


摘要:目的" 從細(xì)胞焦亡角度利用生物信息學(xué)方法挖掘心臟重塑相關(guān)的核心基因,分析其功能,預(yù)測可能的治療藥物,為心臟重塑的診斷與治療提供理論依據(jù)。方法" 從美國國立醫(yī)學(xué)圖書館基因表達(dá)數(shù)據(jù)庫GEO中下載心臟重塑相關(guān)基因芯片數(shù)據(jù)集,利用GEO2R在線分析工具鑒定心臟重塑相關(guān)差異表達(dá)基因(DEGs)。在GeneCards數(shù)據(jù)庫收集細(xì)胞焦亡相關(guān)基因,將細(xì)胞焦亡相關(guān)基因與上述DEGs的交集基因構(gòu)建蛋白互作網(wǎng)絡(luò),鑒定其中的核心基因。利用Metascape2.0對交集基因進(jìn)行GO及KEGG功能富集分析。最后利用DGIdb數(shù)據(jù)庫預(yù)測潛在藥物與上述核心基因的相互作用。結(jié)果" 在GEO數(shù)據(jù)庫篩選出GSE24489數(shù)據(jù)集,利用GEO2R分析工具鑒定出1767個心臟重塑相關(guān)DEGs,與GeneCards數(shù)據(jù)庫中的細(xì)胞焦亡相關(guān)基因進(jìn)行交聯(lián),得到45個細(xì)胞焦亡相關(guān)的心臟重塑DEGs。這些DEGs的GO分析生物過程主要富集在防御反應(yīng)的調(diào)節(jié)、蛋白裂解的調(diào)節(jié)、炎癥反應(yīng)等。KEGG通路富集分析顯示細(xì)胞焦亡相關(guān)DEGs主要富集于阿爾茨海默病、癌癥通路、丙型肝炎、PI3K-Akt信號途徑等。從45個DEGs中鑒定出7個心臟重塑相關(guān)核心基因(TLR3、PTGS2、CASP1、CASP8、GSK3β、VEGFA、MKI67)。DGIdb數(shù)據(jù)庫預(yù)測潛在藥物與核心基因相互作用的結(jié)果顯示,尼美舒利(Nimesulide)、塞來昔布(Celecoxib)、GSK3β抑制劑Tideglusib等藥物可能成為治療心臟重塑的關(guān)鍵候選藥物。結(jié)論" 核心基因PTGS2等在心臟重塑的發(fā)生發(fā)展中具有重要作用,靶向調(diào)節(jié)這些核心基因可抑制心臟重塑的發(fā)生。
關(guān)鍵詞:細(xì)胞焦亡;心臟重塑;核心基因;尼美舒利
中圖分類號:R541" " " " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)識碼:A" " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2024.05.002
文章編號:1006-1959(2024)05-0012-08
Identification of Pyroptosis-related Hub Genes and Potential Therapeutic Drugs
in Cardiac Remodeling Based on GEO Database
SHI Chun-rong1,YU Liang-zhu2
(Library1,School of Basic Medical Sciences2,Hubei University of Science and Technology,Xianning 437100,Hubei,China)
Abstract:Objective" To explore the the pyroptosis-related hub genes in cardiac remodeling by bioinformatics methods from the perspective of pyroptosis, analyze their functions, predict possible therapeutic drugs, and provide theoretical basis for the diagnosis and treatment of cardiac remodeling.Methods" The gene chip data set related to cardiac remodeling was downloaded from the Gene Expression Omnibus (GEO) database of the National Library of Medicine in the United States, and the differentially expressed genes (DEGs) related to cardiac remodeling were identified by GEO2R online analysis tool. The pyroptosis-related genes were collected in the GeneCards database, and the protein interaction network was constructed between the pyroptosis-related genes and the intersection genes of the above DEGs to identify the core genes. Metascape2.0 was used to perform GO and KEGG functional enrichment analysis on the intersection genes. Finally, the DGIdb database was used to predict the interaction between potential drugs and the above core genes.Results" The dataset GSE24489 was screened out from the GEO database as a cardiac remodeling-related dataset, and 1767 cardiac remodeling-related DEGs were screened out from GSE24489 and intersected with the pyroptosis-related genes from the GeneCards database to obtain 45 pyroptosis-related DEGs in cardiac remodeling. GO analysis of these DEGs showed that biological processes were mainly enriched in the regulation of defense response, regulation of protein cleavage, inflammatory response, etc. KEGG pathway enrichment analysis showed that DEGs related to pyroptosis were mainly enriched in Alzheimer's disease, cancer pathway, hepatitis C, PI3K-Akt signaling pathway and so on. Nine cardiac remodeling-related hub DEGs (TLR3、PTGS2、CASP1、CASP8、GSK3β、VEGFA、MKI67) were identified from these pyroptosis-related DEGs. The results of the DGIdb database predicting the interaction between potential drugs and hub genes showed that drugs such as Nimesulide, Celecoxib, and GSK3β inhibitor Tideglusib might become key candidates for the treatment of cardiac remodeling.Conclusion" These identified hub genes such as PTGS2 may play an important role in the occurrence and development of cardiac remodeling and represent new therapeutic targets for the treatment of heart remodeling.
