
摘 要:近年來,石墨相氮化碳(g-C3N4)因具有適宜的導帶價帶位置及低成本、低毒性、可見光驅動、穩定性好等特點在光驅動環境催化和新能源催化等領域受到廣泛關注。然而,其光生電子-空穴對復合嚴重的問題,影響了石墨相氮化碳在各種光催化反應中的催化活性。由于石墨相氮化碳的異質結結構能夠有效抑制光生電子-空穴對的復合并改善光生載流子的利用效率,因而其成為了光催化領域的研究熱點。綜述了過去5年中石墨相氮化碳的異質結結構在污染物光催化降解、光催化水分解產氫、二氧化碳光催化還原領域的研究進展,以期為石墨相氮化碳基材料在光催化領域的發展提供參考。
關 鍵 詞:石墨相氮化碳;異質結;污染物光降解;光催化水分解;二氧化碳光還原
中圖分類號:O643 文獻標志碼:A
doi:10.3969/j.issn.1673-5862.2024.03.001
Research progress of graphite phase carbon nitride-based heterogeneous structure in the field of photocatalysis
CUI Song1,2, LYU Yan1,2, CHEN Lanfeng1,2WANG Yichen1,2, GOU Si1,2, ZHAO Zhen1,2,3
(1. College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China)(1. College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; 2. Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China; 3. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China)
Abstract:In recent years, graphite phase carbon nitride (g-C3N4) has attracted much attention in the fields of light-driven environmental and new energy catalysis due to its suitable conduction and valence band position, low cost and toxicity, visible light response, as well as good stability. However, the serious problem of photogenerated electron-hole recombination has affected the catalytic activity of g-C3N4 in various photocatalytic reactions. The heterostructure based on g-C3N4 has become a research hotspot in the field of photocatalysis because it can suppress the photogenerated electron-hole pair recombination and improve the photogenerated carrier utilization efficiency. This article reviews the research progress of g-C3N4 based heterojunction in the fields of pollutant photodegradation, photocatalytic water splitting for hydrogen production and photocatalytic carbon dioxide reduction in the past five years, which can provide theoretical support for the development of g-C3N4 based materials in the field of photocatalysis.
Key words:g-C3N4; heterojunction; pollutant photodegradation; photocatalytic water splitting; carbon dioxide photoreduction
