999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

利用糖酵解相關(guān)LncRNA構(gòu)建肺腺癌患者的預(yù)后模型

2024-04-29 00:00:00丁丹趙榮昌丁燕張丹丹蔡建
醫(yī)學(xué)信息 2024年5期

摘要:目的" 利用糖酵解相關(guān)LncRNA構(gòu)建肺腺癌患者的預(yù)后模型,幫助臨床預(yù)測(cè)個(gè)體化藥物療效和疾病復(fù)發(fā)情況。方法" 綜合TCGA和GSEA數(shù)據(jù)庫(kù),篩選與肺腺癌中糖酵解相關(guān)lncRNA表達(dá)數(shù)據(jù),利用LASSO和Cox回歸分析構(gòu)建預(yù)后模型,繪制受試者工作特征曲線(ROC)并加以校準(zhǔn),將臨床病理特征和風(fēng)險(xiǎn)評(píng)分進(jìn)行整合構(gòu)建列線圖,分析免疫細(xì)胞分布、免疫相關(guān)分子和藥物敏感性的差異與風(fēng)險(xiǎn)評(píng)分的關(guān)系。結(jié)果" 在GSEA數(shù)據(jù)庫(kù)中共選取出4個(gè)有效糖酵解基因集(BioCarta、Hallmark、KEGG、REACTOME和WP),與TCGA數(shù)據(jù)中的lncRNA表達(dá)數(shù)據(jù)結(jié)合獲得1025個(gè)與糖酵解相關(guān)的lncRNA。差異分析獲得186個(gè)在腫瘤組織和正常組織間差異表達(dá)的糖酵解相關(guān)lncRNA;單因素Cox、LASSO回歸分析獲得19個(gè)與預(yù)后相關(guān)的lncRNA。多因素Cox比例風(fēng)險(xiǎn)回歸分析獲得了由12個(gè)lncRNA 組成的預(yù)測(cè)模型。模型ACU提示預(yù)測(cè)性能較好,1、3、5年生存時(shí)間的AUC分別為0.711、0.713和0.699,并且可將肺腺癌區(qū)分為高、低風(fēng)險(xiǎn)組,高、低風(fēng)險(xiǎn)組的總生存期(OS)比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。單因素和多因素Cox分析顯示,風(fēng)險(xiǎn)評(píng)分可作為預(yù)測(cè)肺腺癌生存狀態(tài)的獨(dú)立預(yù)后指標(biāo),并且風(fēng)險(xiǎn)評(píng)分的預(yù)測(cè)性能優(yōu)于其它臨床病理特征。此外,不同的性別、T、N、M和Stage分期的風(fēng)險(xiǎn)評(píng)分比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。風(fēng)險(xiǎn)評(píng)分與臨床病理特征構(gòu)建的列線圖對(duì)1、3、5年預(yù)后的預(yù)測(cè)能力均有提升(1、3、5年生存時(shí)間的AUC分別為0.741、0.750和0.715)。高、低風(fēng)險(xiǎn)組間免疫微環(huán)境比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),表現(xiàn)為多數(shù)免疫細(xì)胞與低風(fēng)險(xiǎn)評(píng)分呈正相關(guān)。藥物敏感性分析提示絲裂霉素C、紫杉醇、雷帕霉素、多西他賽和厄洛替尼的藥物敏感性在高、低風(fēng)險(xiǎn)組間也存在區(qū)別。結(jié)論" 糖酵解相關(guān)lncRNA構(gòu)建的肺腺癌預(yù)后模型可以高效準(zhǔn)確的預(yù)測(cè)肺腺癌患者的預(yù)后,具有一定的臨床意義。

關(guān)鍵詞:肺腺癌;糖酵解;lncRNA;預(yù)后;列線圖;藥物敏感性

中圖分類(lèi)號(hào):R734.2" " " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼:A" " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2024.05.001

文章編號(hào):1006-1959(2024)05-0001-12

Construct a Prognostic Model for Patients with Lung Adenocarcinoma

by Using Glycolysis-related LncRNA

DING Dan,ZHAO Rong-chang,DING Yan,ZHANG Dan-dan,CAI Jian

(Department of Oncology,Taixing People’s Hospital,Taixing 225400,Jiangsu,China)

