999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

后GWAS時代結直腸癌致病SNP功能機制的研究進展

2021-03-19 14:17:58李以格張丹丹
遺傳 2021年3期
關鍵詞:機制功能研究

李以格,張丹丹

綜 述

后GWAS時代結直腸癌致病SNP功能機制的研究進展

李以格1,2,3,張丹丹1,2,3

1. 浙江大學醫學院病理學與病理生理學系,杭州 310058 2. 浙江大學醫學院附屬第二醫院腫瘤內科,杭州 310058 3. 浙江省疾病蛋白質組學重點實驗室,杭州 310058

結直腸癌(colorectal cancer, CRC)是受遺傳與環境因素共同影響的復雜疾病,其中遺傳因素發揮重要作用。至今,全基因組關聯研究(genome-wide association studies, GWAS)已經發現了大量與結直腸癌風險相關的遺傳變異。隨之而來的后GWAS時代,越來越多的研究側重于利用多組學數據和功能實驗對潛在的致病位點進行解析。分析表明絕大多數風險單核苷酸多態性(single nucleotide polymorphism, SNP)位于非編碼區,可能通過影響轉錄因子結合、表觀遺傳修飾、染色質可及性、基因組高級結構等,調控靶基因表達。本文對后GWAS時代結直腸癌致病位點的機制研究進行綜述,闡述了后GWAS對于理解結直腸癌分子機制的重要意義,并探討了結直腸癌GWAS的應用和前景,為實現GWAS成果轉化提供參考。

結直腸癌;后全基因組關聯研究;單核苷酸多態性;致病變異

結直腸癌(colorectal cancer, CRC)是常見的惡性腫瘤之一,嚴重威脅人類健康。據統計,2018年全球CRC新發病例超過180萬,死亡病例約86萬;位居發病瘤譜第3位,死亡瘤譜第2位[1]。在我國,2015年CRC新發病例估計有38.76萬例,死亡病例18.71萬例;位列發病瘤譜第4位,死亡瘤譜第5位[2,3]。吸煙、缺乏鍛煉、不健康的飲食習慣等環境因素均會增加CRC患病風險[3];此外,遺傳因素也影響著CRC的發生,大型雙生子研究表明CRC的遺傳力約占35%[4]。可見,CRC受遺傳與環境因素共同作用。隨著人類基因組計劃等大型項目的開展以及測序技術的進步,利用全基因組關聯研究(genome-wide association studies, GWAS)發現了大量結直腸癌易感位點,為了解和防治結直腸癌提供信息。

GWAS被認為是探索常見遺傳變異主要是單核苷酸多態性(single nucleotide polymorphism, SNP)與復雜疾病相關性的“萬能鑰匙”[5],廣泛應用于癌癥、糖尿病和精神分裂癥等疾病[6,7]。自2007年GWAS研究發現8q24.2, 18q21.1區域上的多態位點與結直腸癌風險顯著相關[8~10]后,越來越多的位點被鑒定,然而由于連鎖不平衡的存在以及基因與環境之間復雜的相互作用,GWAS識別的標簽SNP不一定是真正的致病變異,因此迫切需要對GWAS結果進行深入解讀。早前,Freedman等[11]和Edwards等[12]提出后GWAS(post-GWAS)研究策略,旨在篩選功能位點并闡明其潛在的分子機制(圖1)。至今已有相當數量的研究對結直腸癌風險SNP進行功能解析。為了更好地理解功能SNP在結直腸癌發生發展過程中的作用,本文總結了致病位點的功能機制,并期望促進GWAS成果的臨床轉化,為疾病的預防、診斷尋找可靠的生物標志物和高效的治療方法。

1 結直腸癌風險位點

截至到2020年11月,GWAS Catalog (http://www. genome.gov/gwastudies/)數據庫收錄了70多篇結直腸癌GWAS研究,共鑒定到821個相關位點,其中584個為非重復位點,241個SNP與結直腸癌風險顯著相關(<5×10–8),絕大部分位于內含子、基因間等非編碼區(表1)。從人群上看,影響東亞人群患病風險的SNP約有38個,與歐洲人群相關的SNP超過100個[14]。組學數據的累積、樣本數量的增加和分析方法的改善,促進了新的風險位點不斷被發現,這些位點包括位于已知風險位點上的新變異(rs6584283, 10q24.2[15]),甚至是一些稀有、低頻變異(rs145364999, 頻率為0.3%[16])。然而,這些變異的風險預測效應較弱(OR<1.5),但大部分SNP所在或鄰近基因參與TGF-β/BMP (如、、)、Wnt (如、)等信號通路以及維持端粒生物功能(如、),暗示這些變異的功能效應賦予疾病易感性[17,18]。因此,有必要對風險變異進行進一步的功能分析。

