


摘 要:
捻轉血矛線蟲對伊維菌素、阿苯達唑等驅蟲藥物的耐藥性愈發嚴重,給全球多數國家和地區的養殖業帶來巨大損失。目前,對捻轉血矛線蟲耐藥性的研究多集中于流行病學調查、耐藥機制及耐藥性干預,并取得一定進展。本文針對捻轉血矛線蟲的耐藥性分布及其影響因素,耐藥機制以及基于細胞膜泵、自噬水平、細胞呼吸鏈、寄生蟲替換、植物提取物與驅蟲藥聯合驅蟲、抗性宿主培育等途徑逆轉耐藥性進行綜述,以期為捻轉血矛線蟲的耐藥性研究提供新的思路,同時為捻轉血矛線蟲病的科學防治、合理用藥以及新藥開發提供參考依據。
關鍵詞:
捻轉血矛線蟲;耐藥分布;耐藥機制;耐藥性逆轉
中圖分類號:
S852.73"""" 文獻標志碼:A """"文章編號: 0366-6964(2025)02-0523-11
收稿日期:2024-04-07
基金項目:寧夏自然科學基金項目(2024AAC03115);寧夏回族自治區重點研發計劃(引才專項)(2021BEB04025);內蒙古自然科學基金項目(2022MS03065)
作者簡介:李案本(2002-),男,云南富源人,碩士生,主要從事病原生物與宿主免疫研究,E-mail:19143240787@139.com
*通信作者:劉 陽,主要從事預防獸醫學研究,E-mail:liuyangnihao@139.com
Progress in the Study of Drug Resistance and Its Reversal in Haemonchus contortus
LI" Anben1, FU" Nana1, LUO" Xiaoping2, LI" Junyan2, LIU" Yang1*
(1.College of Life Science, Ningxia University/ Key Laboratory of Conservation and Utilization of Western Characteristic Resources, Ministry of Education, Yinchuan 750021," China;
2.Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031," China)
Abstract:
The resistance of Haemonchus contortus to anthelmintics such as ivermectin and albendazole has become increasingly serious, causing major losses to the aquaculture industry in most countries and regions of the world. Currently, research on drug resistance in Haemonchus contortus focuses on epidemiological studies, drug resistance mechanisms and drug resistance interventions, and has made some progress. In this paper, we review the distribution of drug resistance and its influencing factors, the mechanism of drug resistance and reversal of drug resistance based on cell membrane pumps, autophagy level, cellular respiratory chain, parasite substitution, combined deworming with plant extracts and anthelmintics, and breeding of resistant hosts, to provide a new way of thinking for the study of drug resistance in Haemonchus contortus, and to provide reference bases for the scientific control of Haemonchus contortus, the rational use of drugs, and the development of new drugs. It also provides a reference base for scientific control, rational use of drugs and development of new drugs.
Key words:
Haemonchus contortus; drug resistance distribution; drug resistance mechanism; reversal of drug resistance
