999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

巧用轉化思想 解答數學難題

2021-11-22 06:04:38張錦尾
名師在線 2021年18期
關鍵詞:解題思想數學

張錦尾

(福建省仙游第一中學,福建仙游 351200)

引 言

眾所周知,初中數學題型復雜多變,對學生分析及解題能力要求較高。部分習題采用常規方法進行解答,不僅計算煩瑣,還容易出錯,而應用轉化思想可取得事半功倍的解題效果。因此,教師在教學中應注重為學生講解轉化思想的相關理論知識,提高學生對轉化思想的應用意識,從而指引學生更好地解答數學難題。

一、分式與整式的轉化

分式是初中數學的重要知識,也是測試的常考點。相關習題難度差別較大,部分習題需要運用轉化思想將分式轉化為整式進行求解。為使學生掌握轉化技巧,提高解題正確率,教師在數學教學中應做好分式基礎知識的講解,使學生正確把握分式的特點,明確分式與整式之間的區別與聯系,同時有針對性地引導學生將分式轉化為整式,為學生在解題中靈活應用轉化思想奠定基礎[1]。另外,教師應結合教學經驗,選擇具有一定難度的例題在課堂上為學生講解解題過程,使學生感受轉化思想的具體應用,給學生帶來解題啟發,便于學生把握分式與整式轉化的細節。

該例題給出的已知條件較少,解題難度較大。課上,教師可先給學生留下一定的思考時間,要求其思考解題思路,然后為其講解解題步驟,并要求學生認真觀察已知條件。解題步驟如下:等式的兩邊分別乘以x2-4,根據平方差公式可將已知條件轉化為4x=(a+b)x-2a+2b。結合等式左右兩邊特點不難得出:a+b=4, -2a+2b=0,兩式聯立可求出a=2,b=2,代入可得a2+b2的值為8。

通過對該例題的學習,學生感受到轉化思想在解題中的妙用,認識到分式轉化為整式應注意的細節,即靈活應用平方差、完全平方式等知識,尋找相關參數之間的規律,建立等式關系。

二、函數與方程的轉化

一次函數是初中數學的重點知識,涉及的知識點較多,包括一次函數的判斷、表達式的求解、一次函數圖像等知識點。其中,一次函數與一次不等式聯系較為密切,部分習題需要借助兩者的轉化進行求解。在教學中,為提高學生解答相關習題的能力,教師應注重結合函數圖像為學生深入剖析其中蘊含的不等關系,提高學生對函數與方程的轉化意識[2]。課上,教師可基于學生所學設計代表性習題,要求學生運用轉化思想進行解答,夯實其所學的同時,鍛煉其應用轉化思想解答數學難題的能力,促使其樹立解答數學難題的自信心[3]。

題干中給出的是兩個一次函數的表達式,這兩個函數在第四象限相交。要想求出m的值,學生需要先將其轉化成一元一次方程組,再求出方程組的解。根據其在第四象限相交的條件,將其轉化為不等式,最終得出整數m的值。將兩個函數聯立,其交點坐標為(2m+3,m-2)。考慮到第四象限中橫坐標為正,縱坐標為負,即2m+3>0,m-2<0,可解得m的取值范圍為因此,整數m的值為-1、0、1。

該題的難點主要有兩個:一是將函數轉化為方程;二是明確第四象限坐標特點。該習題的訓練加深了學生對函數、方程關系的理解,增強了其運用轉化思想解題的意識。

三、高次向低次的轉化

初中數學部分習題涉及高次項的參數,而且無法使用因式分析進行轉化,如果找不到解題思路就很難作答,此時需要靈活運用完全平方式、整體代換等將高次轉化為低次以實現求解的目的。在教學中,為使學生掌握相關的轉化思路,教師應結合教學經驗對相關習題分門別類,總結不同題型的轉化思路,傳授學生相關的轉化技巧,使學生扎實掌握理論知識,避免其在轉化中走彎路[4]。此外,教師應圍繞具體例題,在課堂上邊引導學生回顧理論,邊板書詳細的解題過程,與學生一起完成例題解答。

該題目中出現了三次項,直接代入求解計算較為煩瑣,顯然是不可取的。在實際教學中,教師可引導學生運用轉化思想進行解答,即先認真思考已知條件,通過移項對等式兩邊進行平方,得出a2+2a=6這一等式,然后在等式兩邊分別乘以3a,得到3a3+6a2=18a。觀察要求解的多項式,進行配湊,湊出含有3a3+6a2的項,然后分別進行整體代入,最后求出3a3+12a2-6a-12的值為24。

該題難度較大,需要運用一定的解題技巧。在授課中,為增強學生的解題自信心,教師應注重給予學生點撥,鼓勵學生堅定信心、積極思考、認真書寫解題步驟。

四、立體向平面的轉化

勾股定理在初中數學中占有重要地位。部分習題以空間幾何體為背景,考查學生對勾股定理的靈活應用能力。該種題型對學生的空間想象能力具有一定要求,在教學中,為提高學生解答此類習題的能力,教師應啟發學生將立體圖形轉化為平面圖形。一方面,在講解勾股定理時,教師應注重引導學生聯系生活中的空間圖形,思考哪些立體圖形應用了勾股定理知識,在增強課堂教學趣味性的同時,幫助學生構建立體與平面之間的聯系,并在學生的記憶中留下深刻印象。另一方面,教師可運用多媒體技術為學生創設相關的問題情境,直觀展示立體圖形向平面圖形轉化的過程,使學生更好地將轉化思想應用于解答相關習題中[5]。