Abstract:Objective" To construct a prognostic model of lung adenocarcinoma patients by using glycolysis-related LncRNA, and to help predict the efficacy of individualized drugs and disease recurrence.Methods" The TCGA and GSEA databases were used to screen the expression data of lncRNA related to glycolysis in lung adenocarcinoma. The prognostic model was constructed by LASSO and Cox regression analysis. The receiver operating characteristic curve (ROC) was drawn and calibrated. The clinicopathological features and risk scores were integrated to construct a nomogram. The relationship between immune cell distribution, immune-related molecules and drug sensitivity and risk score was analyzed.Results" Four effective glycolysis gene sets (BioCarta, Hallmark, KEGG, REACTOME and WP) were selected from the GSEA database, and 1025 glycolystic-related lncRNAs were obtained by combining with the expression data of lncRNAs in the TCGA data. A total of 186 glycolytic-related lncRNAs were differentially expressed between tumor and normal tissues by differential analysis, and 19 prognostic related lncRNAs were obtained by univariate COX and LASSO regression analysis. A prediction model consisting of 12 lncRNAs was obtained by Cox proportional hazard regression analysis. The ACU value of the model suggested that the prediction performance was good, and the AUC of 1, 3 and 5 years survival time were 0.711, 0.713 and 0.699, respectively. The patients with lung adenocarcinoma could be divided into high and low risk groups, and the difference of overall survival (OS) between the two groups was statistically significant (Plt;0.05). Univariate and multivariate Cox analysis showed that risk score could be used as an independent prognostic indicator for the survival of lung adenocarcinoma, and the risk score predicted better than other clinicopathologic features. In addition, there were statistically significant differences in risk scores between genders, T, N, M, and Stage (Plt;0.05). Risk scores and histograms constructed with clinicopathological features improved prognostic ability at 1,3, and 5 years (AUC at 1, 3, and 5 years survival time was 0.741, 0.750, and 0.715, respectively). There were statistically significant differences in immune microenvironment between the high and low risk groups, showing that most immune cells were positively correlated with the low risk score. Drug sensitivity analysis suggested that there were significant differences in drug sensitivity of mitomycin C, paclitaxel, rapamycin, docetaxel and erotinib between the two groups.Conclusion" The prognosis model of lung adenocarcinoma constructed by glycolysis-related lncRNA can effectively and accurately predict the prognosis of patients with lung adenocarcinoma, which has certain clinical significance.

Key words:Lung adenocarcinoma;Glycolysis;lncRNA;Prognostic;Nomogram;Drug sensitivity

肺癌(lung cancer)在全球癌癥相關(guān)人類(lèi)死亡中占據(jù)很大比例[1,2]。肺腺癌(lung adenocarcinoma)作為肺癌最常見(jiàn)的病理類(lèi)型,其個(gè)體化治療越來(lái)越受到臨床醫(yī)生的關(guān)注[3]。腫瘤的發(fā)生和發(fā)展根本在于基因的改變,這就會(huì)造成即使在家庭和經(jīng)濟(jì)因素被去除后,同樣的性別、體能狀態(tài)評(píng)分、年齡和 TNM 分期的患者對(duì)治療的反應(yīng)和總生存時(shí)間并不一定會(huì)相同。因此,迫切的需要探索出有效的微觀分子生物標(biāo)志物來(lái)預(yù)測(cè)肺腺癌患者的治療效果和預(yù)后。

充分了解腫瘤細(xì)胞與正常細(xì)胞在代謝和增殖方面的差異對(duì)于預(yù)測(cè)癌癥患者的預(yù)后和臨床治療反應(yīng)至關(guān)重要。細(xì)胞主要通過(guò)糖代謝獲取能量來(lái)完成其生物活動(dòng),肺腺癌細(xì)胞也不例外。以往研究表明[4,5],癌細(xì)胞最顯著的代謝變化是Warburg效應(yīng)的發(fā)生,表現(xiàn)為腫瘤細(xì)胞有氧糖酵解增加,依賴(lài)糖酵解途徑產(chǎn)生三磷酸腺苷(ATP)。鑒于腫瘤細(xì)胞中這種獨(dú)特的代謝改變,很多研究已經(jīng)嘗試并改進(jìn)了靶向治療模式[6-8],并且越來(lái)越多的研究也證實(shí)使用糖酵解相關(guān)基因來(lái)建立腫瘤預(yù)后評(píng)估模型的可行性[9-12]。此外,在對(duì)長(zhǎng)鏈非編碼 RNA (lncRNA)的深入研究中,發(fā)現(xiàn)它在多種生物過(guò)程中均發(fā)揮重要作用,例如基因表達(dá)的調(diào)節(jié)、細(xì)胞增殖、分化和凋亡[13-16]。近年來(lái),已經(jīng)對(duì)lncRNA 作為預(yù)后分子標(biāo)志物進(jìn)行了廣泛的研究,發(fā)現(xiàn)lncRNA 具有很強(qiáng)的組織特異性[17-19],可有效用于腫瘤預(yù)測(cè)模型的構(gòu)建。