*Corresponding author:" LIU Yang, E-mail: liuyangnihao@139.com
捻轉血矛線蟲(Haemonchus contortus)是一種寄生于反芻動物皺胃的致病性胃腸道優勢線蟲。這種嗜血性線蟲導致牲畜出現嚴重貧血及相關并發癥,嚴重者極度消瘦甚至死亡[1],給全球以畜牧業為主的國家或地區帶來重大經濟損失。迄今為止,針對捻轉血矛線蟲的防治策略主要依賴于驅蟲藥治療,如伊維菌素(ivermectin,IVM)、阿苯達唑(albendazole,ABZ)等。IVM通過作用于配體門控氯離子通道,控制該通道基因在線蟲外側神經索及咽部神經元發揮作用,進而影響捻轉血矛線蟲的攝食和繁殖活性[2-3]。然而驅蟲藥的長期不合理使用已造成嚴重的耐藥性問題。在最近的研究中,一些干預策略在捻轉血矛線蟲耐藥性的預防及逆轉中被應用,并取得一定的突破,如抑制膜轉運蛋白、寄生蟲替換減少棲息地耐藥株的數量、天然產物與驅蟲藥聯合驅蟲以及抗性宿主培育。此外,調節自噬水平和抑制深紅醌(rhodoquinone, RQ)的合成在降低耐藥性上也具有一定的潛力。本文從捻轉血矛線蟲的耐藥性分布及其影響因素,耐藥機制及耐藥性干預策略進行綜述,以期為捻轉血矛線蟲病的科學防治、合理用藥以及新藥開發提供理論依據。
1 捻轉血矛線蟲耐藥性分布的影響因素
了解耐藥性分布及其影響因素對掌握地區捻轉血矛線蟲種群的分布及遺傳結構特征具有重要作用。目前,全球多個國家和地區均出現關于捻轉血矛線蟲耐藥性的報道(表1、表2)。在我國,捻轉血矛線蟲耐藥性的報道主要集中于華北、西北地區。在這些反芻動物受災嚴重的地區,因長期不合理使用驅蟲藥導致了耐藥性的產生。其次這些地區大部分牲畜以放養為主,驅蟲藥隨糞便進入環境中,使環境中藥物殘留累積,致使耐藥株的產生,之后隨牧草經口進入反芻動物,這種惡性循環也促進捻轉血矛線蟲耐藥性的發生[4]。此外,宿主的跨地區運輸以及氣候和景觀變量之間的動態相互作用影響耐藥株在環境與宿主中的分布[5]。宿主種群在異質景觀中的移動及氣候的變化通過影響捻轉血矛線蟲耐藥株在野生和家養反芻動物之間傳播,進而影響耐藥性分布[6]。其中土地覆被的變化可導致野生反芻動物與牲畜的接觸更緊密,這種變化加快了耐藥基因型的傳播、維持和轉移[7]。目前,環境促進耐藥性的傳播機制尚未闡明,可能是由種群遺傳結構特征的改變所引起[8]。因此,仍需更多的深入研究,以了解耐藥性的動態分布,為降低捻轉血矛線蟲耐藥性提供參考依據。
2 捻轉血矛線蟲的耐藥機制
捻轉血矛線蟲對大環內酯類藥物產生的耐藥機制十分復雜,目前普遍認為的有γ-氨基丁酸(G-aminobutyric acid,GABA)門控氯離子通道的改變[9]、藥物作用的谷氨酸門控氯離子通道受體(glutamate gated chloride channels receptor,GluCIR)基因突變以及藥物外排泵P糖蛋白(P-glycoproteins,P-gp)的過表達[10],然而至今沒有一種機制可以完全解釋捻轉血矛線蟲對大環內酯類藥物的耐藥性[11]。相比大環內酯類藥物耐藥機制,捻轉血矛線蟲對苯并咪類藥物的耐藥機制研究較為清楚,主要與β-微管蛋白同種I型基因的單核苷酸多態性和P-gp有關,涉及F200Y(TTC-TAC)、F167Y(TTC-TAC)及E198Y(GAA-GCA)三個位點的氨基酸突變和P-gp過表達[12-13]。
近年來,隨著研究的深入發現寄生蟲對大環內酯類與苯并咪唑類藥物的耐藥性可能與非編碼RNA相關,如lncRNA、microRNA等[14-15]。研究人員利用全轉錄組測序發現,捻轉血矛線蟲IVM耐藥株中有375個miRNA、205個lncRNA與IVM敏感株差異顯著,且lncRNA、microRNA表達的增加與捻轉血矛線蟲IVM耐藥性相關[16-18]。從ABZ耐藥株中篩選出246個lncRNA、294個miRNA與ABZ敏感株的表達差異顯著,且miRNA靶基因可能通過PTEN/PI3K/AKT信號通路調控捻轉血矛線蟲的耐藥性,lncRNA可能通過mTOR、ABC轉運蛋白信號通路參與調控捻轉血矛線蟲對ABZ的耐藥性[14,19]。然而,這些非編碼RNA之間的相互作用及其在調控耐藥分子信號通路中的作用尚未明確,未來應以此為切入點,并嘗試將非編碼RNA與相關耐藥機制相聯系,尋找重要的藥物靶點及新的耐藥性干預策略。
此外,越來越多的研究表明寄生蟲對IVM、ABZ的耐藥性可能與多基因的相互作用有關。科研人員對捻轉血矛線蟲耐藥株的轉錄組、代謝組、蛋白組測序分析發現,IVM耐藥株中短鏈脫氫酶/還
原酶(SDR1、SDR12、SDR13、SDR16)、解毒代謝基因(UGT、GST、CYP)、促凋亡基因(ced-7c、MAP4K2)、轉錄激活因子(ABT-4)、P-pg、GluCIR、ABC轉運蛋白以及呼吸鏈復合物I(nuo-5)和ABZ耐藥株中ABC、GST和P450等相關基因具有高表達的特征[20-25],這些基因可能通過相互作用參與調控捻轉血矛線蟲的耐藥性。同時,秀麗隱桿線蟲(Caenorhabditis elegans)可作為捻轉血矛線蟲耐藥基因鑒定的共享線蟲物種[23],這給捻轉血矛線蟲耐藥基因的研究提供了便利。未來,挖掘和鑒定耐藥基因及其調控作用仍然是捻轉血矛線蟲耐藥機制研究的重要方向。
