









【摘要】為解決后輪轉(zhuǎn)向與制動協(xié)同的車輛操控性控制面臨的轉(zhuǎn)向不足、控制效果難以標定、控制器設(shè)計復(fù)雜難于工程應(yīng)用等問題,提出一種后輪轉(zhuǎn)向和制動的作用強度均可自由調(diào)節(jié)的控制方法,應(yīng)用非線性模型設(shè)計與前饋/反饋結(jié)構(gòu),根據(jù)設(shè)計參數(shù)調(diào)節(jié)控制強度,達到按照期望程度降低車輛質(zhì)心側(cè)偏角、加快橫擺響應(yīng)速度的效果,并兼顧不足轉(zhuǎn)向度、燃油經(jīng)濟性等指標。此外,該方法提供了基于可調(diào)參數(shù)進行車輛操控性調(diào)校的方法,具有精度高、運算量小、無需質(zhì)心側(cè)偏角估計及便于標定等優(yōu)點。
主題詞:操控性 后輪轉(zhuǎn)向 直接橫擺力矩
中圖分類號:U461.1;U461.6" 文獻標志碼:A" "DOI: 10.19620/j.cnki.1000-3703.20231032
Research on Vehicle Handling Adjustable Control Method Based on the Integration of Rear Wheel Steering and Braking
Zhao Yongqiang1, Guan Yihang2, He Zhen2, Miao Weiwei1, Yu Zhen1
(1. China FAW Group Co., Ltd., Changchun 130013; 2. Harbin Institute of Technology, Harbin 150000)
【Abstract】To address the issue of understeer, difficulty in control effect calibration, complex controller design and difficulty in engineering application, this article proposed a novel approach to vehicle handling control by enabling adaptable rear wheel steering and braking intensity. Employing nonlinear model design and a feedforward/feedback structure, this method can adjust control intensity according to design parameters, allows for improving the vehicle’s center of mass sideslip angle according to expectation and enhancing yaw response speed. In addition, the approach also accommodates understeer mitigation and fuel economy optimization. In addition, the proposed method also has other advantages such as high accuracy, small computational complexity, no need for vehicle sideslip angle estimation, and ease of calibration. A method for vehicle handling tuning based on adjustable parameters is also provided.
Key words: Handling performance, Rear Wheel Steer (RWS), Direct Yaw Moment Control (DYC)
1 前言
后輪轉(zhuǎn)向(Rear Wheel Steer,RWS)的主要目標為減小質(zhì)心側(cè)偏角,從而提高低速行駛時汽車的轉(zhuǎn)向靈活性及高速行駛時的穩(wěn)定性[1-4]。通常,希望將質(zhì)心側(cè)偏角減小至0[2,5-8],但會帶來駕駛員操作負擔(dān)增大、汽車操控性劣化等問題[5]。此外,模型預(yù)測控制[10-11]、H∞控制[8]等方法計算量大、難以標定,不利于工程應(yīng)用。
基于制動系統(tǒng)的直接橫擺力矩控制(Direct Yaw Moment Control,DYC)可提高瞬態(tài)橫擺響應(yīng)速度,直接橫擺力矩越大,提升效果越明顯[9-11]。然而,過大的直接橫擺力矩會造成減速及拖拽感明顯,影響駕駛體驗[12],同時,車輛能耗增加,續(xù)駛里程下降[13]。
為實現(xiàn)預(yù)期車輛行駛控制效果,本文針對控制強度標定需求,提出含有3個可調(diào)參數(shù)的RWS與DYC協(xié)同控制方法。
2 非線性二自由度模型
為描述車輛的橫擺與側(cè)向運動,建立非線性二自由度模型,如圖1所示。……