







摘 要:為了進一步提高我國貨運量的預測準確性,文章基于卷積神經網絡和長短期記憶網絡模型,引入注意力機制(Attention Mechanism)的組合預測模型,以對我國貨運量進行時序預測。首先,利用卷積神經網絡提取貨運量數據變化特征。其次,將所提取的特征構成時間序列作為長短期記憶網絡的輸入。最后,通過注意力集中捕捉預測模型中經LSTM層輸出的信息特征,劃分權重比例,提取關鍵信息,實現貨運量預測。結合全國月度貨運量歷史數據進行時序預測,然后與其他神經網絡預測的各種評價指標進行對比,結果顯示,CNN-LSTM-Attention模型預測誤差小于其他模型,預測準確性相對較好。
關鍵詞:貨運量;預測;CNN;LSTM;注意力機制
中圖分類號:F259.22 文獻標志碼:A DOI:10.13714/j.cnki.1002-3100.2024.14.002
文章編號:1002-3100(2024)14-0005-05
Comparison of Time-Series Prediction of Freight Transportation Volume in China Based on CNN-LSTM-Attention Combination Model
YAN Xuebo1,CAO Shixin2 (1. School of Management, Fujian University of Technology, Fuzhou 350118, China; 2. School of Transportation, Fujian University of Technology, Fuzhou 350118, China)
Abstract: In order to further improve the prediction accuracy of China's high freight volume, this paper introduces a combined prediction model of Attention Mechanism based on convolutional neural network and long and short-term memory network model to forecast China's freight volume in time series. First of all, the convolutional neural network is used to extract the features of the freight volume data changes, and then the extracted features are used to constitute a time series as the input of the long and short-term memory network, and finally, the attention is focused on capturing the features of the information output from the LSTM layer in the prediction model, dividing the weight ratio, extracting the key information, and realizing the prediction of the freight volume. Combined with the national monthly freight volume historical data for time series prediction, and then compared with other neural network prediction of various evaluation indexes, the results show that the CNN-LSTM-Attention model prediction error is smaller than other models, and the prediction accuracy is relatively good.
Key words: freight volume; prediction; CNN; LSTM; attention mechanism
0 引 言
近年來,我國的貨物運輸總量持續增長,但增速整體上呈現出逐漸減緩的趨勢,這主要是因為我們的貨運量預測不夠準確和合理,導致了資源的浪費[1]。貨運量的準確預測對運輸行業的發展至關重要,它不僅揭示了未來貨運量的趨勢,還為行業的長遠規劃提供了基礎數據,通過合理的預測,不僅可以及時識別貨運行業的發展瓶頸和潛在問題,還能為相關部門提供決策支持和建設性建議,確保運輸系統的持續優化和完善[2]。因此,精準地預測貨運量對規劃貨運線路、調整運輸結構以及優化貨運資源配置具有重要意義。
如今,主流研究聚焦貨運量與經濟增長之間的相互關系[3],從而為 GDP和產業結構的優化提供量化依據。……