3 捻轉血矛線蟲耐藥性干預策略
全球耐藥性問題趨于嚴重,簡單的依賴開發新的驅蟲藥及藥物組合已不足以防治及逆轉當前的耐藥性問題,因此,有必要制定新的干預策略。已有干預策略包括抑制膜轉運蛋白、改變自噬水平、抑制RQ的合成、寄生蟲替換減少棲息地耐藥株的數量、天然產物與驅蟲藥聯合驅蟲以及抗性宿主培育等。
3.1 抑制膜轉運蛋白
外源性物質(如藥物)的轉運取決于細胞膜的疏水性和膜泵的活性,這些膜泵與各種細胞解毒過程有關[26]。其中,ATP結合盒ABC轉運蛋白超家族被認為與大環內酯類藥物的耐藥性密切相關。捻轉血矛線蟲的ABC轉運蛋白種類繁多,然而只有P-gp的研究較為清楚。研究表明,通過調節P-gp可增強藥物的驅蟲作用,從而逆轉線蟲的耐藥性[27]。目前,調節P-gp最常用的方法是開發有效的抑制劑或干擾劑。已報道的抑制劑有維拉帕米、二十二碳六烯酸衍生物DHA-E3、環孢菌素A衍生物(Valspodar)、第三代抑制劑(Tariquidar、Zosuquidar、Elacridar)、蛋白酶體抑制劑(MG132)以及凝集素等[28-33]。近年來,天然化合物作為捻轉血矛線蟲轉運蛋白抑制劑的研究也屢見報道,如黃酮類化合物槲皮素、萜類化合物檸檬烯等[34-35],這些天然產物均具有抑制捻轉血矛線蟲轉運蛋白的作用。此外,調節mRNA水平或靶向誘導ABC轉運蛋白表達的信號通路也可作為另一種調節P-gp的方法,通過RNA干擾技術沉默P-gp基因可提高捻轉血矛線蟲對IVM的敏感性[22]。然而P-gp介導耐藥性逆轉機制還未清楚,可能與藥物外排泵通道的阻斷與降解信號通路有關,也可能與P-gp抑制劑誘導的自噬有關[32]。
3.2 改變自噬水平
自噬是真核細胞固有的保守降解代謝過程,老化受損的胞內物質或外源物質被轉運至液泡或溶酶體進行分解代謝,適度的自噬能夠保護細胞抵御不良生存環境,自噬失衡則可能導致細胞自噬性的死亡。近年來,在腫瘤研究中相繼發現自噬與耐藥性相關,通過誘導或抑制自噬水平可以逆轉耐藥性[36-37]。在白念珠菌中,抑制自噬能夠提高其對抗菌藥物的敏感性[38]。自噬在寄生蟲耐藥性中的功能也常有報道,如弓形蟲、瘧原蟲及柔嫩艾美耳球蟲等[39-41]。通過改變自噬水平能夠降低莫能霉素對弓形蟲與柔嫩艾美耳球蟲的藥效[40,42]。在捻轉血矛線蟲中,同樣也有自噬參與耐藥性的報道。Tuersong等[25]對捻轉血矛線蟲敏感株和耐藥株測序發現,二者的差異表達基因顯著富集到自噬途徑,強調了自噬在IVM耐藥性中這一新的生物學功能。以上研究表明,通過調節自噬水平降低捻轉血矛線蟲的耐藥性具有一定可能性,也為耐藥性的研究提供了新的視角。
3.3 呼吸鏈途徑
自由生活階段的捻轉血矛線蟲線粒體在氧氣含量充足時使用一系列稱為電子傳遞鏈的分子復合物進行產能,即電子通過復合體I或幾個醌偶聯脫氫酶進入電子傳遞鏈被轉移到脂溶性電子載體泛醌(UQ)上,進而進入復合物III,然后進入復合物IV,最后轉移氧氣上,并與進入線粒體內的質子泵結合在一起建立質子梯度,為ATP合成酶提供能量。Preston等[43]在體外利用一種魚藤類化合物deguelin調控捻轉血矛線蟲線粒體呼吸鏈發現其表現出強大的殺蟲活性。寄生階段的捻轉血矛線蟲在宿主腸道內處于缺氧狀態,當沒有氧氣時,幾乎所有動物都會停止使用電子傳遞鏈,顯然捻轉血矛線蟲在寄生階段的呼吸鏈與我們熟悉的呼吸鏈不同。研究表明,腸道寄生蟲在宿主腸道內利用一種叫做RQ的分子重新代謝以產生能量[44]。RQ醌環上的單胺基團對這種厭氧代謝至關重要,其可能來源于犬尿氨酸途徑降解產生的3-羥基鄰氨基苯甲酸酯[45]。Del Borrello等[46]利用藥物阻斷了秀麗隱桿線蟲RQ合成,找到了針對RQ依賴性新陳代謝途徑中殺死線蟲的候選藥物,且該藥物沒有到達耐藥臨界點。到目前為止,只有蠕蟲、軟體動物、環節動物和扁形動物會產生RQ[47-50],而反芻動物并不能產生RQ,因此找到阻斷RQ合成的方法可能會成為對抗寄生線蟲耐藥性的一種新希望。
3.4 種群替換減少棲息地耐藥蟲株數量
棲息地寄生蟲數量對加速或延緩驅蟲藥耐藥性發展影響顯著。當棲息地敏感株的數量稀少或為零時,耐藥性會迅速增加,而當該種群數量較大時,耐藥性發生會延遲,因此利用敏感種群替換耐藥種群是極有潛力的逆轉耐藥性策略[51]。該策略總體思路是在耐藥種群數量處于最低限度的時間(可通過清潔牧場、牧場休息或使用一個干凈的牧場減少耐藥種群),通過將敏感株三期幼蟲人工或自然感染健康無寄生蟲宿主,并將其放養到牧場,從而在棲息地引入對藥物敏感的寄生蟲種群。這種策略能有效逆轉該牧場捻轉血矛線蟲耐藥性。Michuit等[52]建立了捻轉血矛線蟲替代模型,通過兩年多的時間,成功地用捻轉血矛線蟲敏感株替換了對ABZ具有高度耐藥性的捻轉血矛線蟲種群。George等[8]利用敏感蟲株替換耐藥蟲株后也實現了耐藥性逆轉,且改變了群體的遺傳結構。捻轉血矛線蟲對伊維菌素耐藥性產生機制復雜,目前仍然沒有確定的耐藥機制和耐藥基因[53],越來越多成功的案例表明利用替代寄生蟲種群的方法來恢復驅蟲藥的驅蟲作用是一個值得關注的發展方向[54-57],但受方案、方法及季節的影響,替代后的藥物藥效水平差異也很大 [58]。
