候秋繼



摘要:學生的思維模式對學習的影響非常大,高中是培養學生數學思維,發展學生智力的重要階段,而課堂教學是培養學生思維和發展智力的重要方式,具有啟發性的課堂教學能有效的達到這一目標,所以如何在教學中應用啟發性原則就至關重要。
關鍵詞:數學教學;啟發性;課堂練習
中圖分類號:A?文獻標識碼:A?文章編號:(2021)-44-492
1.問題背景
隨著我國經濟的快速增長,我們的生活條件越來越好,社會競爭也越來越激烈。但是物質條件的優越,加上現在獨生子女較多,使得現在的中學生缺乏學習的動力和積極性。太安逸的環境磨滅了孩子們心中的斗志,使得他們缺乏探索精神,缺乏思考的能力。有很大一部分同學課后作業不認真完成,預習效率較低最后導致學習效率低,學習效率低使學生有挫敗感,漸漸對數學失去了學習的興趣。為了能使教學順利進行,我們必須想辦法解決這一問題。作為教育工作者我們能監督到的只有學生在校的時間,啟發式教學能提高課堂效率,讓學生能在課堂中掌握每節課的內容,并且能做到舉一反三,觸類旁通,這樣學生完成課后作業就會得心應手,日積月累可以幫助學生建立學習自信心,從而激發學習興趣使得我們的教學工作能成功開展。
2.知己知彼:初高中數學學習的差異
對于高一的學生來講,最困難的就是適應高中階段的學習。因為初高中數學不管是在知識還是學習方法上都存在巨大差異。初中數學知識少,更注重基礎知識。初中階段時間比較充足,可以通過大量練習讓學生掌握知識,而對于學生數學能力的培養稍微欠缺。在考試過程中大部分題型就是平時講的,所以長此以往大部分學生易形成定式思維,模仿學習,欠缺自己的思考,使得數學學習有些機械化。高中數學是初中數學的加深和延展,高中階段數學知識量增加,難度增大,高考更注重學生的創新思維和創造能力的的考查,考查的題型也是千變萬化,學生已經不能通過模仿的方法來學習高中數學,他們必須要突破自我,避免定式思維,積極思考,通過理解,抽象,概括,總結出解決一類問題的方法。也就是學生必須要突破學生初中形成的思維習慣,要有自己思考和自學的能力。但是高中階段學習任務重,時間緊,沒有富余的時間去培養和指導學生,所以我們只有使得課堂教學內容的設置更具啟發性,才能高效的培養學生的思維能力,幫助其更好的完成高中數學的學習。
3.學生數學核心素養的培養對教和學提出了更高的要求
在教育部2014年印發的《關于全面深化課程改革落實立德樹人根本任務的意見》中,首次提出“核心素養體系”概念。同時,正在進行的普通高中課程標準修訂,也將核心素養作為重要的育人目標。對于數學學科,數學核心素養是學生在接受相應學校的教育過程中,逐步形成的適應個人終身發展和社會發展需要的必備品質和關鍵能力。核心素養是所有學生應具有的最關鍵,最必要的共同素養,是知識,能力和態度的綜合表現,它可以通過接受教育來形成和發展。新一輪的課程標準的修訂與數學核心素養密切相關。數學學科核心素養是數學目標的集中體現,是具有數學基本特征的思維品質、關鍵能力以及情感、態度與價值觀的綜合體現,是在數學學習和應用過程中逐步形成和發展的。高中階段主要培養的數學核心素養是直觀想象、數學抽象;數學運算、邏輯推理;數據分析、數學模型。這一概念的提出要求教師在教和學生學的的過程中要注重學生數學核心素養的培養。
數學抽象是數學的基本思想,是形成理性思維的重要基礎,在數學抽象核心素養的形成過程中,學生積累從特殊到一般,從具體到抽象的思維活動從而更好地理解數學的概念、命題、方法和體系,能通過抽象、概括去認識、理解、把握事物的數學本質,能逐漸養成一般性思考問題的習慣,能在其它學科的學習中主動運用數學抽象的思維方式解決問題。而具有啟發性的教學是培養學生抽象思維的重要部分。
