B., Wang, L., Zhang, Y., Cai, J., Chen, J., amp; Li, T. (2018). Enhanced topological network efficiency in preschool autism spectrum disorder: A diffusion tensor imaging study. Frontiers in Psychiatry, 9, 278.
Quesnel-Vallieres, M., Weatheritt, R. J., Cordes, S. P., amp; Blencowe, B. J. (2019). Autism spectrum disorder: Insights into convergent mechanisms from transcriptomics. Nature Reviews Genetics, 20(1), 51?63.
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., amp; Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676?682.
Raki?, M., Cabezas, M., Kushibar, K., Oliver, A., amp; Lladó, X. (2020). Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage: Clinical, 25, 102181.
Reiter, M. A., Mash, L. E., Linke, A. C., Fong, C. H., Fishman, I., amp; Müller, R.-A. (2019). Distinct patterns of atypical functional connectivity in lower-functioning autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 251?259.
Richetto, J., Chesters, R., Cattaneo, A., Labouesse, M. A., Gutierrez, A. M. C., Wood, T. C., ... Riva, M. A. (2017). Genome-wide transcriptional profiling and structural magnetic resonance imaging in the maternal immune activation model of neurodevelopmental disorders. Cerebral Cortex, 27(6), 3397?3413.
Rudie, J. D., Brown, J., Beck-Pancer, D., Hernandez, L., Dennis, E., Thompson, P., ... Dapretto, M. (2013). Altered functional and structural brain network organization in autism. NeuroImage: Clinical, 2, 79?94.
Sato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., ... Toichi, M. (2017). Reduced gray matter volume in the social brain network in adults with autism spectrum disorder. Frontiers in Human Neuroscience, 11, 395.
Sato, W., amp; Uono, S. (2019). The atypical social brain network in autism: Advances in structural and functional MRI studies. Current Opinion in Neurology, 32(4), 617? 621.
Seidlitz, J., Vá?a, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J., Vértes, P. E., ... Bullmore, E. T (2018). Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron, 97(1), 231?247. e237.
Sha, Z., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., ... Francks, C. (2022). Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 27(4), 2114?2125.
Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., ... Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences, 106(6), 1942?1947.
Shine, J. M., amp; Poldrack, R. A. (2018). Principles of dynamic network reconfiguration across diverse brain states. Neuroimage, 180, 396?405.
Stefanik, L., Erdman, L., Ameis, S. H., Foussias, G., Mulsant, B. H., Behdinan, T., ... Voineskos, A. N. (2018). Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 43(5), 1180?1188.
Sui, J., Adali, T., Yu, Q., Chen, J., amp; Calhoun, V. D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204(1), 68?81.
Sui, J., Yu, Q., He, H., Pearlson, G. D., amp; Calhoun, V. D. (2012). A selective review of multimodal fusion methods in schizophrenia. Frontiers in Human Neuroscience, 6, 27.
Sundaram, S. K., Kumar, A., Makki, M. I., Behen, M. E., Chugani, H. T., amp; Chugani, D. C. (2008). Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cerebral Cortex, 18(11), 2659?2665.
Tang, S., Sun, N., Floris, D. L., Zhang, X., Di Martino, A., amp; Yeo, B. T. T. (2020). Reconciling dimensional and categorical models of autism heterogeneity: A brain connectomics and behavioral study. Biological Psychiatry, 87(12), 1071?1082.
Tanigawa, J., Kagitani-Shimono, K., Matsuzaki, J., Ogawa, R., Hanaie, R., Yamamoto, T., ... Ozono, K. (2018). Atypical auditory language processing in adolescents with autism spectrum disorder. Clinical Neurophysiology, 129(9), 2029?2037.
Temur, H. O., Yurtsever, I., Yesil, G., Sharifov, R., Yilmaz, F. T., Dundar, T. T., amp; Alkan, A. (2019). Correlation between DTI findings and volume of corpus callosum in children with autism. Current Medical Imaging, 15(9), 895?899.
Uddin, L. Q., Menon, V., Young, C. B., Ryali, S., Chen, T., Khouzam, A., ... Hardan, A. Y. (2011). Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biological Psychiatry, 70(9), 833?841.
Uddin, L. Q., Supekar, K., amp; Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience, 7, 458.
Valenti, M., Pino, M. C., Mazza, M., Panzarino, G., Di Paolantonio, C., amp; Verrotti, A. (2020). Abnormal structural and functional connectivity of the corpus callosum in autism spectrum disorders: A review. Review Journal of Autism and Developmental Disorders, 7, 46?62.
van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto, G. F., ... Buitelaar, J. K. (2018). Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. American Journal of Psychiatry, 175(4), 359?369.