3.5 天然產物與驅蟲藥聯合驅蟲
耐藥性的廣泛傳播和新藥物開發的高成本限制了驅蟲藥對胃腸道寄生蟲的控制效果,因此使用藥用植物代替驅蟲藥降低耐藥性的研究十分熱門[59]。從植物中提取的天然化合物可以防治捻轉血矛線蟲病,且對宿主產生的副作用小[60]。目前,可有效防控捻轉血矛線蟲病的植物提取物多集中在豆科、菊科以及薔薇科等(表3),且多數效果優于IVM、ABZ等化學驅蟲藥物。對這些植物進行化學分析發現主要含有單寧、生物堿以及單萜等化合物;從蛋白分析表明主要為植物防御蛋白,包括蛋白酶、蛋白酶抑制劑、幾丁質酶等,這些成分可能驅動植物達到驅蟲效果。同時,這些天然產物可能會長期保護宿主減少對寄生蟲的感染[61-62],當與驅蟲藥聯合用藥時,能夠提高驅蟲藥的藥效,從而實現藥物的高效利用,如槲皮素和IVM聯合用藥能顯著降低IVM對捻轉血矛線蟲的EC50[34],檸檬烯與IVM聯合使用可恢復驅蟲藥對捻轉血矛線蟲多重耐藥株的驅蟲作用,且其效果優于槲皮素和IVM組合[35]。
3.6 培育抗性宿主
培育更多的抗性宿主可能是一種可持續的耐藥性控制策略。不同品種的羊在對捻轉血矛線蟲的感染程度上表現不同。與多塞特羔羊相比,圣克羅伊羔羊表現出更好的抗感染能力,巴西圣伊內斯綿羊對捻轉血矛線蟲的感染抵抗力高于薩福克綿羊和法蘭西島綿羊,而加那利群島的CHB品種在抗捻轉血矛線蟲感染方面比CS品種表現更出色[84]。30多年來,Andronicos等[85]通過選擇性育種培育了兩個羊群(HSF和TSF),被證明是綿羊對胃腸道線蟲免疫抵抗和易感性分子機制研究的理想模型。Sallg等[86]也創建了兩種不同程度的抗捻轉血矛線蟲綿羊品系,并在表型和遺傳尺度上實現了顯著差異。抗性育種是可持續的策略,但在抗性育種時會受到環境的影響。環境的改變會使宿主、寄生蟲發生變異,破壞宿主與寄生蟲之間的關系,從而導致育種的失敗。
4 展望
捻轉血矛線蟲的耐藥性問題是防治捻轉血矛線蟲的主要障礙,干預耐藥性是克服此類難題的有效方法,因此尋找防治效果好、副作用小與成本低的干預策略是當前研究的熱點問題。
干預策略主要包括抑制膜轉運蛋白、改變自噬水平、抑制RQ的合成、種群替換、天然產物與驅蟲藥聯合使用及培育抗性宿主等。然而,目前幾種干預策略的機制尚不明確,且部分方法缺乏相關的數據支撐。因此,在后續的工作中,可通過分子生物學、遺傳學等技術研究這些干預策略的機制,深入探討捻轉血矛線蟲耐藥機制與干預機制之間的聯系以及環境在耐藥機制和干預機制中的作用,篩選干預捻轉血矛線蟲耐藥性的靶點并開發新的寄生蟲耐藥性逆轉劑。此外,天然產物在降低捻轉血矛線蟲耐藥性上具有很大的潛力,因此篩選高效、低殘留的天然產物也將是研究的重點。在未來,還需要挖掘新的干預策略,以期為控制捻轉血矛線蟲的耐藥性提供理論依據。
參考文獻(References):
[1] WANG T, MA G X, ANG C S, et al. Somatic proteome of Haemonchus contortus[J]. Int J Parasitol, 2019, 49(3-4):311-320.
[2] CALLANAN M K, HABIBI S A, LAW W J, et al. Investigating the function and possible biological role of an acetylcholine-gated chloride channel subunit (ACC-1) from the parasitic nematode Haemonchus contortus[J]. Int J Parasitol Drugs Drug Resist, 2018, 8(3):526-533.
[3] ATIF M, ESTRADA-MONDRAGON A, NGUYEN B, et al. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H." contortus[J]. PLoS Pathog, 2017, 13(10):e1006663.
[4] BRTKOV H, PODLIPN R, SKLOV L. Veterinary drugs in the environment and their toxicity to plants[J]. Chemosphere, 2016, 144:2290-2301.
[5] MORELLET N, VAN MOORTER B, CARGNELUTTI B, et al. Landscape composition influences roe deer habitat selection at both home range and landscape scales[J]. Landscape Ecol, 2011, 26(7):999-1010.