Key words:Cell pyroptosis;Cardiac remodeling;Hub genes;Nimesulli
心臟重塑(cardiac remodeling)是一種以心肌細(xì)胞肥大、凋亡及間質(zhì)纖維化為特征的病理過程,常見于高血壓、心肌梗死、糖尿病等多種心血管疾病中,是這些心血管病易于并發(fā)心力衰竭的獨立危險因素[1]。血管緊張素Ⅱ(AngⅡ)等多種神經(jīng)體液因子參與了心臟重塑過程[2]。盡管血管緊張素轉(zhuǎn)換酶抑制劑(ACEIs)和血管緊張素Ⅱ受體阻斷劑(ARB)等藥物已被證明可以改善心臟功能,延緩心臟重塑的進(jìn)程[3],但這些藥物并不能逆轉(zhuǎn)心臟重塑。據(jù)《中國心血管健康與疾病報告2021概要》所述[4],中國心血管病患病率處于持續(xù)上升階段。據(jù)推算,心血管疾病現(xiàn)有患病人數(shù)3.30億,包括高血壓2.45億,冠心病1100萬,心力衰竭890萬,風(fēng)濕性心臟病250萬等。2017年心血管病死亡率仍居首位,心血管疾病必將給當(dāng)前社會帶來日益加重的經(jīng)濟負(fù)擔(dān)。因此,迫切需要深入研究心臟重塑的發(fā)病新機制,以幫助開發(fā)針對心臟重塑的更有效的治療策略。
越來越多的證據(jù)表明,核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(NOD-like receptor protein 3,NLRP3)介導(dǎo)的細(xì)胞焦亡(pyroptosis)在心臟重塑中起著關(guān)鍵作用。細(xì)胞焦亡是一種與炎癥相關(guān)的程序性細(xì)胞死亡,NLRP3炎癥小體激活是焦亡發(fā)生的關(guān)鍵步驟。激活的NLRP3炎癥小體可激活caspase-1,將前體pro-IL-1β、pro-IL-18切割成IL-1β和IL-18,從而釋放這些炎癥因子,誘導(dǎo)細(xì)胞損傷[5]。在AngⅡ誘導(dǎo)小鼠心臟重塑中,NLRP3炎癥小體被激活[6,7]。NLRP3炎癥小體特定成分的基因剔除或藥理抑制則減輕AngⅡ誘導(dǎo)的心臟炎癥和纖維化[7]。選擇性NLRP3抑制劑MCC950可減弱壓力負(fù)荷過重小鼠的心肌肥厚、纖維化和炎癥反應(yīng)。因此,NLRP3炎癥小體激活介導(dǎo)的細(xì)胞焦亡被認(rèn)為是治療心臟重塑的潛在靶點。近年來,轉(zhuǎn)錄組測序技術(shù)的快速發(fā)展為探索腫瘤和非腫瘤性疾病分子機制提供了新的方向[8]。目前,已有越來越多的心臟疾病相關(guān)RNA測序和微陣列數(shù)據(jù)集被上傳到美國國立醫(yī)學(xué)圖書館的基因表達(dá)數(shù)據(jù)庫(GEO)中,為心臟重塑標(biāo)記基因的生物信息學(xué)研究提供了機會。然而,與癌癥研究相比,心臟疾病研究獲取組織樣本的機率和數(shù)量相對較小,這極大地限制了心臟重塑的生物信息學(xué)研究[9]。目前心臟重塑的生物信息學(xué)研究相對較少,僅限于動物疾病模型研究。心臟重塑中焦亡相關(guān)基因的生物信息學(xué)研究尚未見報道。為此,本研究利用美國國立醫(yī)學(xué)圖書館的基因表達(dá)數(shù)據(jù)庫(GEO)作生物信息學(xué)分析,鑒定壓力負(fù)荷過重型心臟重塑中的細(xì)胞焦亡相關(guān)核心基因,并預(yù)測針對核心基因的潛在藥物,為探索心臟重塑的發(fā)病機制和潛在治療靶點提供理論依據(jù)。
1材料與方法
1.1 GEO差異性表達(dá)基因獲取" 使用關(guān)鍵詞“heart AND(remodeling OR hypertrophy OR fibrosis)AND pressure overload”搜索NCBI中的GEO數(shù)據(jù)庫,從GEO數(shù)據(jù)庫下載基因表達(dá)數(shù)據(jù)集GSE24489和GSE99459。GSE24489基于GPL1261平臺進(jìn)行處理,包含3只對照組小鼠和4只主動脈縮窄性心臟重塑組小鼠的心臟樣本。使用R的limma軟件包對數(shù)據(jù)進(jìn)行歸一化。