隨著全球能源危機和環境污染的日益嚴重,利用太陽能分解水進行制氫和降解污染物來解決能源和環境問題具有重要的現實意義[1]。1972年,Fujishima和Honda[2]開創性地發現了在紫外光作用下可以利用二氧化鈦將水分解成氫氣和氧氣,揭示了利用太陽能直接分解水制氫的可能性,掀起了利用太陽能光解水制氫的研究熱潮。然而,二氧化鈦具有寬帶隙特征,使其無法吸收利用可見光,對太陽光利用率低,一定程度上限制了其在光催化領域的發展。2009年,Wang等[3]首次報道了g-C3N4在可見光下可以光催化分解水。這種非金屬聚合物半導體材料具有獨特的能帶結構和窄帶隙(約2.7 eV),特別適用于光催化降解有機污染物、水分解、二氧化碳還原和有機合成等[4-7]。
然而,g-C3N4固有的缺點是光生電子-空穴對的復合較為嚴重,這極大地限制了它的光催化活性[8]。為此,人們采用了多種策略以降低g-C3N4的光生載流子復合率,如元素摻雜[9]、形貌控制[10]和異質結構建[11]等。異質結是指2種能帶結構不同的半導體之間形成的緊密接觸界面,光生載流子可通過此界面在2種半導體間進行遷移,實現光生電子與空穴的空間分離,進而降低電子-空穴對的復合率。通過g-C3N4與一種或者一種以上的半導體構建異質結,能夠有效地抑制光生載流子的復合率,提高光催化效率。現有研究報道中主要為Ⅱ型異質結和Z型異質結體系,這2種體系的電子遷移機理如圖1所示。圖1(a)為Ⅱ型異質結,其光生電子從還原能力較強的半導體S2導帶上通過異質結遷移到半導體S1的導帶上,與S1導帶上的光生電子一同參與還原反應;同時,光生空穴從氧化能力較強的半導體S1的價帶上通過異質結遷移到半導體S2的價帶上,與S2價帶上的空穴一同參與氧化反應,實現了光生電子與空穴在空間上的有效分離。圖1(b)為Z型異質結,其還原能力較弱的半導體S1導帶上的光生電子通過異質結進行遷移,與氧化能力較弱的半導體S2價帶上的空穴發生復合,進而降低了半導體S2導帶上的光生電子及半導體S1價帶上的空穴在其半導體內部發生復合的概率,同樣實現了光生電子與空穴在空間上的有效分離,使半導體S2的光生電子、半導體S1的光生空穴分別有效地參與還原反應和氧化反應。
1 基于石墨相氮化碳的Ⅱ型異質結結構的光催化
Ⅱ型異質結是光生載流子利用率極高的一種異質結,構建Ⅱ型異質結被認為是提高光催化活性的最有效方法之一,可以在實現有效降低光生載流子復合率的同時避免載流子的額外損耗。
在污染物光降解領域,Ⅱ型異質結可以有效提升催化劑的光降解活性。例如,Paul等[12]合成了石墨氮化碳和CsPbBrCl2的復合材料,其在可見光照射下在120 min內降解了94%的伊紅B染料,降解速率常數是純CsPbBrCl2的30倍和g-C3N4的2.29倍。該作者認為在這2種n型半導體之間形成的Ⅱ型異質結對光催化降解有機染料污染物非常有益。Ma等[13]制備了CeO2/g-C3N4復合材料光降解雙酚A。在80 min可見光照射后,CeO2/g-C3N4降解了93.7%的雙酚A,而單獨的g-C3N4和CeO2分別只降解了65.0%和14.4%的雙酚A。該復合材料光催化活性的增強歸因于Ⅱ型異質結結構,該結構促進了光生載流子的遷移和分離。
Obregón等[14]采用浸漬法制備了Bi2W2O9/g-C3N4復合材料。Bi2W2O9/g-C3N4對抗生素的去除率是純g-C3N4的2.6倍,是Bi2W2O9的3.8倍。光催化性能的提高可以歸因于Bi2W2O9和g-C3N4的價帶和導帶的位置有利于光生電子與空穴通過Ⅱ型異質結進行充分的空間分離。Shi等[15]通過溶劑熱法和煅燒法將g-C3N4納米片負載到ZnFe2O4表面。g-C3N4/ZnFe2O4 在120 min時對四環素(30 mg/L)的降解率可達到85%,其降解速率常數分別是純g-C3N4的3.8倍和ZnFe2O4 的4.9倍。表征結果表明,其光催化性能的增強歸因于Ⅱ型異質結的形成,Ⅱ型異質結可以有效提高載流子的分離效率。Ahmad等[16]采用溶劑熱法制備了MnNb2O6/g-C3N4復合材料光催化降解抗生素環丙沙星和鹽酸四環素。在可見光下,MnNb2O6/g-C3N4在140 min內對環丙沙星和鹽酸四環素的降解率分別達到94.10%和98.50% ,其降解環丙沙星的速率常數分別是純MnNb2O6的1.6倍和g-C3N4的2.9倍,降解鹽酸四環素的速率常數分別是純MnNb2O6的5.3倍和g-C3N4的11.4倍。光催化性能的提高主要由于在MnNb2O6和g-C3N4之間形成了Ⅱ型異質結,加速了電子-空穴的分離。Su等[17]采用水熱法和煅燒法制備了SrTiO3/g-C3N4復合材料,并在模擬太陽光下對四環素進行了降解。在光催化80 min內,g-C3N4對四環素的降解率僅為45.26%,與SrTiO3結合后,復合材料SrTiO3/g-C3N4的光催化性能顯著提高,對四環素的降解率為70.53%。通過表征分析發現,g-C3N4與SrTiO3復合成為具有Ⅱ型異質結構的光催化劑,最大限度地促進了電荷分離,具有優異的光催化活性。