[6] WALKER J G, MORGAN E R. Generalists at the interface:nematode transmission between wild and domestic ungulates[J]. Int J Parasitol Parasites Wildl, 2014, 3(3):242-250.
[7] BROWN T L, AIRS P M, PORTER S, et al. Understanding the role of wild ruminants in anthelmintic resistance in livestock[J]. Biol Lett, 2022, 18(5):20220057.
[8] GEORGE M M, VATTA A F, HOWELL S B, et al. Evaluation of changes in drug susceptibility and population genetic structure in Haemonchus contortus following worm replacement as a means to reverse the impact of multiple-anthelmintic resistance on a sheep farm[J]. Int J Parasitol Drugs Drug Resist, 2021, 15:134-143.
[9] FOSTER J, COCHRANE E, KHATAMI M H, et al. A mutational and molecular dynamics study of the cys-loop GABA receptor Hco-UNC-49 from Haemonchus contortus:agonist recognition in the nematode GABA receptor family[J]. Int J Parasitol Drugs Drug Resist, 2018, 8(3):534-539.
[10] RIOU M, GUGNARD F, LE VERN Y, et al. Effects of cholesterol content on activity of P-glycoproteins and membrane physical state, and consequences for anthelmintic resistance in the nematode Haemonchus contortus[J]. Parasite, 2020, 27:3.
[11] 羅曉平, 李軍燕, 高 娃, 等. 捻轉血矛線蟲耐伊維菌素候選基因的多態性分析[J]. 中國寄生蟲學與寄生蟲病雜志, 2022, 40(4):536-539, 544.
LUO X P, LI J Y, GAO W, et al. Polymorphism analysis of candidate genes for ivermectin resistance in Haemonchus contortus[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(4):536-539, 544. (in Chinese)
[12] BARRRE V, ALVAREZ L, SUAREZ G, et al. Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the β-tubulin isotype 1 encoding gene in Haemonchus contortus[J]. Vet Parasitol, 2012, 186(3-4):344-349.
[13] BLACKHALL W J, PRICHARD R K, BEECH R N. P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles[J]. Vet Parasitol, 2008, 152(1-2):101-107.
[14] CHEN X D, WANG T Y, GUO W R, et al. Transcriptome reveals the roles and potential mechanisms of lncRNAs in the regulation of albendazole resistance in Haemonchus contortus[J]. BMC Genomics, 2024, 25(1):188.
[15] ZHOU C X, TUERSONG W, LIU L, et al. Non-coding RNA in the gut of the blood-feeding parasitic worm, Haemonchus contortus[J]. Vet Res, 2024, 55(1):1.
[16] 溫海峰, 張艷敏, 張海龍, 等. 捻轉血矛線蟲伊維菌素敏感蟲株與耐藥蟲株差異miRNA的轉錄組學分析[J]. 中國預防獸醫學報, 2023, 45(3):245-252.
WEN H F, ZHANG Y M, ZHANG H L, et al. Transcriptomic analysis of miRNAs between ivermectin sensitive and resistant strains of Haemonchus contortus[J]. Chinese Journal of Preventive Veterinary Medicine, 2023, 45(3):245-252. (in Chinese)
[17] GILLAN V, MAITLAND K, LAING R, et al. Increased expression of a MicroRNA correlates with anthelmintic resistance in parasitic nematodes[J]. Front Cell Infect Microbiol, 2017, 7:452.
[18] 陳昕迪, 王騰宇, 劉春霞, 等. 捻轉血矛線蟲伊維菌素耐藥相關長鏈非編碼RNA及其調控功能分析[J]. 中國農業大學學報, 2023, 28(1):190-202.
CHEN X D, WANG T Y, LIU C X, et al. Analysis of long non-coding RNAs associated with ivermectin resistance and its regulatory function in Haemonchus contortus[J]. Journal of China Agricultural University, 2023, 28(1):190-202. (in Chinese)
[19] 陳昕迪, 王騰宇, 石雅琴, 等. 捻轉血矛線蟲阿苯達唑耐藥相關長鏈非編碼RNA的表達分析[J]. 中國寄生蟲學與寄生蟲病雜志, 2022, 40(4):540-544.
CHEN X D, WANG T Y, SHI Y Q, et al." Analysis of the expressed lncRNA related to albendazole resistance of Haemonchus contortus[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(4):540-544. (in Chinese)
[20] 趙學亮, 王姝懿, 孫 柯, 等. 捻轉血矛線蟲阿苯達唑敏感株和耐藥株比較轉錄組學分析[J]. 畜牧獸醫學報, 2019, 50(9):1940-1944.
ZHAO X L, WANG S Y, SUN K, et al. Comparative transcriptome analysis of albendazole-susceptible and resistant strains of Haemonchus contortus by RNA-Seq[J]. Journal of Animal Husbandry and Veterinary Science, 2019, 50(9):1940-1944. (in Chinese)
[21] MATE L, BALLENT M, CANTN C, et al. ABC-transporter gene expression in ivermectin-susceptible and resistant Haemonchus contortus isolates[J]. Vet Parasitol, 2022, 302:109647.
[22] 劉 陽. 捻轉血矛線蟲轉錄組和蛋白組學分析及耐IVM候選基因功能研究[D]. 呼和浩特:內蒙古農業大學, 2021.