1.2差異表達(dá)基因分析" 使用在線網(wǎng)絡(luò)工具GEO2R(https://www.ncbi.nlm.nih.gov/geo/geo2r/)鑒定GSE24489中對照組小鼠和心臟重塑組小鼠之間的差異表達(dá)基因(DEGs)。在GEO2R中使用Benjamini和Hochberg法來調(diào)整P值,以減少假陽性。然后,根據(jù)以下納入標(biāo)準(zhǔn)獲得兩組間的DEGs,即P<0.05和│Log2FC│(以2為底的倍數(shù)變化對數(shù)值的絕對值)>1。利用TBtools軟件制作DEGs的火山圖和熱圖。
1.3細(xì)胞焦亡相關(guān)DEGs的鑒定" 細(xì)胞焦亡相關(guān)基因從GeneCards數(shù)據(jù)庫(https://www.genecards.org/)下載。然后,將細(xì)胞焦亡相關(guān)基因與GSE24489中的DEGs進(jìn)行交聯(lián),以獲得焦亡相關(guān)DEGs。利用TBtools軟件制作焦亡相關(guān)DEGs的火山圖和熱圖。
1.4細(xì)胞焦亡相關(guān)DEGs的功能富集分析" 在線生物工具M(jìn)etascape(https://metascape.org/gp/index.html#/main/step1)用于對GSE24489中的焦亡相關(guān)DEGs進(jìn)行基因本體論(GO)和京都基因與基因組百科全書(KEGG)途徑富集分析。GO分析包括生物過程(BP)、細(xì)胞成分(CC)和分子功能(MF)3種類別。P<0.05被認(rèn)為差異有統(tǒng)計學(xué)意義。使用在線生物信息學(xué)分析平臺SangerBox繪制焦亡相關(guān)DEGs的GO和KEGG途徑富集分析氣泡圖。
1.5蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)的構(gòu)建及核心基因的篩選" 利用在線STRING數(shù)據(jù)庫(http://stringdb.org/)構(gòu)建了PPI網(wǎng)絡(luò),然后使用Cytoscape v3.8.2軟件進(jìn)行可視化。Cytoscape軟件的Cytohubba插件用于篩選該PPI網(wǎng)絡(luò)中頂級排序的前10~15個關(guān)鍵基因,作為心臟重塑核心基因。
1.6藥物-靶基因相互作用分析" 將上述鑒定的細(xì)胞焦亡相關(guān)核心基因?qū)胨幬?基因互作數(shù)據(jù)庫(DGIdb),查找可能靶向這些核心基因的潛在藥物。那些被預(yù)測到可與心臟重塑核心基因產(chǎn)生已知的相互作用類型的藥物被視為可用于治療心臟重塑的潛在藥物。隨后,潛在藥物和相應(yīng)靶基因之間的相互作用通過Cytoscape軟件進(jìn)行可視化。
2結(jié)果
2.1 GSE24489中細(xì)胞焦亡相關(guān)DEGs的表達(dá)特征" 數(shù)據(jù)集GSE24489包含對照組小鼠和心臟重塑組小鼠的差異表達(dá)基因數(shù)據(jù)。使用在線GEO2R工具鑒定兩組的DEGs,共鑒定出1767個DEGs(1185個上調(diào),582個下調(diào))。使用生物信息學(xué)分析工具TBtools繪制火山圖(圖1)以可視化DEGs。隨后,從GeneCards數(shù)據(jù)庫下載372個細(xì)胞焦亡相關(guān)基因,與GSE24489中的DEGs作交聯(lián)分析,以獲得焦亡相關(guān)DEGs。最終,共鑒定出45個焦亡相關(guān)DEGs(29個上調(diào),16個下調(diào))(圖2A)。使用TBtools生成熱圖,揭示45個焦亡相關(guān)DEGs的聚類關(guān)系(圖2B)。
