















【摘要】為了提高鋰離子電池的冷卻效果,提出一種高度對稱的仿生網狀流道冷板。首先,利用單因子分析法分析了冷板結構參數對其性能的影響,然后,以冷板的平均溫度、溫度標準差和冷卻液壓力損失為性能指標,采用多目標粒子群優化(MOPSO)算法對冷板的結構參數進行了優化,得到性能最優時的流道寬度、流道深度和冷板壁厚分別為9.0 mm、1.5 mm和1.4 mm,對應的平均溫度、溫度標準差和壓力損失分別為33.20 ℃、1.33 ℃和65.63 Pa,相比于初始結構參數,優化后的平均溫度和溫度標準差分別下降1.92 ℃和0.02 ℃,但壓力損失增大27.10 Pa。最后,在電池模組層面驗證了優化結果。
主題詞:網狀流道冷板 單因素分析 多目標粒子群優化算法 最優拉丁超立方抽樣 熵權法
中圖分類號:TM912.9" "文獻標志碼:A" "DOI: 10.19620/j.cnki.1000-3703.20230914
Optimal Design of Bionic Cold Plate Structure of Power Battery Based on MOPSO
Zhang Quan, Zhang Chunhua, Kang Yujia
(Chang’an University, Xi’an 710018)
【Abstract】To improve the cooling effect, this paper proposed a highly symmetrical bionic network channel cold plate. It firstly analyzed the influence of the cold plate’s structure parameters on its performance through single-factor analysis, then, optimized the structure parameters of the cold plate using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, with the average temperature, temperature standard deviation, and coolant pressure loss of the cold plate serving as performance indexes. The optimal channel width, channel depth, and cold plate wall thickness were found to be 9.0 mm," " " " 1.5 mm, and 1.4 mm respectively. The corresponding average temperature, temperature standard deviation, and pressure loss were measured as 33.20 ℃, 1.33 ℃, and 65.63 Pa respectively. When compared with the initial structural parameters, the optimized mean temperature and temperature standard deviation decreased by 1.92 ℃ and 0.02 ℃ respectively, while the pressure loss increased by 27.10 Pa. Finally, the optimization results were verified using the battery module.
Key words: Network channel cold plate, Single factor analysis, Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, Optimal Latin hypercube sampling, Entropy weight method
1 前言
電動汽車因清潔高效等優點得到快速發展,但電動汽車的動力源鋰離子電池對工作環境要求較為嚴格,最佳工作溫度范圍為25~40 ℃[1]。
目前,動力電池熱管理常采用風冷、液冷、熱管冷卻和相變材料冷卻4種方式。其中,液冷系統具有結構緊湊、換熱效率高等優點,被美國可再生能源實驗室認定為電動汽車動力電池熱管理的首選方案[2]。方形電池表面平整,通常使用冷板冷卻,主要通過冷卻液與冷板之間的對流換熱實現熱交換,其流道形式主要有矩形直流道[3]、蛇形流道[4]、U形流道[5]和楔形流道[6]等。冷板的結構參數對冷板的性能具有顯著影響:Wang等[7]在綜合考慮電池最高溫度、平均溫度和壓力損失的情況下,采用多目標遺傳算法優化了蛇形流道的結構參數和冷卻液的流速;……