例題:一個圓柱體的高為4cm、底面半徑為1cm, 從圓柱底部A處沿側面纏繞一圈絲線到頂部B處做裝飾,這條絲線的最小長度為(π取3)____。

該題目創設的問題情境以圓柱體為背景。學生對圓柱體并不陌生,在小學時,學生已較為系統地學習了圓柱體知識。要想正確解答該題,學生就要具備良好的空間想象能力,能夠準確把握A、B兩點之間的關系。課上,教師可先使用多媒體技術為學生創設不同的纏繞情境,使學生清晰地看到只有當A、B兩點在豎直方向上處在同一條直線上時其長度最短;然后將圓柱體展開,學生可清晰地看到直線AB、圓柱底面周長、圓柱的高構成直角三角形;最后根據已知條件可求出圓柱底面周長為6cm,其高為4cm,進而使用勾股定理可求出AB的長為

中考數學試卷中時常出現一些幾何習題,需要學生將立體圖形轉化為平面圖形進行求解。因此,教師在教學中應多組織學生進行訓練,使其掌握相關的轉化技巧,明確轉化前后參數之間的關系,實現正確解答。

結 語

初中數學習題中不乏一些難題,需要學生具備靈活的頭腦,巧妙運用轉化思想以順利求解。為提高學生運用轉化思想解題的能力,教師應將轉化思想納入教學重點,為學生講解不同的轉化類型,并結合具體習題,講解轉化思想在不同題型中的應用,在加深學生印象的同時,更好地指引學生解答數學難題。

猜你喜歡
解題思想數學
用“同樣多”解題
設而不求巧解題
思想之光照耀奮進之路
華人時刊(2022年7期)2022-06-05 07:33:26
思想與“劍”
當代陜西(2021年13期)2021-08-06 09:24:34
用“同樣多”解題
艱苦奮斗、勤儉節約的思想永遠不能丟
人大建設(2019年4期)2019-07-13 05:43:08
“思想是什么”
當代陜西(2019年12期)2019-07-12 09:11:50
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
解題勿忘我
主站蜘蛛池模板: 久久综合色视频| 日韩欧美国产综合| 全部无卡免费的毛片在线看| 亚洲天堂成人| 亚洲天堂网站在线| 日韩中文字幕免费在线观看| 丰满人妻一区二区三区视频| aaa国产一级毛片| 手机精品视频在线观看免费| 一级毛片免费播放视频| 老司机精品99在线播放| 亚洲精品无码成人片在线观看| 97在线观看视频免费| 久久综合丝袜长腿丝袜| 黄色网在线| 日日噜噜夜夜狠狠视频| 亚洲日韩久久综合中文字幕| 久久人人爽人人爽人人片aV东京热| 永久免费AⅤ无码网站在线观看| 青草精品视频| 久久精品国产亚洲麻豆| 一区二区三区四区日韩| 欧美激情福利| 国产极品美女在线| 伊人成色综合网| 亚洲无码在线午夜电影| 午夜国产精品视频| 国产精品不卡永久免费| 亚洲精品欧美日韩在线| 亚洲欧美h| 久久成人免费| 播五月综合| 国产在线自揄拍揄视频网站| 精品国产成人三级在线观看| 精品视频在线观看你懂的一区| 久久久久青草大香线综合精品| 国产99在线观看| 午夜国产在线观看| 色哟哟精品无码网站在线播放视频| 亚洲欧洲日产国产无码AV| 91麻豆国产在线| 国产成年无码AⅤ片在线| 国产成人高清精品免费5388| 九九久久精品国产av片囯产区| 一级毛片免费观看久| 日韩 欧美 小说 综合网 另类 | 在线不卡免费视频| 手机在线国产精品| 亚洲国产日韩一区| 国产第二十一页| 女人18毛片一级毛片在线| 她的性爱视频| 欧亚日韩Av| 欧美激情伊人| 国产亚洲精| 久久黄色毛片| 91国内在线观看| 国产成人久视频免费| 大陆精大陆国产国语精品1024| 精品黑人一区二区三区| 白浆视频在线观看| 99国产精品免费观看视频| 国产办公室秘书无码精品| 女人天堂av免费| 九色在线观看视频| 播五月综合| 久青草免费视频| 亚洲欧美在线精品一区二区| 五月激情综合网| 国产乱子精品一区二区在线观看| 免费Aⅴ片在线观看蜜芽Tⅴ| 国产日韩AV高潮在线| 午夜激情婷婷| 日韩高清中文字幕| 国产成人免费观看在线视频| 好吊色妇女免费视频免费| 精品国产网| 欧美a在线看| 亚洲av无码久久无遮挡| 日本成人一区| 白丝美女办公室高潮喷水视频| 日本在线亚洲|