4.啟發性原則在教學中的應用
啟發性教學原則是指在教學中教師要承認學生是學習的主體,注意調動學生的學習主動性,引導他們獨立思考,積極探索,生動活潑的學習,自覺的掌握科學知識和提高分析問題和解決問題的能力。這要求教師要樹立正確的學生觀,承認學生是教學活動的主體,充分調動學生的學習積極性和主動性,創設問題情境,引導學生發現問題并學會思考問題,建立民主和諧的教學氣氛,鼓勵學生多思考,敢于發表自己的見解。
《中華人民共和國義務教育法》中提到:國家鼓勵學校和教師采用啟發式教育教學方法,提高教育教學質量。因此啟發式教學是課程教學的原則和標準。啟發式教學的目的是為了啟發學生思考,我覺得對于數學課堂,要使課堂具有啟發性,課堂練習是非常重要的。啟發性的課堂練習就是教師在講授一個知識時為了讓學生能更好的理解,通過設置習題的方式引導學生去思考,探索從而更好的理解知識并能應用。所以設計具有啟發性教學內容的原則是要能準確把握數學知識的本質,了解學生的認知規律,能創設適當的情景,并能提出恰當的數學問題,引發學生思考,充分調動學生的積極性。所以我主要是根據教學內容,在教學過程中通過提問和適當的變式訓練來設計具有啟發性的教學內容,通過啟發學生自己嘗試,分析,解決問題,然后歸納總結掌握所學內容并能達到舉一反三,觸類旁通。
4.1解一元二次不等式
以一元二次不等式的解法為例,在學習解一元二次不等式的過程中學生最容易出錯的兩個地方是(1)二次項系數為負的時候寫解集易出錯;(2)大于(大于等于)、小于(小于等于)時弄不清楚解集到底是取兩邊還是取中間。而出現這些問題的關鍵是學生不理解原理,僅憑記憶去解題,而這也是大部分學生的學習模式,因此在教學過程中我們要用一些措施引導學生去突破。該知識點的本質是要讓學生結合函數圖象理解不等式的幾何意義,從而能寫出不等式的解集,它是解絕對值不等式,分式不等式以及解決函數等問題的基礎知識,如果這個知識點掌握好了那么對后邊知識的學習有很大的幫助。我是這樣設計的:
針對問題(1),學生的答案是多樣的,對其它正確答案要予以肯定,但是關鍵是要引導學生分析當x<-2或x>5時圖象在x軸上方,即函數值大于零;當-2<x<5時,圖象在x軸上方,即函數值小于零。
針對問題(2),通過學生思考,討論,解決該問題,方程①指的是函數與x軸的交點;不等式②指的是函數值大于零,對應的是在x軸上方的函數圖象,其它依此類推得出結論。
針對問題(3),前兩個問題解決后,第三個問題學生就容易解決了。
針對問題(4),學生容易得出以下結論
第一步:畫圖;
第二步:求根;
第三步:看圖;
第四步:寫解集(大于取兩邊,小于取中間)。
針對問題(5),例①按照總結的步驟不會算錯,但是在解第二個和第三個不等式的時候有一部分人會按照大于取兩邊,小于取中間寫出解集而忽略了二次項的系數。這里通過學生錯誤的嘗試,再給出正確的解答,應用了美國桑代克的嘗試錯誤說學習理論。這樣學生獲得的知識理解更深刻,更容易記憶。
復習二次函數的目的,是為講解不等式做鋪墊,通過學生熟悉的知識創設問題情境,然后通過恰當的問題引發學生思考,引導其逐步探索解決問題的方法。學生獲得了解不等式的基本方法后又把易錯知識點在練習中體現出來,通過學生嘗試再講授,遵循學生的認知規律,使其能更深刻的理解所獲得的知識。同時能夠充分的調動學生的學習積極性,潛移默化的培養學生的數學核心素養。