肺腺癌作為嚴(yán)重威脅人類(lèi)生命健康的一種疾病,亟需精準(zhǔn)治療的實(shí)施來(lái)減少它對(duì)患癌患者帶來(lái)危害。在目前日益發(fā)展的科學(xué)技術(shù)中,已不缺乏靶向治療和免疫治療這些精準(zhǔn)治療的手段,但受益的人群需要進(jìn)一步篩選。那么通過(guò)腫瘤預(yù)測(cè)模型的構(gòu)建來(lái)滿(mǎn)足可制定精準(zhǔn)治療方案和預(yù)測(cè)患者的生存時(shí)間的這些要求,對(duì)于肺腺癌患者具有重大意義。既往已有大量文獻(xiàn)提示利用LncRNA構(gòu)建的預(yù)測(cè)模型可以使得治療更加精準(zhǔn)化,然而lncRNA涉及的功能種類(lèi)繁多,未詳細(xì)劃分種類(lèi)的lncRNA對(duì)于腫瘤研究貢獻(xiàn)降低,例如糖酵解的相關(guān)的LncRNA在肺腺癌中的作用就未能闡明。為此,本研究通過(guò)綜合分析將糖酵解相關(guān)LncRNA以預(yù)后模型的研究方式來(lái)評(píng)估其在肺腺患者中表達(dá)水平、免疫浸潤(rùn)狀態(tài)和預(yù)后生存的的關(guān)系。

1材料與方法

1.1臨床信息和lncRNA表達(dá)數(shù)據(jù)獲取" 在TCGA數(shù)據(jù)庫(kù)(https://cancergenome.nih.gov/)的數(shù)據(jù)存儲(chǔ)模塊中選擇肺腺癌患者的基因(包括mRNA和lncRNA)表達(dá)數(shù)據(jù)以及臨床信息數(shù)據(jù)進(jìn)行下載,共獲得522例患者的可靠數(shù)據(jù)。通過(guò)Perl(版本5.32.1.1)語(yǔ)言的運(yùn)行將基因的表達(dá)數(shù)據(jù)和類(lèi)別信息進(jìn)行整理,同時(shí)將所有患者的性別、年齡、T分期、N分期、M分期、Stage分期及生存情況進(jìn)行了提取整合(表1)。隨后再次利用Perl語(yǔ)言對(duì)配套的基因組注釋文件與mRNA和lncRNA對(duì)應(yīng)的類(lèi)別信息編碼進(jìn)行比對(duì),將lncRNA的表達(dá)數(shù)據(jù)單獨(dú)分離出。

1.2篩選差異表達(dá)的糖酵解相關(guān)lncRNA并構(gòu)建模型" 在GSEA(gene Set Enrichment Analysis)數(shù)據(jù)庫(kù)(http://www.broadinstitute.org/gsea/index.jsp)中搜索糖酵解基因集,共獲得326個(gè)基因。利用R軟件(version 4.0.5)進(jìn)行Pearson相關(guān)性分析,獲得與糖酵解基因相關(guān)的lncRNA(設(shè)置的參數(shù)為P<0.001,|Correlation Coefficient|>0.4)。對(duì)腫瘤組織與正常組織間糖酵解相關(guān)lncRNA進(jìn)行差異表達(dá)分析[設(shè)置參數(shù)為Cut-off標(biāo)準(zhǔn)為|log2fold change(logFC)|>1.5,P<0.05;FDR(1 discovery rate)<0.05]。對(duì)差異表達(dá)的lncRNA進(jìn)行單因素Cox回歸分析,過(guò)濾條件為P<0.05。然后通過(guò)LASSO回歸和二次Cox回歸分析構(gòu)建模型。風(fēng)險(xiǎn)公式為:βlncRNA1×lncRNA1的表達(dá)量+βlncRNA2×lncRNA2的表達(dá)量+βlncRNA3×lncRNA3的表達(dá)量 +…+ βlncRNAn×lncRNAn的表達(dá)量,其中β是Cox分析中coef值。

1.3模型性能評(píng)估和列線圖的構(gòu)建" 通過(guò)生存ROC軟件包,繪制ROC曲線來(lái)評(píng)估預(yù)后模型的準(zhǔn)確性。利用性能表現(xiàn)最好的曲線下面積(AUC)的Cut-off值將肺腺癌患者重新劃分為低風(fēng)險(xiǎn)組和高風(fēng)險(xiǎn)組,并評(píng)估低風(fēng)險(xiǎn)組和高風(fēng)險(xiǎn)組之間的生存時(shí)間差異,繪制Kaplan-Meier曲線。?字2檢驗(yàn)分析臨床病理特征在高、低風(fēng)險(xiǎn)組間的差異,并在帶狀圖中顯示結(jié)果,其中P<0.001=***,<0.01=**,<0.05=*。用Wilcoxon signed-rank 檢驗(yàn)分析不同性別、年齡、T分期、N分期、M分期和Stage分期中風(fēng)險(xiǎn)評(píng)分的差異。最后將性別、年齡、Stage分期和風(fēng)險(xiǎn)評(píng)分進(jìn)行整合構(gòu)建列線圖。