Ⅱ型異質結對光催化水分解活性也有顯著的提升作用。Song等[18]采用水熱法制備了g-C3N4和多鈮酸鹽(K7HNb6O19)的復合材料。該復合材料光催化水分解產氫的速率大約是純K7HNb6O19的133倍,g-C3N4的40倍。光催化析氫能力的增強歸因于K7HNb6O19和g-C3N4之間Ⅱ型異質結的形成,這不僅加速了電荷的轉移,還有效抑制了電子與空穴的復合。Wang等[19]采用水熱法將ZnIn2S4納米片負載到S摻雜的g-C3N納米片上。該復合材料最佳光催化產氫性能是g-C3N4的7.7倍,ZnIn2S4的2.8倍。光催化活性的增強主要是由于構建了Ⅱ型異質結來調節帶隙,其拓寬了光響應范圍,提高了電子-空穴的分離效率。
2 基于石墨相氮化碳的Z型異質結結構的光催化
1979年,Bard提出了傳統的Z型異質結光催化劑結構,由于其電子轉移過程構成英文字母Z的形狀,因而稱之為Z型異質結。Z型異質結光催化劑可以有效地分離電子和空穴,同時確保光生電子和光生空穴分別保留在復合材料中還原能力最強的導帶和氧化能力最強的價帶上,不會影響光催化劑的氧化還原能力,在光催化領域具有巨大的潛力。
在污染物光降解方面,Yin等[20]采用溶劑熱法制備了 MgIn2S4/氧摻雜g-C3N4復合材料光還原Cr(Ⅵ),其光還原動力學常數為氧摻雜g-C3N4的343.7倍,MgIn2S4的2.0倍。表征發現該復合材料Cr(Ⅵ)光還原性能的提高是因為形成了Z型異質結。Geng等[21]采用浸漬-水熱法制備了α-Fe2O3/g-C3N4。該催化劑對一氧化氮(NO)的去除率約為純g-C3N4的1.78倍。光催化性能的增強是因為Z型異質結的能帶結構導致廣泛的可見光吸收,促進了電荷轉移。Ma等[22]采用一鍋退火法合成了g-C3N4/ZnS復合材料。該材料對雙酚A的去除率為g-C3N4的7.4倍,ZnS的2.1倍。g-C3N4/ZnS復合材料遵循Z型異質結機制,可以抑制光生載流子的復合,提高光催化活性。Zhang等[23]采用煅燒法和水熱法制備了CdS/氧摻雜g-C3N4復合材料進行光催化降解實驗。在可見光的照射下,CdS/氧摻雜g-C3N4在60 min內降解10 ppm的2-氯苯酚(2-CP)的效率達到了100%,而純g-C3N4的降解率僅為60.4%。該復合材料的降解速率常數約為純CdS的6.9倍,g-C3N4的11.5倍,并且在60 min內對4-氯苯酚和2,4-二氯苯酚的降解率也都達到了80%以上。CdS/氧摻雜g-C3N4由于Z型異質結的構建提高了光生電荷的分離效率,改善了光催化降解的性能。
Guo等[24]采用水熱法制備了CuInS2/g-C3N4復合材料,并在可見光下光催化降解四環素。CuInS2/g-C3N4的降解速率常數是純g-C3N4的15倍,CuInS2的11倍。光催化活性的增強主要是由于CuInS2與g-C3N4之間形成Z型異質結,促進了光催化反應過程中的電荷分離。Sharma等[25]采用水熱法將g-C3N4與MoS2復合光降解抗生素。可見光照射下該復合材料在90 min內對柳氮磺胺吡啶的去除率為97%,約為純g-C3N4的2.4倍,MoS2的2.7倍。其光催化性能提高的原因是g-C3N4與MoS2之間形成了有效的Z型異質結,增強了可見光的吸收,抑制了載流子的復合,提高了光催化降解的性能。Nawaz等[26]通過一鍋水熱法制備了WS2和g-C3N4的復合材料,該復合材料的能帶位置提示了電荷在異質結中遷移的Z型機制,其在2 h內對亞甲基藍的光催化降解率最高為95.5%,對四環素的降解率為84.5%,降解速率常數幾乎是純g-C3N4的2.20倍。Chen等[27]采用原位沉積法制備了復合材料g-C3N4/Ag3PO4,并在可見光下進行了光催化污染物降解實驗。g-C3N4/Ag3PO4在去離子水中10 min 內對氧氟沙星的降解率達到了71.9%,30 min內對氧氟沙星的降解率達到了74.6%,其降解速率常數為純Ag3PO4的2倍。同時,Chen等還使用該催化劑進行了可見光下對羅丹明B和苯酚的光催化降解實驗,其在30 min內降解率分別達到95.6%和56.4%。表征結果表明,該催化劑催化效率的提高是由于Z型異質結的形成。
Z型異質結結構除了在污染物光降解領域得到廣泛應用,在光催化水分解領域也有應用。Zhu等[28]采用煅燒策略合成了g-C3N4/Sn3O4,其在可見光照射下產氫活性約為純Sn3O4的3.2倍,g-C3N4的5.4倍,對環丙沙星的降解速率常數約為純Sn3O4和g-C3N4的3.4倍。光催化性能的增強主要源于該復合材料形成了Z型異質結,最大限度地提高了復合材料的光氧化還原能力。此外,對于二氧化碳光催化還原,Z型異質結也可以顯著提高其催化活性。Truc等[29]制備了NiMoO4/g-C3N4復合材料光還原CO2。純NiMoO4和純g-C3N4在可見光激發下對CO2轉化都沒有活性,NiMoO4/g-C3N4將CO2轉化為各種含碳產物,包括CO, CH4和HCOOH。該復合材料光催化活性顯著的原因是 NiMoO4 和g-C3N4形成了Z型異質結,NiMoO4的價帶和g-C3N4的導帶上分別產生了h+和e-。這些e-/h+具有合適的氧化還原電位,可以有效地轉化二氧化碳。