4.1.2.通過練習引導學生總結解一元二次不等式的方法
這里就會出現不同的總結方法,大體上有兩個思路:
(1)第一步:畫圖;
第二步:求根;
第三步:看圖;
第四步:寫解集(開口向上時:大于取兩邊,小于取中間,開口向下時剛好相反);
(2)第一步:二次項系數化為正;
第二步:畫圖;
第三步:求根;
第四步:看圖;
第五步:寫解集(大于取兩邊,小于取中間)。
通過一些習題,讓學生在實踐探索中總結歸納出解決一類問題的方法,同時讓學生比較兩種方法的差異,從中選擇更好的方法。在不同的方法的選擇過程中引發學生思考哪種更簡單,通過長時間的訓練一方面可以讓學生養成思考的好習慣,同時可以培養其發散思維,一題多解,另外在方法的選擇上培養其優化思想,這對數學學習是非常重要的。這樣在探索一類題解決方法的過程中培養了學生的思維能力,一舉兩得。
4.2.復合函數的值域和單調性的求解
通過變式1主要是要讓學生進一步體會復合函數的單調性和值域的求法,同時通過兩個題的比較讓學生體會到已知給了范圍和沒有給范圍的解決問題的方法的區別。此外,通過引導分析,讓學生進一步體會內層函數的值域是外層函數的定義域,這是一個重點也是難點,通過練習引導分析可以有效突出重點突破難點。
4.2.2.給出相應的練習
判斷下列函數的單調性并求值域;
學生做這幾個練習時感覺難度還是比較大,但是教師不急于講解,讓學生自己嘗試,然后遇到障礙,這時候教師再適當的點撥,引導其分析,也可讓學生小組討論。
習題(1)中自變量的取值是沒有限制的,而(2)中是隱含了真數大于零,在做題時學生容易出錯,通過他們自己探索嘗試,出現錯誤然后再引導學生總結得出結論。結合學生在探究中體現出來的易錯點進行方法總結,一步步的啟發,讓學生真正參與到學習中來,他們會有更多不一樣的新奇的思路,便于學生自學能力和發散思維的培養,真正做到教學相長。
4.2.3.學生自己列舉復合函數的例子然后求它的值域和單調區間
要檢測學生是否真正掌握一個知識,一個很好的方法就是讓學生舉例。如果他們能順利列舉出符合條件的例題說明已經理解了所學的內容,反之則不然。這一環節讓學生自己舉例,自己計算,然后以小組為單位互換檢查,檢查完后匯報討論的結果,舉例好的進行表揚,出錯的進行糾正總結。這一環節不僅能檢測學生對知識點的掌握情況而且在學生舉例,討論,互相檢查的過程中他們能發現自己存在的問題,能獲得其它同學的不一樣的思路和解題方法,互相學習并且能留下深刻的印象,對于知識的理解和記憶是非常有利的。
5.反思
設計具有啟發性的教學內容需要注意:
第一:要樹立正確的學生觀,承認學生是學習的主體。
高中階段為了趕進度,為了考試,為了成績,各種壓力有時候我們不得不選擇講授式,但是慢慢的我發現結果完全不是我的預期。在不斷的反思和學習的過程中我發現教師傳授給學生的知識他們特別容易忘記,但是他們自己學習的卻比較深刻。由此我得到啟發,老師太累,學生就太閑了,太閑他們就有時間和精力去發呆,去講小話,去打瞌睡,因為老師一直在講是非常無聊的。所以在教學中只有充分發揮學生的學習主動性,讓學生忙起來,讓他們參與到教學中,積極思考,真正教會他們如何去學習,如何去思考,這樣老師才能卸下肩上的擔子,否則只會越來越重。
第二:要遵循學生的認知規律,有效的選擇教學方法。