Vázquez-Rodríguez, B., Suárez, L. E., Markello, R. D., Shafiei, G., Paquola, C., Hagmann, P., ... Misic, B. (2019). Gradients of structure?function tethering across neocortex. Proceedings of the National Academy of Sciences, 116(42), 21219?21227.
von dem Hagen, E. A. H., Stoyanova, R. S., Rowe, J. B., Baron-Cohen, S., amp; Calder, A. J. (2013). Direct gaze elicits atypical activation of the theory-of-mind network in autism spectrum conditions. Cerebral Cortex, 24(6), 1485?1492.
Vuong, H. E., amp; Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81(5), 411?423.
Wang, C., Xiao, Z., Wang, B., amp; Wu, J. (2019). Identification of autism based on SVM-RFE and stacked sparse auto- encoder. IEEE Access, 7, 118030?118036.
Wang, F. (2022). Disentangling the heterogeneity of autism spectrum disorder using normative modeling. Biological Psychiatry, 91(11), 920?921.
Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., amp; Sweeney, J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1), 1?14.
Wang, J., Fu, K., Chen, L., Duan, X., Guo, X., Chen, H., ... Chen, H. (2017). Increased gray matter volume and resting-state functional connectivity in somatosensory cortex and their relationship with autistic symptoms in young boys with autism spectrum disorder. Frontiers in Physiology, 8, 588.
Wang, P., Kong, R., Kong, X., Liégeois, R., Orban, C., Deco, G., ... Thomas Yeo, B. T. (2019). Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Science Advances, 5(1), 7854.
Wang, Q., Hoi, S. P., Wang, Y., Lam, C. M., Fang, F., amp; Yi, L. (2020). Gaze response to others’ gaze following in children with and without autism. Journal of Abnormal Psychology, 129(3), 320?329.
Wang, Q., Hu, K., Wang, M., Zhao, Y., Liu, Y., Fan, L., amp; Liu, B. (2021). Predicting brain age during typical and atypical development based on structural and functional neuroimaging. Human Brain Mapping, 42(18), 5943?5955.
Wang, Q., Li, H.-Y., Li, Y.-D., Lv, Y.-T., Ma, H.-B., Xiang, A.-F., ... Liu, D.-Q. (2021). Resting-state abnormalities in functional connectivity of the default mode network in autism spectrum disorder: A meta-analysis. Brain Imaging and Behavior, 15(5), 2583?2592.
Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A. T., Wolfe, A., ... VanMeter, J. W. (2014). Dysmaturation of the default mode network in autism. Human Brain Mapping, 35(4), 1284?1296.
Weng, Y., Lariviere, S., Caciagli, L., Vos de Wael, R., Rodriguez-Cruces, R., Royer, J., ... Bernhardt, B. C. (2020). Macroscale and microcircuit dissociation of focal and generalized human epilepsies. Communications Biology, 3(1), 244.
Won, H., Mah, W., amp; Kim, E. (2013). Autism spectrum disorder causes, mechanisms, and treatments: Focus on neuronal synapses. Frontiers in Molecular Neuroscience, 6, 19.
Xiao, Y., Wen, T. H., Kupis, L., Eyler, L. T., Taluja, V., Troxel, J., ... Courchesne, E. (2023). Atypical functional connectivity of temporal cortex with precuneus and visual regions may be an early-age signature of ASD. Molecular Autism, 14(1), 11.
Xiao, Z., Wang, C., Jia, N., amp; Wu, J. (2018). SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging. Multimedia Tools and Applications, 77, 22809? 22820.
Xue, K., Guo, L., Zhu, W., Liang, S., Xu, Q., Ma, L., ... Liu, F. (2023). Transcriptional signatures of the cortical morphometric similarity network gradient in first-episode, treatment-naive major depressive disorder. Neuropsychopharmacology, 48(3), 518?528.
Yamasaki, S., Yamasue, H., Abe, O., Suga, M., Yamada, H., Inoue, H., ... Kasai, K. (2010). Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biological Psychiatry, 68(12), 1141?1147.
Yang, B., Wang, M., Zhou, W., Wang, X., Chen, S., Potenza, M. N., ... Dong, G.-H. (2023). Disrupted network integration and segregation involving the default mode network in autism spectrum disorder. Journal of Affective Disorders, 323, 309?319.
Yang, H., Li, X., Wu, Y., Li, S., Lu, S., Duncan, J. S., ... Gu, S. (2019, October). Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. Medical Image Computing and Computer Assisted Intervention?MICCAI 2019: 22nd International Conference, Shenzhen, China.