3 結 語
g-C3N4作為一種典型的非金屬聚合物半導體材料,在與其他材料構成異質結結構后,顯著地降低了光生載流子的復合率,使其光催化性能得到大幅提升,大大增加了其應用潛力。因此,如何精準控制生成何種類型的異質結,以及如何利用好Ⅱ型和Z型異質結各自的特點,將成為今后的研究重點。本文綜述了近5年來石墨相氮化碳的異質結結構在污染物光催化降解、光催化水分解產氫、二氧化碳光催化還原領域的研究進展,希望能夠為該領域的研究人員開展相關研究工作提供一定的理論參考。
致謝 感謝沈陽師范大學博士科研啟動基金項目(BS202016)的支持。
參考文獻:
[1]KRAJCINOVIC D,FONSEKA G U. The continuous damage theory of brittle materials[J]. J Appl Mech, 1981,48(4):809-824.
WANG L,WAN Y Y,DING Y J,et al.Conjugated microporous polymer nanosheets for overall water splitting using visible light[J].Adv Mater,2017,29(38):1702428.
[2]FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
[3]WANG X C,MAEDA K,THOMAS A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nat Mater,2009,8(1):76-80.
[4]王奕琛,吳檜,趙震.氧化鐵/氮化碳光催化劑降解水中有機物[J].沈陽師范大學學報(自然科學版),2022,40(2):109-114.
[5]WU X H,WANG X F,WANG F Z,et al.Soluble g-C3N4 nanosheets:Facile synthesis and application in photocatalytic hydrogen evolution[J].Appl Catal B:Environ,2019,247:70-77.
[6]AGGARWAL M,BASU S,SHETTI N P,et al.Photocatalytic carbon dioxide reduction:Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4)[J].Chem Eng J,2021,425:131402.
[7]馮效遷,徐金鑫.g-C3N4基材料在光催化中的應用[J].遼寧化工,2023,52(6):849-852.
[8]CHU Y C,LIN T J,LIN Y R,et al.Influence of P,S,O-doping on g-C3N4 for hydrogel formation and photocatalysis:An experimental and theoretical study[J].Carbon,2020,169:338-348.
[9]LIU Y Y,ZHENG Y M,ZHANG W J,et al.Template-free preparation of non-metal (B,P,S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation[J].J Mater Sci Technol,2021,95:127-135.
[10]LI Y,ZHANG D N,FAN J J,et al.Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance[J].Chin J Catal,2021,42(4):627-636.
[11]RHIMI B,WANG C Y,BAHNEMANN D W.Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting:A mini review[J].J Phys Energy,2020,2(4):042003.
[12]PAUL T,DAS D,DAS B K,et al.CsPbBrCl2/g-C3N4 type Ⅱ heterojunction as efficient visible range photocatalyst[J].J Hazard Mater,2019,380:120855.