1.4免疫微環(huán)境和藥物療效差異性分析" 為了闡明免疫微環(huán)境與風(fēng)險(xiǎn)評(píng)分的關(guān)系,在R軟件中利用Wilcoxon signed rank檢驗(yàn)和Spearman相關(guān)性分析,通過(guò)XCELL、TIMER、QUANTISEQ、MCPcounter、EPIC、CIBERSORT和CIBERSORT- ABS方法獲取肺腺癌患者免疫細(xì)胞分布的差異(設(shè)置標(biāo)準(zhǔn):P<0.05)。并比較低風(fēng)險(xiǎn)組和高風(fēng)險(xiǎn)組間免疫檢查點(diǎn)抑制相關(guān)基因表達(dá)水平差異。最后利用pRRophetic程序包,計(jì)算了常用藥物的IC50(半數(shù)抑制濃度)來(lái)評(píng)估lncRNA預(yù)后模型分組的肺腺癌患者的臨床治療反應(yīng)差異。

2結(jié)果

2.1差異表達(dá)的lncRNA" 通過(guò)GSEA分析軟件的運(yùn)行后,發(fā)現(xiàn)在BioCarta、Hallmark、KEGG、REACTOME和WP 4個(gè)基因集中腫瘤組織樣本與正常組織樣本之間糖酵解相關(guān)基因表達(dá)存在差異(P<0.05)。依據(jù)分析結(jié)果發(fā)現(xiàn)在腫瘤樣本中糖酵解富集最差的是BioCarta基因集(圖1A),最明顯的是Hallmark基因集(圖1B),其次是REACTOME基因集(圖1C),然后是WP基因集(圖1D)。這些基因集內(nèi)的基因均可作為明確的糖酵解相關(guān)基因進(jìn)行后續(xù)分析。

2.2差異表達(dá)的糖酵解相關(guān)lncRNA及模型構(gòu)建" 從TCGA數(shù)據(jù)庫(kù)中522例肺腺癌患者的轉(zhuǎn)錄譜數(shù)據(jù)中共提取出了13 162個(gè)lncRNA,其中1025個(gè)是與糖酵解相關(guān)的。通過(guò)腫瘤組織與正常組織的比較后獲得了186個(gè)差異表達(dá)的lncRNA(圖2A、圖2B)。單變量Cox回歸分析共獲得37個(gè)lncRNA(圖2C)。LASSO回歸算法進(jìn)一步分析這些lncRNA,篩選出19個(gè)lncRNA(圖3A、圖3B),再次進(jìn)行單變量Cox分析,得到12個(gè)預(yù)后相關(guān)的lncRNA(圖3C),最后采用多因素Cox比例風(fēng)險(xiǎn)回歸分析獲得構(gòu)建預(yù)后模型的所需的系數(shù)和lncRNA(表2)。預(yù)后模型公式的具體計(jì)算為:0.073×LINC00941表達(dá)量+0.031×FAM83A-AS1表達(dá)量+0.075×LINC01116的表達(dá)量+0.021×AL365181.3表達(dá)量-0.137×AC103591.3表達(dá)量-0.203×TDRKH-AS1表達(dá)量+0.110×AC007773.1表達(dá)量+0.135×MIR193BHG表達(dá)量+0.080×MYO16-AS1表達(dá)量+0.014×AC003092.1表達(dá)量+0.108×LINC01843表達(dá)量+0.181×AL031667.3表達(dá)量)。

2.3糖酵解相關(guān)lncRNA模型的評(píng)估與驗(yàn)證" 12個(gè)lncRNA構(gòu)成的預(yù)后模型的1、3、5年生存時(shí)間的AUC分別為0.711、0.713和0.699(圖4A)。采用Akaike信息準(zhǔn)則(AIC)從3年生存ROC曲線最大值點(diǎn)確定Cut-off值(圖4B)。然后,利用這個(gè)值將TCGA數(shù)據(jù)庫(kù)中的肺腺癌患者重新劃分為低風(fēng)險(xiǎn)組和高風(fēng)險(xiǎn)組,兩組患者的生存時(shí)間存在差異(P=6.373e-13)(圖4C)。所有患者的風(fēng)險(xiǎn)評(píng)分和生存狀態(tài)都繪制在圖5A、圖5B中。單因素Cox分析提示,年齡(P=0.351,HR=1.007,95%CI:0.992~1.023)、性別(P=0.571,HR=1.089,95%CI:0.810~1.464),Stage分期(P<0.001,HR=1.625,95%CI:1.414~1.869),風(fēng)險(xiǎn)評(píng)分(P<0.001,HR=1.120,95%CI:1.093~1.147)是預(yù)后因子(圖5A)。多因素Cox分析提示,Stage分期(P<0.001,HR=1.601,95%CI:1.386~1.850)和風(fēng)險(xiǎn)評(píng)分(P<0.001,HR=1.113,95%CI:1.085~1.141)可作為獨(dú)立預(yù)后因子(圖5B)。此外,本研究還發(fā)現(xiàn)風(fēng)險(xiǎn)評(píng)分的AUC值高于Stage分期(圖5C)。患者的生存狀態(tài)與風(fēng)險(xiǎn)評(píng)分的關(guān)系見(jiàn)圖6A、圖6B。