LIU Y. Analysis of transcriptomics and proteomics and functional reseach of IVM-resistant candidate genes in Haemonchus contortus[D]. Hohhot:Inner Mongolia Agricultural University, 2021. (in Chinese)
[23] EVANS K S, WIT J, STEVENS L, et al. Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses[J]. Plos Pathog, 2021, 17:e1009297.
[24] REYES-GUERRERO D E, JIMNEZ-JACINTO V, ALONSO-MORALES R A, et al. Assembly and analysis of Haemonchus contortus transcriptome as a tool for the knowledge of ivermectin resistance mechanisms[J]. Pathogens, 2023, 12(3):499.
[25] TUERSONG W, ZHOU C X, WU S M, et al. Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus[J]. Parasit Vectors, 2022, 15(1):159.
[26] DUAN C Y, YU M J, XU J Y, et al. Overcoming Cancer multi-drug Resistance (MDR):reasons, mechanisms, nanotherapeutic solutions, and challenges[J]. Biomed Pharmacother, 2023, 162:114643.
[27] BARTLEY D J, MCALLISTER H, BARTLEY Y, et al. P-glycoprotein interfering agents potentiate ivermectin susceptibility in ivermectin sensitive and resistant isolates of Teladorsagia circumcincta and Haemonchus contortus[J]. Parasitology, 2009, 136(9):1081-1088.
[28] LESPINE A, MNEZ C, BOURGUINATC, et al. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance[J]. Int J Parasitol Drugs Drug Resist 2011, 2:58-75.
[29] RAZA A, KOPP S R, JABBAR A, et al. Effects of third generation P-glycoprotein inhibitors on the sensitivity of drug-resistant and-susceptible isolates of Haemonchus contortus to anthelmintics in vitro[J]. Vet Parasitol, 2015, 211(1-2):80-88.
[30] RAZA A, KOPP S, KOTZE A. Synergism between ivermectin and the tyrosine kinase/P-glycoprotein inhibitor crizotinib against Haemonchus contortus larvae in vitro[J]. Vet Parasitol, 2016, 227:64-68.
[31] DESHMUKH R R, KIM S, ELGHOUL Y, et al. P-glycoprotein inhibition sensitizes human breast cancer cells to proteasome inhibitors[J]. J Cell Biochem, 2017, 118(5):1239-1248.
[32] XI G M, WANG M, SUN B, et al. Targeting autophagy augments the activity of DHA-E3 to overcome p-gp mediated multi-drug resistance[J]. Biomed Pharmacother, 2016, 84:1610-1616.
[33] KERBOEUF D, GUGNARD F, LE VERN Y. Analysis and partial reversal of multidrug resistance to anthelmintics due to P-glycoprotein in Haemonchus contortus eggs using Lens culinaris lectin[J]. Parasitol Res, 2002, 88(9):816-821.
[34] BORGES D G L, DE ARAJO M A, CAROLLO C A, et al. Combination of quercetin and ivermectin:in vitro and in vivo effects against Haemonchus contortus[J]. Acta Tropica, 2020, 201:105213.
[35] PACHECO P A, LOUVANDINI H, GIGLIOTI R, et al. Phytochemical modulation of P-glycoprotein and its gene expression in an ivermectin-resistant Haemonchus contortus isolate in vitro[J]. Vet Parasitol, 2022, 305:109713.
[36] ZHENG W, CHEN Q P, WANG C, et al. Inhibition of Cathepsin D (CTSD) enhances radiosensitivity of glioblastoma cells by attenuating autophagy[J]. Mol Carcinog, 2020, 59(6):651-660.
[37] RAMIREZ J A Z, ROMAGNOLI G G, KANENO R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy[J]. Life Sci, 2021, 265:118745.
[38] 胡丹丹. 紫檀茋抗白念珠菌生物被膜的作用及自噬影響生物被膜的機制研究[D]. 上海:第二軍醫大學, 2017.
HU D D. Mechanism study of pterostilbene against Candida albicans biofilm and autophagy in biofilm[D]. Shanghai:Second Military Medical University, 2017. (in Chinese)
[39] RAY A, MATHUR M, CHOUBEY D, et al. Autophagy underlies the proteostasis mechanisms of artemisinin resistance in P." falciparum Malaria[J]. mBio, 2022, 13(3):e0063022.
[40] 戚南山. 自噬對柔嫩艾美耳球蟲子孢子入侵活性及抗藥性的影響[D]. 廣州:華南農業大學, 2019.
QI N S. Study on the mechanism of autophagy on the invasion activityand drug resistance of Eimeria tenella sporozoites[D]. Guangzhou:South China Agricultural University, 2019. (in Chinese)
[41] KAMIL M , ATMACA H N, UNAL S, et al. An alternative autophagy-related mechanism of chloroquine drug resistance in the malaria parasite[J]. Antimicrob Agents Chemother, 2022, 66(12):e0026922.
[42] LAVINE M D, ARRIZABALAGA G. Analysis of monensin sensitivity in Toxoplasma gondii reveals autophagy as a mechanism for drug induced death[J]. PLoS One, 2012, 7(7):e42107.