2.2焦亡相關(guān)DEGs的功能富集分析" 使用GO和KEGG通路富集分析推斷45個焦亡相關(guān)DEGs的功能。結(jié)果見圖3。GO分析共獲得416個條目。其中,BP有383條,CC有21條,MF共有12條。各類GO分析均選取差異最顯著的10個功能進(jìn)行排序分析, BP類主要富集在防御反應(yīng)的調(diào)節(jié)、蛋白裂解的調(diào)節(jié)、發(fā)育性生長的調(diào)節(jié)、細(xì)胞因子產(chǎn)生的正向調(diào)節(jié)、炎癥反應(yīng)等;MF類主要富集在蛋白激酶結(jié)合、鋅離子結(jié)合、支架蛋白結(jié)合、泛素蛋白連接酶結(jié)合等;CC類主要富集在軸突、聚合物細(xì)胞骨架纖維、谷氨酸能突觸、遠(yuǎn)端軸突等。KEGG通路富集分析顯示,焦亡相關(guān)DEGs主要富集于阿爾茨海默病、癌癥通路、丙型肝炎、神經(jīng)退行性病、PI3K-Akt信號途徑等29個信號通路。
2.3 PPI網(wǎng)絡(luò)及核心基因的鑒定" 將上述45個焦亡相關(guān)的DEGs引入String數(shù)據(jù)庫,以構(gòu)建置信度得分≥0.4的PPI網(wǎng)絡(luò)。除去14個單獨的DEGs外,其余31個焦亡相關(guān)DEGs最終組成一個具有31個節(jié)點和68條邊的PPI網(wǎng)絡(luò)(圖4A)。隨后,使用Cytoscape軟件對PPI網(wǎng)絡(luò)進(jìn)行可視化。基于最大集團中心性(maximal clique centrality,MCC)等算法,使用Cytoscape軟件的cytoHubba插件篩選出排名前7位的基因(TLR3、PTGS2、CASP1、CASP8、GSK3β、VEGFA、MKI67)作為心臟重塑核心基因(圖4B)。
2.4藥物-基因相互作用分析" 為了探討可能的治療方法,使用DGIdb數(shù)據(jù)庫預(yù)測了靶向上述核心基因的潛在藥物(圖5)。鑒定了199種靶向6個核心基因(TLR3、PTGS2、CASP1、CASP8、GSK3β、VEGFA)的藥物或化合物。未預(yù)測到可能調(diào)控MKI67基因的藥物。85種藥物屬于PTGS2、CASP1、CASP8、GSK3β、VEGFA的抑制劑。剩余114種藥物與核心基因間相互作用類型未知。阿司匹林和羥氯喹可作用于PTGS2和TLR3。塞來昔布(Celecoxib)、卡培他濱(Capecitabine)、奧沙利鉑(Oxaliplatin)可調(diào)節(jié)PTGS2和VEGFA。熊果酸(Ursolic acid)調(diào)節(jié)PTGS2和GSK3β。美沙拉嗪(Mesalamine)調(diào)節(jié)PTGS2和CASP1。恩利卡生(Emricasan)和尼氟卡生(Nivocasan)調(diào)節(jié)CASP1和CASP8。
3討論
心臟重塑是心臟組織在生理和病理刺激下的結(jié)構(gòu)變化。生理性心臟重塑主要指運動、妊娠等生理性刺激下的心臟適應(yīng)性反應(yīng)。病理性心臟重構(gòu)則是由壓力超負(fù)荷、神經(jīng)體液機制過度激活等引起的心臟結(jié)構(gòu)性改變。本研究主要關(guān)注壓力超負(fù)荷誘導(dǎo)的病理性心臟重塑。病理性心臟重塑被認(rèn)為在各種心血管病引發(fā)心力衰竭中起著關(guān)鍵作用[10]。盡管目前在治療心力衰竭方面取得了很大進(jìn)展,但心力衰竭的發(fā)病率和患病率仍將在全球范圍內(nèi)迅速擴大[11],給社會帶來極大負(fù)擔(dān)。因此,目前迫切需要深入了解病理性心臟重塑的發(fā)生機制,以確定新的治療靶點和方法。