2.4肺腺癌患者的臨床病理特征與風(fēng)險(xiǎn)評(píng)分之間的關(guān)系" 患者臨床病理特征與風(fēng)險(xiǎn)評(píng)分的關(guān)系見(jiàn)圖7A、圖7B。Wilcoxon signed-rank檢驗(yàn)發(fā)現(xiàn)性別(圖7C)、T分期(圖7D)、N分期(圖7E)、M分期(圖7F)和Stage分期(圖7G)與風(fēng)險(xiǎn)評(píng)分顯著相關(guān)。隨后構(gòu)建的列線圖(圖8A)的校準(zhǔn)結(jié)果提示,列線圖對(duì)1、3和5年生存時(shí)間的預(yù)測(cè)是符合實(shí)際的生存結(jié)果(圖8B、圖8C和圖8D),其中1、3、5年的AUC分別為0.741、0.750和0.715(圖8E、圖8F和圖8G)。

2.5免疫細(xì)胞浸潤(rùn)分析" 結(jié)果顯示,淋巴祖細(xì)胞、CD4+ Th2細(xì)胞、CD4+(非調(diào)節(jié)性)細(xì)胞、單核細(xì)胞和NK細(xì)胞的出現(xiàn)主要與低風(fēng)險(xiǎn)呈正相關(guān)(圖9A)。同時(shí)也發(fā)現(xiàn)低風(fēng)險(xiǎn)評(píng)分與CD28(圖9B)、CD40(圖9C)、CTLA4(圖9D)、ICOS(圖9E)、TIGIT(圖9F)和TNFRSF4(圖9G)的高表達(dá)呈正相關(guān)(P<0.05),而與LAG3(圖9H)和PDCD1(圖9I)無(wú)關(guān)(P>0.05)。還發(fā)現(xiàn)順鉑(圖10A)、吉非替尼(圖10B)和吉西他濱(圖10C)的IC50在高、低風(fēng)險(xiǎn)組間無(wú)顯著差異。而絲裂霉素C(圖10D)、紫杉醇(圖10E)、雷帕霉素(圖10F)、厄洛替尼(圖10G)和多西他賽(圖10H)低風(fēng)險(xiǎn)組中有更高的IC50。

3討論

隨著手術(shù)、化療、靶向治療和放療等多種積極治療手段的發(fā)展,肺腺癌患者的生存率和生活質(zhì)量得到了提高。但是,只有充分評(píng)估與基因變化相關(guān)的風(fēng)險(xiǎn),才能制定出真正個(gè)體化的治療方案。根據(jù)多種基因的表達(dá)狀態(tài)可將肺腺癌進(jìn)一步分為不同的治療亞型和預(yù)后亞型。例如,具有EGFR突變和ALK融合突變的肺腺癌患者比沒(méi)有這些突變的患者有更好的治療選擇和更高的生存率[20,21]。此外,隨著免疫療法的發(fā)展,研究人員發(fā)現(xiàn)只有一部分的肺腺癌患者可以從這些治療中受益[22]。因此,不同患者對(duì)治療反應(yīng)的問(wèn)題仍有待解決。到目前為止,許多研究已表明可用多個(gè)分子標(biāo)記物進(jìn)行組合評(píng)分,可以有效的預(yù)測(cè)患者預(yù)后和評(píng)估藥物對(duì)患者的潛在療效。其中,乳腺癌21基因表達(dá)分析是最成熟的方法之一,它可以預(yù)測(cè)患者的預(yù)后、疾病復(fù)發(fā)和腫瘤轉(zhuǎn)移,并可用于指導(dǎo)治療計(jì)劃,協(xié)助制定患者的個(gè)體化治療策略[23]。關(guān)于肺腺癌分子標(biāo)記物的研究已經(jīng)有很多,然而這些研究的研究方向各不相同(如開(kāi)發(fā)免疫預(yù)后模型[24]、自噬相關(guān)基因預(yù)后模型[25]、鐵死亡相關(guān)基因預(yù)后模型[26])。但目前尚不清楚哪一種模型最為準(zhǔn)確。因此,只有不斷的創(chuàng)新模型的構(gòu)建方法才能尋找出最為適用的模型