[43] PRESTON S, KORHONEN P K, MOUCHIROUD L, et al. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain[J]. FASEB J, 2017, 31(10):4515-4532.
[44] SALINAS G, LANGELAAN D N, SHEPHERD J N. Rhodoquinone in bacteria and animals:two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics[J]. Biochim Biophys Acta Bioenerg, 2020, 1861(11):148278.
[45] ROBERTS BUCETA P M, ROMANELLI-CEDREZ L, BABCOCK S J, et al. The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans[J]. J Biol Chem, 2019, 294(28):11047-11053.
[46] DEL BORRELLO S, LAUTENS M, DOLAN K, et al. Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway[J]. eLife, 2019, 8:e48165.
[47] COMAS-GHIERRAR, ALSHAHEEB A, MCREYNOLDS M R, et al. A minimal kynurenine pathway was preserved for rhodoquinone but not for De Novo NAD+ biosynthesis in parasitic worms:the essential role of NAD+ rescue pathways[J]. Antioxid Redox Signal, 2023, 40(13-15):737-750.
[48] TAKAMIYA S, MATSUI T, TAKA H, et al. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system[J]. Arch Biochem Biophys, 1999, 371(2):284-289.
[49] PAREDES G F, VIEHBOECK T, MARKERT S, et al. Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces[J]. Sci Rep, 2022, 12(1):9725.
[50] VAN HELLEMOND J J, LUIJTEN M, FLESCH F M, et al. Rhodoquinone is synthesized de novo by Fasciola hepatica[J]. Mol Biochem Parasitol, 1996, 82(2):217-226.
[51] VAN WYK J A, VAN SCHALKWYK P C. A novel approach to the control of anthelmintic-resistant Haemonchus contortus in sheep[J]. Vet Parasitol, 1990, 35(1-2):61-69.
[52] MUCHIUT S M, FERNNDEZ A S, LLOBERAS M, et al. Recovery of fenbendazole efficacy on resistant Haemonchus contortus by management of parasite refugia and population replacement[J]. Vet Parasitol, 2019, 271:31-37.
[53] 張艷敏, 趙東旭, 王文龍. 捻轉血矛線蟲對伊維菌素的耐藥機制[J]. 畜牧獸醫學報, 2024, 55(4): 1511-1520.
ZHANG Y M, ZHAO D X, WANG W L. Mechanism of resistance to ivermectin in the Haemonchus contortus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1511-1520. (in Chinese)
[54] MOUSSAVOU-BOUSSOUGOU M, SILVESTRE A, CORTET J, et al. Substitution of benzimidazole-resistant nematodes for susceptible nematodes in grazing lambs[J]. Parasitology, 2006, 134(4):553-560.
[55] MILLER M, HOWELL S, VATTA A, et al. Evaluation of worm replacement as a means to reverse the impact of multiple-anthelmintic resistant Haemonchus contortus on a sheep farm[C]//25th International Conference of the World Association for the Advancement of Veterinary Parasitology. Liverpool, UK, 2015.
[56] LEATHWICK D M. Managing anthelmintic resistance--parasite fitness, drug use strategy and the potential for reversion towards susceptibility[J]. Vet Parasitol, 2013, 198(1-2):145-153.
[57] MUCHIUT S, FIEL C, LIRN J P, et al. Population replacement of benzimidazole-resistant Haemonchus contortus with susceptible strains:evidence of changes in the resistance status[J]. Parasitol Res, 2022, 121(9):2623-2632.
[58] MUCHIUT S M, FERNNDEZ A S, STEFFAN P E, et al. Anthelmintic resistance:management of parasite refugia for Haemonchus contortus through the replacement of resistant with susceptible populations[J]. Vet Parasitol, 2018, 254:43-48.
[59] TADESSE D, EGUALE T, GIDAY M, et al. Ovicidal and larvicidal activity of crude extracts of Maesa lanceolata and Plectranthus punctatus against Haemonchus contortus[J]. J Ethnopharmacol, 2009, 122(2):240-244.
[60] DELGADO-NEZ E J, LPEZ-ARELLANO M E, OLMEDO-JUREZ A, et al. Phytochemical profile and nematicidal activity of a hydroalcoholic extract from Cazahuate flowers (Ipomoea pauciflora M. Martens amp; Galeotti) against Haemonchus contortus infective larvae[J]. Trop Biomed, 2023, 40(1):108-114.
[61] HOSTE H, MARTINEZ-ORTIZ-DE-MONTELLANO C, MANOLARAKI F, et al. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections[J]. Vet Parasitol, 2012, 186(1-2):18-27.
[62] BRITO D R B, COSTA-JNIOR L M, GARCIA J L, et al. Supplementation with dry Mimosa caesalpiniifolia leaves can reduce the Haemonchus contortus worm burden of goats[J]. Vet Parasitol, 2018, 252:47-51.
[63] OLMEDO-JUREZ A, ZARZA-ALBARRAN M A, ROJO-RUBIO R, et al. Acacia farnesiana pods (plant:Fabaceae) possesses anti-parasitic compounds against Haemonchus contortus in female lambs[J]. Experimental Parasitology, 2020, 218:107980.