[13]MA R,ZHANG S,LI L,et al.Enhanced visible-light-induced photoactivity of type-Ⅱ CeO2/g-C3N4 nanosheet toward organic pollutants degradation[J].ACS Sustainable Chem Eng,2019,7:9699-9708.
[14]OBREGN S,RUZ-GMEZ M A,RODRGUEZ-GONZLEZ V,et al.A novel type-Ⅱ Bi2W2O9/g-C3N4 heterojunction with enhanced photocatalytic performance under simulated solar irradiation[J].Mater Sci Semicond Process,2020,113:105056.
[15]SHI Y X,LI L L,XU Z,et al.Engineering of 2D/3D architectures type Ⅱ heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation[J].Mater Res Bull,2022,150:111789.
[16]AHMAD N,KUO C J,MUSTAQEEM M,et al.Synthesis of novel Type-Ⅱ MnNb2O6/g-C3N4 Mott-Schottky heterojunction photocatalyst:Excellent photocatalytic performance and degradation mechanism of fluoroquinolone-based antibiotics[J].Chemosphere,2023,321:138027.
[17]SU X Y,QING D,XIAO X L,et al.Construction of novel type-Ⅱ SrTiO3/g-C3N4 heterojunction photocatalysts:Photodegradation of tetracycline and photocatalytic mechanism[J].Russ J Phys Chem A,2023,97(1):299-305.
[18]SONG Q,HENG S L,WANG W B,et al.Binary type-Ⅱ heterojunction K7HNb6O19/g-C3N4:An effective photocatalyst for hydrogen evolution without a Co-catalyst[J].Nanomaterials,2022,12(5):849.
[19]WANG Y Q,LI J X,CHEN S B,et al.In situ loading of ZnIn2S4 nanosheets onto S doped g-C3N4 nanosheets to construct type Ⅱ heterojunctions for improving photocatalytic hydrogen production[J].J Alloy Compd,2022,924:166569.
[20]YIN H F,FAN T L,CAO Y,et al.Construction of three-dimensional MgIn2S4 nanoflowers/two-dimensional oxygen-doped g-C3N4 nanosheets direct Z-scheme heterojunctions for efficient Cr(Ⅵ) reduction:Insight into the role of superoxide radicals[J].J Hazard Mater,2021,420:126567.
[21]GENG Y X,CHEN D Y,LI N J,et al.Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide[J].Appl Catal B:Environ,2021,280:119409.
[22]MA Y Q,LI J,CAI J,et al.Z-scheme g-C3N4/ZnS heterojunction photocatalyst:One-pot synthesis,interfacial structure regulation,and improved photocatalysis activity for bisphenol A[J].Colloids Surf A,2022,653:130027.
[23]ZHANG Z Z,JI R,SUN Q M,et al.Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light[J].Appl Catal B:Environ,2023,324:122276.
[24]GUO F,SHI W L,LI M Y,et al.2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline[J].Sep Purif Technol,2019,210:608-615.
[25]SHARMA G,NAUSHAD M,ALOTHMAN Z A,et al.High interfacial charge separation in visible-light active Z-scheme g-C3N4/MoS2 heterojunction:Mechanism and degradation of sulfasalazine[J].Chemosphere,2022,308:136162.
[26]NAWAZ A,GOUDARZI S,SARAVANAN P,et al.Z-scheme induced g-C3N4/WS2 heterojunction photocatalyst with improved electron mobility for enhanced solar photocatalysis[J].Sol Energy,2021,228:53-67.
[27]CHEN R H,DING S Y,FU N,et al.Preparation of a g-C3N4/Ag3PO4 composite Z-type photocatalyst and photocatalytic degradation of Ofloxacin:Degradation performance,reaction mechanism,degradation pathway and toxicity evaluation[J].J Environ Chem Eng,2023,11(2):109440.
[28]ZHU Y X,CUI Y J,XIAO B B,et al.Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and degradation of ciprofloxacin[J].Mater Sci Semicond Process,2021,129:105767.
[29]TRUC N T T,PHAM T D,NGUYEN M V,et al.Advanced NiMoO4/g-C3N4 Z-scheme heterojunction photocatalyst for efficient conversion of CO2 to valuable products[J].J Alloy Compd,2020,842:155860.
【責任編輯:王瑞丹】