越來越多證據(jù)證實,NLRP3介導(dǎo)的細(xì)胞焦亡在心臟重塑中起著重要作用[6,12]。心肌組織中存在的細(xì)胞類型主要有心肌細(xì)胞、心臟成纖維細(xì)胞、血管內(nèi)皮細(xì)胞等。心臟內(nèi)這些不同細(xì)胞的細(xì)胞焦亡可能參與了心臟重塑過程。NLRP3介導(dǎo)的心肌細(xì)胞焦亡被證實在壓力超負(fù)荷誘導(dǎo)的心肌纖維化中起著重要作用[13]。心臟成纖維細(xì)胞焦亡則在心肌缺血再關(guān)注性損傷[14]和敗血癥心肌損傷[15]中發(fā)揮重要作用。在AngⅡ等促肥厚因子作用下,單核細(xì)胞衍生的巨噬細(xì)胞也可產(chǎn)生NLRP3炎癥小體的激活,進(jìn)而促進(jìn)心臟成纖維細(xì)胞向分泌型肌成纖維細(xì)胞轉(zhuǎn)化,介導(dǎo)心肌纖維化[16]。應(yīng)用細(xì)胞焦亡的抑制劑則明顯抑制了各種病因?qū)е碌男呐K重塑[6,7,17]。通過明確細(xì)胞焦亡與心臟重塑共同的調(diào)節(jié)性靶點并預(yù)測潛在治療藥物,可為心臟重塑的治療帶來新希望。
為此,本研究利用生物信息學(xué)分析從心臟重塑數(shù)據(jù)集GSE24489中篩選到45個焦亡相關(guān)的DEGs。GO富集分析結(jié)果顯示,這些焦亡相關(guān)DEGs的BP主要富集在防御反應(yīng)的調(diào)節(jié)、蛋白裂解的調(diào)節(jié)、細(xì)胞因子產(chǎn)生的調(diào)節(jié)及炎癥反應(yīng)等,其MF富集在蛋白激酶結(jié)合、泛素蛋白連接酶結(jié)合等。當(dāng)機體遭受傷害性刺激(例如感染和癌癥)時,體內(nèi)的模式識別受體首先被激活,引發(fā)傳統(tǒng)的先天免疫反應(yīng)和炎癥反應(yīng),形成宿主防御機制。越來越多證據(jù)顯示,先天免疫機制信號分子可表達(dá)于心肌細(xì)胞、心臟成纖維細(xì)胞,通過調(diào)節(jié)免疫細(xì)胞的先天免疫反應(yīng)影響到心臟重塑的過程[18]。蛋白泛素化作為一種基因轉(zhuǎn)錄后的蛋白修飾過程被認(rèn)為與多種心血管疾病發(fā)生相關(guān)[19],如高血壓、心梗、心衰、心臟重塑等。KEGG通路富集分析結(jié)果顯示,這些焦亡相關(guān)DEGs主要富集在各種炎癥相關(guān)疾病,如阿爾茨海默病、癌癥、丙型肝炎、神經(jīng)退行性病、PI3K-Akt信號途徑等。PI3K-Akt信號途徑被認(rèn)為在心臟缺血性損傷和左心室重塑中起著重要作用[20]。顯然,本研究所鑒定的焦亡相關(guān)DEGs功能與心臟重塑發(fā)生發(fā)展密切相關(guān),針對這些基因開展靶向治療可能具有較好的可行性。
為了進(jìn)一步探索細(xì)胞焦亡在心臟重塑中的作用,本研究從這45個焦亡相關(guān)DEGs中篩選到7個核心基因,分別為TLR3、PTGS2、CASP1、CASP8、GSK3β、VEGFA、MKI67。這些核心基因被證實在心臟重塑中起著重要作用。Toll樣受體3(TLR3)基因剔除可減弱小鼠心梗或缺血再灌注性損傷[21],抑制動物壓力超負(fù)荷下的心肌肥厚和改善心功能不全[22],證實了TLR3在心臟重塑中的作用。前列腺素內(nèi)過氧化物合成酶2(PTGS2)也稱環(huán)氧酶2(COX2),被證實介導(dǎo)內(nèi)皮素-1(ET-1)和AngⅡ誘導(dǎo)的心肌肥厚[23,24]。胱天蛋白酶1(CASP1)通過上調(diào)炎癥因子IL-1β而介導(dǎo)Ang II誘導(dǎo)的心肌細(xì)胞肥大[6]。胱天蛋白酶8(CASP8)介導(dǎo)心肌細(xì)胞凋亡[25]。GSK3β被證實參與心肌纖維化過程[26]。血管內(nèi)皮生長因子A(VEGFA)是上述7個核心基因中唯一的表達(dá)下調(diào)基因。過表達(dá)VEGFA基因可抑制主動脈縮窄性大鼠的心肌纖維化和毛細(xì)血管稀疏,改善其心功能[27]。MKI67在心臟重塑中的作用尚不清楚。
這些核心基因也被證實調(diào)節(jié)心臟中的NLRP3炎癥小體。例如,TLR3被證實可激活小鼠肥厚心肌中的NLRP3/IL-1β信號途徑[22]。GSK3β被證實通過激活NLRP3炎癥小體而促進(jìn)心肌細(xì)胞、成纖維細(xì)胞焦亡和凋亡[28]。其他核心基因與心臟NLRP3炎癥小體的關(guān)系尚未見報道。