本研究中使用了由糖酵解相關(guān)基因構(gòu)建的預(yù)后模型作為參考,以此來(lái)獲得更可靠的肺腺癌預(yù)后模型。首先,獲得LUAD中糖酵解相關(guān)基因,結(jié)合lncRNA固有優(yōu)勢(shì),選擇差異表達(dá)相關(guān)lncRNA作為構(gòu)建預(yù)后模型的基石。然后,在進(jìn)行改進(jìn)的LASSO回歸(包括交叉驗(yàn)證、多次重復(fù)和隨機(jī)刺激)和COX回歸分析后,發(fā)現(xiàn)由12個(gè)與糖酵解相關(guān)的lncRNA組成的預(yù)后模型具有更好的獨(dú)立預(yù)后預(yù)測(cè)性能。結(jié)合該模型的臨床特點(diǎn)所構(gòu)建的列線圖具有更好的性能和更實(shí)際的臨床應(yīng)用價(jià)值。由于按模型分組的患者的生存時(shí)間存在差異,在尋找原因時(shí)發(fā)現(xiàn)這種差異的原因在于按模型分組后的患者在腫瘤病理特征和免疫應(yīng)答上存在差異,對(duì)治療藥物的敏感性也存在差異。因此,更加能確信通過(guò)本方法獲得的lncRNA模型能夠?yàn)榉蜗侔┗颊叩呐R床治療帶來(lái)很好的輔助作用。

最近,已經(jīng)有大量的研究使用lncRNA來(lái)構(gòu)建肺腺癌的預(yù)后模型。有研究使用了免疫相關(guān)的lncRNA,但在數(shù)據(jù)處理過(guò)程中,由于沒(méi)有使用LASSO回歸進(jìn)行有效的篩選,可能會(huì)導(dǎo)致模型預(yù)測(cè)結(jié)果與實(shí)際結(jié)果有偏差,并且列線圖中沒(méi)有將模型與臨床病理特征相結(jié)合,因此無(wú)法評(píng)估年齡、性別和Stage分期對(duì)模型的影響[27]。Wang Y等[28]通過(guò)探索lncRNA相關(guān)的ceRNA網(wǎng)絡(luò)獲得了預(yù)后生物標(biāo)志物,但他們沒(méi)有計(jì)算模型的AUC值。Geng W等[29]發(fā)現(xiàn)與基因組不穩(wěn)定性相關(guān)的體細(xì)胞突變相關(guān)的lncRNA可能是肺腺癌的預(yù)后信號(hào),獲得的模型雖然具有良好的預(yù)測(cè)性能,但基于該模型的群體之間的免疫微環(huán)境差異尚未進(jìn)一步探討。Jiang A等[30]驗(yàn)證了使用自噬相關(guān)的lncRNA可作為肺腺癌患者預(yù)后生物標(biāo)志物,但該風(fēng)險(xiǎn)模型沒(méi)有計(jì)算出1、3和5年生存時(shí)間的AUC,因此無(wú)法判斷其準(zhǔn)確性。而本文的基于腫瘤代謝特征的預(yù)后模型具有以下特點(diǎn):①理論基礎(chǔ)充分:糖酵解作為一種常見(jiàn)的腫瘤變化的代謝特征,已被許多研究者證實(shí)具有相關(guān)性;②數(shù)據(jù)篩選合理:采用改進(jìn)的LASSO回歸和Cox回歸分析處理的數(shù)據(jù)更加可靠;③列線圖和藥物敏感性的預(yù)測(cè)提供了更好的臨床適用性。

雖然構(gòu)建的模型具有上述優(yōu)點(diǎn),但也存在一些不足。對(duì)于12個(gè)lncRNA,無(wú)法通過(guò)其它數(shù)據(jù)庫(kù)進(jìn)行驗(yàn)證,主要是因?yàn)椴糠謑ncRNA是最近才被發(fā)現(xiàn)。LINC00941、FAM83A-AS1、TDRKH-AS1、LINC01843與肺腺癌的發(fā)生發(fā)展有關(guān)[31,32],而AL365181.3、AC103591.3、AC003092.1、AL031667.3為新轉(zhuǎn)錄本。AC007773.1、MIR193BHG和MYO16-AS1則被發(fā)現(xiàn)與其他癌癥的侵襲進(jìn)展相關(guān)[33]。LINC01116在非小細(xì)胞肺癌對(duì)吉非替尼的耐藥性中發(fā)揮重要作用。因此,當(dāng)未來(lái)有更好的實(shí)驗(yàn)研究資源時(shí),希望這些lncRNA的預(yù)測(cè)能力可以在更多的肺腺癌患者中得到驗(yàn)證。

總之,本次鑒定出的模型在患者的生存時(shí)間和藥物治療效果上均有較好的預(yù)測(cè)能力。同時(shí),lncRNA與免疫應(yīng)答的結(jié)合,不僅可以提高模型的準(zhǔn)確性,也為免疫治療的研究開(kāi)辟了新的方向。

參考文獻(xiàn):

[1]Barta JA,Powell CA,Wisnivesky JP.Global Epidemiology of Lung Cancer[J].Ann Glob Health,2019,85(1):8.