Yang, S., Wagstyl, K., Meng, Y., Zhao, X., Li, J., Zhong, P., ... Liao, W. (2021). Cortical patterning of morphometric similarity gradient reveals diverged hierarchical organization in sensory-motor cortices. Cell Reports, 36(8), 109582.
Yang, X., Si, T., Gong, Q., Qiu, L., Jia, Z., Zhou, M., ... Zhu, H. (2016). Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: A meta-analysis of voxel-based morphometry studies. Australian amp; New Zealand Journal of Psychiatry, 50(8), 741?753.
Yeh, C.-H., Tseng, R.-Y., Ni, H.-C., Cocchi, L., Chang, J.-C., Hsu, M.-Y., ... Lin, H.-Y. (2022). White matter microstructural and morphometric alterations in autism: Implications for intellectual capabilities. Molecular Autism, 13(1), 21.
Yin, W., Li, L., amp; Wu, F.-X. (2021, December). A graph attention neural network for diagnosing ASD with fMRI data. 2021 IEEE International Conference on Bioinformatics and Biomedicine, Houston, USA.
Zabihi, M., Oldehinkel, M., Wolfers, T., Frouin, V., Goyard, D., Loth, E., ... Marquand, A. F. (2019). Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(6), 567? 578.
Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J.-R., Xu, Q., ... Lu, G. (2011). Altered functional?structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134(10), 2912?2928.
Zhao, C., Dong, C., Frah, M., Deng, Y., Marie, C., Zhang, F., ... Lu, Q. R. (2018). Dual requirement of chd8 for chromatin landscape establishment and histone methyltransferase recruitment to promote cns myelination and repair. Developmental Cell, 45(6), 753?768.e758.
Zhao, X., Zhu, S., Cao, Y., Cheng, P., Lin, Y., Sun, Z., ... Du, Y. (2022). Abnormalities of gray matter volume and its correlation with clinical symptoms in adolescents with high-functioning autism spectrum disorder. Neuropsychiatric Disease and Treatment, 18, 717?730.
Zhao, Y., Yang, L., Gong, G., Cao, Q., amp; Liu, J. (2022). Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta- analysis of diffusion tensor imaging studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 113, 110477.
Zielinski, B. A., Gennatas, E. D., Zhou, J., amp; Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences, 107(42), 18191?18196.
Zielinski, B. A., Prigge, M. B., Nielsen, J. A., Froehlich, A. L., Abildskov, T. J., Anderson, J. S., ... Lange, N. (2014). Longitudinal changes in cortical thickness in autism and typical development. Brain, 137(6), 1799?1812.
Zong, X., Zhang, J., Li, L., Yao, T., Ma, S., Kang, L., ... Zheng, J. (2023). Virtual histology of morphometric similarity network after risperidone monotherapy and imaging-epigenetic biomarkers for treatment response in first-episode schizophrenia. Asian Journal of Psychiatry, 80, 103406.
Multimodal magnetic resonance imaging pattern recognition in autism spectrum disorder
SHAN Xiaolong, CHEN Huafu, DUAN Xujun
(School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731,"China)
Abstract: Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized by high prevalence, heterogeneity, and lifelong impact. The underlying mechanisms of ASD remain largely unknown. Multimodal magnetic resonance imaging (MRI) has emerged as a novel tool to unveil the neuroimaging mechanisms of ASD. Studies based on single-modal MRI have already revealed widespread abnormalities in brain structure, function, and network connectivity in individuals with ASD. The affected regions encompass the amygdala, fusiform gyrus, orbitofrontal cortex, medial prefrontal cortex, anterior cingulate cortex, superior temporal sulcus, and insula, many of which are implicated in the “social brain” network. While frameworks for multimodal brain imaging analysis, involving image-level fusion, feature-level fusion, and decision-level fusion, offer multidimensional and multilevel information for understanding neural mechanisms in participants, research on ASD based on multimodal MRI fusion is still in its early stages. Moreover, ASD-assisted diagnosis and subtype classification models based on MRI features hold promise for providing objective evidence for clinical diagnosis and treatment. Future research should aim to construct an integrated analysis framework that fuses multimodal brain imaging, incorporating information from various dimensions such as brain function, structure, and networks. This approach will comprehensively delineate the developmental patterns of ASD and reveal its atypical neurodevelopmental mechanisms. Additionally, future studies need to delve into the abnormal mechanisms of the “social brain” network in ASD, explore social impairment circuits, and identify potential precision neural regulatory targets, thereby assisting clinical efforts in achieving precise diagnosis and treatment for ASD.
Keywords:"ASD, multimodal magnetic resonance imaging, brain structure and function, ASD-assisted diagnosis, subtype classification