另外,本研究采用DGIdb數(shù)據(jù)庫預(yù)測了靶向上述核心基因的潛在藥物,但是未預(yù)測到可能調(diào)控MKI67基因的藥物。在預(yù)測到的PTGS2抑制劑中,尼美舒利(Nimesulide)可抑制腎性高血壓和心肌肥厚[29];塞來昔布(Celecoxib)抑制小鼠病理性心臟肥厚及纖維化[30]。GSK3β抑制劑Tideglusib又稱NP-12,可減弱心梗后的心臟重塑[31]。靶向上述核心基因的其它藥物在心臟重塑中作用尚未見報道。
綜上所述,核心基因PTGS2等在心臟重塑的發(fā)生發(fā)展中具有重要作用,靶向調(diào)節(jié)這些核心基因可抑制心臟重塑的發(fā)生。本研究從細(xì)胞焦亡角度利用生物信息學(xué)分析鑒定了治療心臟重塑的核心靶點及潛在藥物,為研究心臟重塑發(fā)病機制和尋找潛在治療靶點提供了一定的理論基礎(chǔ),為后續(xù)開發(fā)心臟重塑治療藥物奠定前期基礎(chǔ)。
參考文獻(xiàn):
[1]Anilkumar N,Sirker A,Shah AM.Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure[J].Front Biosci (Landmark Ed),2009,14:3168-3187.
[2]Flores-Vergara R,Olmedo I,Aranguiz P,et al.Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-beta, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules[J].Front Physiol,2021,12:716721.
[3]Fang L,Murphy AJ,Dart AM.A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease[J].Front Pharmacol,2017,8:186.
[4]中國心血管健康與疾病報告編寫組.中國心血管健康與疾病報告2021概要[J].中國循環(huán)雜志,2022,36:553-578.
[5]Ohto U.Activation and regulation mechanisms of NOD-like receptors based on structural biology[J].Front Immunol,2022,13:953530.
[6]Bai Y,Sun X,Chu Q,et al.Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1beta[J].Biosci Rep,2018,38:BSR20171438.
[7]Gan W,Ren J,Li T,et al.The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation[J].Biochim Biophys Acta Mol Basis Dis,2018,1864:1-10.
[8]Saeidian AH,Youssefian L,Vahidnezhad H,et al.Research Techniques Made Simple: Whole-Transcriptome Sequencing by RNA-Seq for Diagnosis of Monogenic Disorders[J].J Invest Dermatol,2020,140:1117-1126.e1.
[9]Costa Ade F,F(xiàn)ranco OL.Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions[J].J Cell Physiol,2015,230:959-968.