[2]Bade BC,Dela Cruz CS.Lung Cancer 2020: Epidemiology, Etiology, and Prevention[J].Clin Chest Med,2020,41(1):1-24.

[3]Travis WD,Brambilla E,Burke AP,et al.Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart[J].J Thorac Oncol,2015,10(9):1240-1242.

[4]Schwartz L,Supuran CT,Alfarouk KO.The Warburg Effect and the Hallmarks of Cancer[J].Anticancer Agents Med Chem,2017,17(2):164-170.

[5]Vaupel P,Schmidberger H,Mayer A.The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression[J].Int J Radiat Biol,2019,95(7):912-919.

[6]Deng F,Zhou R,Lin C,et al.Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer[J].Theranostics,2019,9(4):1001-1014.

[7]Reinfeld BI,Rathmell WK,Kim TK,et al.The therapeutic implications of immunosuppressive tumor aerobic glycolysis[J].Cell Mol Immunol,2022,19(1):46-58.

[8]Yang J,Ren B,Yang G,et al.The enhancement of glycolysis regulates pancreatic cancer metastasis[J].Cell Mol Life Sci,2020,77(2):305-321.

[9]Zhang L,Zhang Z,Yu Z.Identification of a novel glycolysis-related gene signature for predicting metastasis and survival in patients with lung adenocarcinoma[J].J Transl Med,2019,17(1):423.

[10]Liu J,Li S,F(xiàn)eng G,et al.Nine glycolysis-related gene signature predicting the survival of patients with endometrial adenocarcinoma[J].Cancer Cell Int,2020,20:183.

[11]Wu C,Cai X,Yan J,et al.Identification of Novel Glycolysis-Related Gene Signatures Associated With Prognosis of Patients With Clear Cell Renal Cell Carcinoma Based on TCGA[J].Front Genet,2020,11:589663.

[12]Zhou W,Zhang S,Cai Z,et al.A glycolysis-related gene pairs signature predicts prognosis in patients with hepatocellular carcinoma[J].Peer J,2020,8:e9944.

[13]Tang J,Luo Y,Wu G.A glycolysis-related gene expression signature in predicting recurrence of breast cancer[J].Aging (Albany NY),2020,12(24):24983-24994.

[14]Zhao W,Geng D,Li S,et al.LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer[J].Cancer Med,2018,7(3):842-855.

[15]Zhang X,Yao J,Shi H,et al.LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis[J].Biol Chem,2019,400(5):663-675.

[16]Cheng P,Lu P,Guan J,et al.LncRNA KCNQ1OT1 controls cell proliferation, differentiation and apoptosis by sponging miR-326 to regulate c-Myc expression in acute myeloid leukemia[J].Neoplasma,2020,67(2):238-248.

[17]Zhou M,Zhang Z,Zhao H,et al.An Immune-Related Six-lncRNA Signature to Improve Prognosis Prediction of Glioblastoma Multiforme[J].Mol Neurobiol,2018,55(5):3684-3697.

[18]Li S,Chen S,Wang B,et al.A Robust 6-lncRNA Prognostic Signature for Predicting the Prognosis of Patients With Colorectal Cancer Metastasis[J].Front Med (Lausanne),2020,7:56.

[19]Iaccarino I,Klapper W.LncRNA as Cancer Biomarkers[J].Methods Mol Biol,2021,2348:27-41.

[20]Rocco D,Della Gravara L,Battiloro C,et al.The treatment of advanced lung adenocarcinoma with activating EGFR mutations[J].Expert Opin Pharmacother,2021,22(18):2475-2482.

[21]Kang J,Zhang XC,Chen HJ,et al.Complex ALK Fusions Are Associated With Better Prognosis in Advanced Non-Small Cell Lung Cancer[J].Front Oncol,2020,10:596937.

[22]Herbst RS,Giaccone G,de Marinis F,et al.Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC[J].N Engl J Med,2020,383(14):1328-1339.

[23]Sparano JA,Gray RJ,Makower DF,et al.Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer[J].N Engl J Med,2018,379(2):111-121.

[24]Luo C,Lei M,Zhang Y,et al.Systematic construction and validation of an immune prognostic model for lung adenocarcinoma[J].J Cell Mol Med,2020,24(2):1233-1244.