[64] SARATSI K, HOSTE H, VOUTZOURAKIS N, et al. Feeding of carob (Ceratonia siliqua) to sheep infected with gastrointestinal nematodes reduces faecal egg counts and worm fecundity[J]. Vet Parasitol, 2020, 284:109200.
[65] BIRHAN M, GESSES T, KENUBIH A, et al. Evaluation of anthelminthic activity of tropical taniferous plant extracts against Haemonchus contortus[J]. Vet Med (Auckl), 2020, 11:109-117.
[66] ADEMOLA I O, ELOFF J N. Ovicidal and larvicidal activity of Cassia alata leaf acetone extract and fractions on Haemonchus contortus:in vitro studies[J]. Pharm Biol, 2011, 49(5):539-544.
[67] OLMEDO-JUREZ A, DELGADO-NEZ E J, BAHENA-VICENCIO A, et al. In vitro nematocidal properties from two extracts:Lippia graveolens leaves and Delonix regia flowers against eggs and infective larvae of Haemonchus contortus[J]. J Med Food, 2022, 25(3):329-337.
[68] ISLAM M K, SIRAJ M A, SARKER A B, et al. In-vitro anthelmintic activity of three Bangladeshi plants against Paramphistomum cervi and Haemonchus contortus[J]. J Complement Integr Med, 2015, 12(2):171-174.
[69] DELGADO-NEZ E J, ZAMILPA A, GONZLEZ-CORTAZAR M, et al. Isorhamnetin:a nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae[J]. Biomolecules, 2020, 10(5):773.
[70] CALA A C, FERREIRA J F S, CHAGAS A C S, et al. Anthelmintic activity of Artemisia annua L. extracts in vitro and the effect of an aqueous extract and artemisinin in sheep naturally infected with gastrointestinal nematodes[J]. Parasitol Res, 2014, 113(6):2345-2353.
[71] JASSO DAZ G, HERNNDEZ G T, ZAMILPA A, et al. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae[J]. Microb Pathog, 2017, 109:162-168.
[72] MENDONA SOARES S, DOMINGUES R, BALDO GASPAR E, et al. In vitro ovicidal effect of a Senecio brasiliensis extract and its fractions on Haemonchus contortus[J]. BMC Vet Res, 2019, 15(1):99.
[73] AKKARI H, HAJAJI S, B’CHIR F, et al. Correlation of polyphenolic content with radical-scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus[J]. Vet Parasitol, 2016, 221:46-53.
[74] ALOWANOU G G, OLOUNLAD P A, AKOUDEGNI G C, et al. In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants[J]. Parasitol Res, 2019, 118(4):1215-1223.
[75] MARIE-MAGDELEINE C, MAHIEU M, D’ALEXIS S, et al. In vitro effects of Tabernaemontana citrifolia extracts on Haemonchus contortus[J]. Res Vet Sci, 2010, 89(1):88-92.
[76] KAMARAJ C, RAHUMAN A A, BAGAVAN A, et al. Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida)[J]. Parasitol Res, 2010, 106(5):1071-1077.
[77] CAMARA A, HADDAD M, TRAORE M S, et al. Variation in chemical composition and antimalarial activities of two samples of Terminalia albida collected from separate sites in Guinea[J]. BMC Complement Med Ther, 2021, 21(1):64.
[78] HUANG Y Y, CHEN L, MA G X, et al. A review on phytochemicals of the genus Maytenus and their bioactive studies[J]. Molecules, 2021, 26(15):4563.
[79] DOMINGUES L F, GIGLIOTI R, FEITOSA K A, et al. In vitro and in vivo evaluation of the activity of pineapple (Ananas comosus) on Haemonchus contortus in Santa Inês sheep[J]. Vet Parasitol, 2013, 197(1-2):263-270.
[80] MIAO S M, ZHANG Q, BI X B, et al. A review of the phytochemistry and pharmacological activities of Ephedra herb[J]. Chin J Nat Med, 2020, 18(5):321-344.
[81] DAVULURI T, CHENNURU S, PATHIPATI M, et al. In Vitro anthelmintic activity of three tropical plant extracts on Haemonchus contortus[J]. Acta Parasitol, 2020, 65(1):11-18.
[82] GREGORY L, YOSHIHARA E, RIBEIRO B L M, et al. Dried, ground banana plant leaves (Musa spp.) for the control of Haemonchus contortus and Trichostrongylus colubriformis infections in sheep[J]. Parasitol Res, 2015, 114(12):4545-4551.
[83] ARAJO S A, SOARES A M D S, SILVA C R, et al. In vitro anthelmintic effects of Spigelia anthelmia protein fractions against Haemonchus contortus[J]. PLoS One, 2017, 12(12):e0189803.
[84] GUO Z Y, GONZLEZ J F, HERNANDEZ J N, et al. Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands[J]. Sci Rep, 2016, 6(1):26200.
[85] ANDRONICOS N, HUNT P, WINDON R. Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus[J]. Int J Parasitol, 2010, 40(4):417-429.
[86] SALLG, DEISS V, MARQUIS C, et al. Genetic×environment variation in sheep lines bred for divergent resistance to strongyle infection[J]. Evol Appl, 2021, 14(11):2591-2602.
(編輯 白永平)