[10]Martins D,Garcia LR,Queiroz DaR,et al.Oxidative Stress as a Therapeutic Target of Cardiac Remodeling[J].Antioxidants (Basel),2022,11:2371.
[11]Burchfield JS,Xie M,Hill JA.Pathological ventricular remodeling: mechanisms: part 1 of 2 [J].Circulation,2013,128:388-400.
[12]Chen Y,Zeng M,Zhang Y,et al.Nlrp3 Deficiency Alleviates Angiotensin II-Induced Cardiomyopathy by Inhibiting Mitochondrial Dysfunction[J].Oxid Med Cell Longev,2021,2021:6679100.
[13]Wang J,Deng B,Liu Q,et al.Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload[J].Cell Death Dis,2020,11:574.
[14]Zhang M,Lei YS,Meng XW,et al.Iguratimod Alleviates Myocardial Ischemia/Reperfusion Injury Through Inhibiting Inflammatory Response Induced by Cardiac Fibroblast Pyroptosis via COX2/NLRP3 Signaling Pathway[J].Front Cell Dev Biol,2021,9:746317.
[15]Zhang W,Xu X,Kao R,et al.Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation[J].PLoS One,2014,9:e107639.
[16]Lv SL,Zeng ZF,Gan WQ,et al.Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation[J].Acta Pharmacol Sin,2021,42:2016-2032.
[17]Gao R,Shi H,Chang S,et al.The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction [J].Int Immunopharmacol,2019,74:105575.
[18]Zhang Y,Huang Z,Li H.Insights into innate immune signalling in controlling cardiac remodelling[J].Cardiovasc Res,2017,113:1538-1550.
[19]Zhang Y,Qian H,Wu B,et al.E3 Ubiquitin ligase NEDD4 family-regulatory network in cardiovascular disease[J].Int J Biol Sci,2020,16:2727-2740.
[20]Walkowski B,Kleibert M,Majka M,et al.Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart[J].Cells,2022,11(9):1553.
[21]Lu C,Ren D,Wang X,et al.Toll-like receptor 3 plays a role in myocardial infarction and ischemia/reperfusion injury[J].Biochim Biophys Acta,2014,1842:22-31.
[22]Tang X,Pan L,Zhao S,et al.SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation [J].Circulation,2020,141:984-1000.
[23]Li H,Gao S,Ye J,et al.COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3[J].Mol Cell Endocrinol,2014,382:998-1006.
[24]Zhang L,Deng M,Lu A,et al.Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism[J].J Cell Mol Med,2019,23:8139-8150.
[25]Menon B,Krishnamurthy P,Kaverina E,et al.Expression of the cytoplasmic domain of beta1 integrin induces apoptosis in adult rat ventricular myocytes (ARVM) via the involvement of caspase-8 and mitochondrial death pathway[J].Basic Res Cardiol,2006,101:485-493.
[26]Guo Y,Gupte M,Umbarkar P,et al.Entanglement of GSK-3beta, beta-catenin and TGF-beta1 signaling network to regulate myocardial fibrosis[J].J Mol Cell Cardiol,2017,110:109-120.
[27]Bajgelman MC,Dos Santos L,Silva GJJ,et al.Preservation of cardiac function in left ventricle cardiac hypertrophy using an AAV vector which provides VEGF-A expression in response to p53[J].Virology,2015,476:106-114.
[28]Wang SH,Cui LG,Su XL,et al.GSK-3beta-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts[J].Eur J Pharmacol,2022,920:174830.
[29]Park BM,Gao S,Cha SA,et al.Attenuation of renovascular hypertension by cyclooxygenase-2 inhibitor partly through ANP release[J].Peptides,2015,69:1-8.
[30]Zhao Y,Zheng Q,Gao H,et al.Celecoxib alleviates pathological cardiac hypertrophy and fibrosis via M1-like macrophage infiltration in neonatal mice[J].iScience,2021,24:102233.
[31]Baruah J,Hitzman R,Zhang J,et al.The allosteric glycogen synthase kinase-3 inhibitor NP12 limits myocardial remodeling and promotes angiogenesis in an acute myocardial infarction model[J].J Biol Chem,2017,292:20785-20798.
收稿日期:2023-04-11;修回日期:2023-04-23
編輯/成森