[25]Wang X,Yao S,Xiao Z,et al.Development and validation of a survival model for lung adenocarcinoma based on autophagy-associated genes[J].J Transl Med,2020,18(1):149.

[26]Gao X,Tang M,Tian S,et al.A ferroptosis-related gene signature predicts overall survival in patients with lung adenocarcinoma[J].Future Oncol,2021,17(12):1533-1544.

[27]Li JP,Li R,Liu X,et al.A Seven Immune-Related lncRNAs Model to Increase the Predicted Value of Lung Adenocarcinoma[J].Front Oncol,2020,10:560779.

[28]Wang Y,He R,Ma L.Characterization of lncRNA-Associated ceRNA Network to Reveal Potential Prognostic Biomarkers in Lung Adenocarcinoma[J].Front Bioeng Biotechnol,2020,8:266.

[29]Geng W,Lv Z,F(xiàn)an J,et al.Identification of the Prognostic Significance of Somatic Mutation-Derived LncRNA Signatures of Genomic Instability in Lung Adenocarcinoma[J].Front Cell Dev Biol,2021,9:657667.

[30]Jiang A,Liu N,Bai S,et al.Identification and validation of an autophagy-related long non-coding RNA signature as a prognostic biomarker for patients with lung adenocarcinoma[J].J Thorac Dis,2021,13(2):720-734.

[31]Wang L,Zhao H,Xu Y,et al.Systematic identification of lincRNA-based prognostic biomarkers by integrating lincRNA expression and copy number variation in lung adenocarcinoma[J].Int J Cancer,2019,144(7):1723-1734.

[32]Xiao G,Wang P,Zheng X,et al.FAM83A-AS1 promotes lung adenocarcinoma cell migration and invasion by targeting miR-150-5p and modifying MMP14[J].Cell Cycle,2019,18(21):2972-2985.

[33]Kim YC,Wu Q,Chen J,et al.The transcriptome of human CD34+ hematopoietic stem-progenitor cells[J].Proc Natl Acad Sci U S A,2009,106(20):8278-8283.

收稿日期:2023-02-28;修回日期:2023-05-02

編輯/成森

主站蜘蛛池模板: 一级高清毛片免费a级高清毛片| 伊人网址在线| 国产一区二区福利| 国产91在线|中文| 欧美综合激情| 亚洲a级在线观看| 日韩精品毛片| 97色婷婷成人综合在线观看| 色婷婷电影网| 麻豆精品在线播放| 久久亚洲天堂| 国产精品自在线天天看片| 国产精品丝袜在线| 国产69精品久久| 亚洲最新在线| 丰满的熟女一区二区三区l| 精品一区二区三区无码视频无码| 久久精品国产免费观看频道| 午夜精品福利影院| 成人一级黄色毛片| 亚洲欧美日韩成人在线| 欧美天堂久久| 精品99在线观看| 日韩美毛片| 亚亚洲乱码一二三四区| 欧美在线网| 丝袜久久剧情精品国产| 青青草原偷拍视频| 九九热免费在线视频| 久久综合成人| 国产你懂得| 亚洲视频欧美不卡| 又粗又硬又大又爽免费视频播放| 国产麻豆精品久久一二三| 国产精品亚洲αv天堂无码| 秘书高跟黑色丝袜国产91在线| 999国产精品永久免费视频精品久久 | 婷婷激情亚洲| 少妇人妻无码首页| 一本综合久久| 欧美日韩另类在线| 亚洲一级毛片在线观播放| 99久久国产综合精品2023| 成人免费网站久久久| 亚洲欧美在线精品一区二区| 激情无码视频在线看| 曰AV在线无码| a亚洲视频| AV不卡在线永久免费观看| 一本一道波多野结衣av黑人在线| 99久久精品国产精品亚洲| 国产欧美视频在线观看| 性网站在线观看| 18禁高潮出水呻吟娇喘蜜芽| 亚洲人成网站18禁动漫无码| 久久a级片| 亚洲AⅤ综合在线欧美一区| 热久久这里是精品6免费观看| 成人毛片免费观看| 国产制服丝袜91在线| 国产成人精品优优av| 91久久精品国产| 亚洲第一黄色网址| 亚洲高清无码精品| 91久久青青草原精品国产| 亚洲A∨无码精品午夜在线观看| 欧美日本在线| 天天摸夜夜操| 日韩在线影院| 国产精品 欧美激情 在线播放| 免费看美女自慰的网站| 精品视频一区二区三区在线播| 99久久这里只精品麻豆| 精品国产香蕉伊思人在线| 激情无码字幕综合| 国产欧美精品专区一区二区| 黄色不卡视频| 国产精品欧美在线观看| 在线观看精品国产入口| 亚洲最大在线观看| 国产一区二区福利| 日韩二区三区无|