學生是有自主思想的動物,教學中只有充分發揮其主動性我們才能收到想要的效果。因此在教學中要遵循學生的認知規律,注重教學的直觀性,啟發性,理論聯系實際,因材施教等教學原則,通過設問讓學生產生疑惑,激發學生的求知欲,再一步步啟發引導學生去分析,通過分析,嘗試,出錯,糾錯,遷移應用的過程逐步完善學生的知識體系。在這一過程中讓他們體會數形結合,換元,轉化,類比等數學思想,潛移默化的培養學生良好的思維習慣,通過由易到難,由簡到繁,有特殊到一般的探究過程,培養學生的學習興趣,強化培養邏輯思維能力,同時可以幫助學生尋找學習的樂趣逐步樹立學習的自信心。只有讓學生理解數學概念,明白數學的原理,掌握數學的思想方法,才能讓他們真正的會學數學。啟發性的練習能讓學生在輕松愉悅的環境中學習數學,在潛移默化中培養學生的數學思維,日積月累中達到教學相長。
第三:教師要注重自己學科知識能力的提升
啟發式教學要求教師要注重所設計的教學內容的本質,同時要注意它與其它知識的聯系。在講解過程中從知識的本質出發,然后做適當的延伸,在設計的過程中也要注意學生的易錯點,并把它恰當的放在教學的某個環節中,讓學生在嘗試中發現錯誤,通過糾正加深印象,避免以后的出錯率。這就要求教師要有深厚的教學功底,不管年輕型還是經驗型,我覺得作為數學老師只有不斷的更新自己的知識,不斷地提升自己,才能在教學中如魚得水,更好的幫助學生完成學業。
第四:恰當的問題,適時的引導,在潛移默化中培養核心素養
數學的題是無窮無盡的,但卻又是有規律的。教師要做的事情就是讓學生的學習變得簡單,所以在設計的過程中要注意所選例題和練習的典型性,典型的內容可以有效的幫助學生發散思維。以一個簡單的知識為切入點,通過變式,恰當的提問來引發學生思考,讓學生在自己思考和實踐的過程中獲得知識,同過一個題引申到一類題,在解決問題的過程中培養了學生的數學思維,做到舉一反三,觸類旁通。
第五:發揚民主教學
學生的思維是無限的,很多時候他們能夠想到更好的方法,所以我覺得教師應該是一個很好的引導者,而不只是一個知識的傳授者。我覺得我們要做的是教會學生如何去思考,如何去學習。提倡一題多解,鼓勵創新,肯定學生的不一樣的解題方式,提倡教學形式多樣化,解題方法多樣化,倡導民主教學。我們通過啟發,設問,探索,分析,歸納總結,一步步引導學生通往成功的殿堂,如同柳暗花明又一村,讓學生體會學習的快樂,體會思維的奇妙,體會知識的奧秘,從而愛上學習,學會學習。
數學是一門基礎學科,也是一門神奇的學科。它涉及各個領域,有著神奇的思維邏輯,有很多奧秘等待人類去探索。而作為數學教師,我們能做的就是讓這些年輕人能感受到數學的神奇,通過我們的努力讓學生在學習的過程中體會數學探索的樂趣,并能在探索的過程中發展學生的智力,培養學生的數學核心素養。
參考文獻
[1]任勇.你能成為最好的數學老師[M].第五版.北京:華東師范大學出版社,2015.12.
[2](美)克里斯·比弗爾.全腦教學[M].第四版.北京:中國青年出版社,2016.5.
[3]蘇珊·A·安布羅斯,米歇爾·W·布里奇斯,米歇爾·迪皮埃特羅,瑪莎·C·拉維特,瑪麗·K·諾曼.聰明教學7原理[M].第四版.上海:華東師范大學出版社,2016.10.
[4]章建躍,朱文芳.中學數學教學心理學[M].第二版.北京:北京教育出版社,2001.7.
[5]陳琦,劉儒德.當代教育心理學[M].北京:北京師范大學出版社,1997.
[6]朱智賢,林崇德.思維發展心理學[M]北京:北京師范大學出版社,1986.
[7]李伯黍,燕國材.教育心理學[M]第三版.華東師范大學出版社,2010.1
[8](德)韋特海默.創造性思維[M].教育科學出版社,1987.