圖1 后GWAS研究策略

GWAS-SNP功能研究的一般策略是:(1)對結直腸癌相關位點進行基因型填補,獲得連鎖不平衡區域內的所有位點;(2)整合轉錄組、表觀遺傳等多組學數據對相關位點進行注釋,篩選潛在功能位點并對候選位點做進一步的功能注釋。如ENCODE、Roadmap等數據庫提供了甲基化、組蛋白修飾、染色質開放程度等信息;表達數量性狀基因座(expression quantitative trait loci, eQTL)數據有助于識別SNP可能影響的靶基因;Cistrome、JASPAR等數據庫可用于預測SNP是否影響轉錄因子結合等;(3)利用體內外實驗闡明風險位點的致病機制。常見的實驗方法有:熒光素酶報告基因實驗、ChIP-seq、染色體構象捕獲技術、基因敲除等。參考文獻[5]繪制。

2 結直腸癌后GWAS研究

2.1 功能注釋

2.1.1 編碼區SNP

位于編碼區的SNP可分為同義和非同義突變,同義突變雖然不影響蛋白質的氨基酸序列,但可能通過影響轉錄后修飾、翻譯速率等過程,改變蛋白的表達;而非同義SNP (non-synonymous SNP, nsSNP)會引起氨基酸的替換,造成蛋白結構、理化性質(穩定性、溶解性等)和功能發生改變。那些對蛋白結構和功能影響較大的非同義突變往往會在自然選擇中被淘汰,推測剩下的非同義突變功能效應可能較小,這給nsSNP的研究帶來一定的挑戰。目前,已有大量的生物軟件(如MUpro、INPS-MD、ModPred等)可用于預測nsSNP對蛋白結構和功能的影響,相較而言,nsSNP的功能機制相對簡單,因此相關的研究也較多[19~22]。結合全外顯子分析發現多個與結直腸癌發展相關的編碼區SNP,如位于重要結構域上的錯義突變rs3184504 (p.Trp263Arg)可能改變該蛋白對細胞分裂的調節功能;還有些編碼變異可能影響可變剪切(rs16888728,)[23]。

表1 GWAS鑒定的SNP的類型

2.1.2 非編碼區SNP

目前GWAS發現的結直腸癌風險相關位點主要位于非編碼區,這些位點可能參與基因轉錄、轉錄后加工、翻譯和翻譯后修飾等過程調控基因表達。在研究非編碼區SNP時,首先需要明確這類SNP的靶基因,常用的方法是利用表達數量性狀基因座(expression quantitative trait loci, eQTL)檢測SNP與基因表達的關系,基于此策略,已發現大量非編碼SNP可能影響的靶基因,包括、等以及一些與結直腸癌關系尚不明確的基因(如、)。非編碼SNP可以通過近距離順式或遠距離反式作用調控靶基因的轉錄,研究發現這類風險SNP所在區域的組蛋白修飾特別豐富,尤其是與啟動子、增強子活性相關的修飾(H3K4me3、H3K4me1、H3K27ac);并預測大部分SNP會破壞特定轉錄因子的結合基序,如rs6983267可能會改變與MYC、CTCF、TCF7L2等轉錄因子的結合[18]。有些非編碼SNP可能影響增強子活性,通過遠距離增強子與啟動子相互作用改變靶基因的表達[14]。此外,基因組的3D結構在基因表達調控等過程中發揮重要作用[24,25],整合Hi-C等數據發現,一些非編碼SNP所在區域與靶基因啟動子區存在顯著的染色質環相互作用[14,18,26],因此在對非編碼SNP進行功能解析時,常常需要考慮染色質相互作用等。

非編碼SNP功能多樣,可參與到基因表達調控的各個進程中,可能位于不同的調控區,如miRNA種子序列結合位點區、可變剪切位點區等,還可以出現在非編碼RNA上,包括長鏈非編碼RNA和miRNA等。功能注釋發現位于非翻譯區的rs2279398可能改變與miRNA的結合效率[27];目前也識別到大量非編碼RNA上的SNP,如rs2632159 (-)、rs6505162 ()等[28~31];位于的 rs1052918可能會引起Wnt信號通路的持續激活,導致細胞增殖失控和腫瘤發生[32]。可見,非編碼SNP功能機制十分復雜,有待系統、深入的研究。

2.2 功能SNP機制的實驗證據

2.2.1 編碼區SNP的潛在功能機制

編碼區SNP影響患病風險的機制離不開其所在基因編碼蛋白的功能。由于這類SNP發生的頻率相對較低,研究者往往聚焦在特定信號通路/基因或某種感興趣的修飾方式,如6-甲基腺嘌呤(6-Methy-ladenosine, m6A)修飾,進行全外顯子關聯分析以發現效應較大的編碼SNP。對參與TGFβ信號通路的12個基因進行外顯子測序和關聯性分析,篩選到上的低頻錯義變異rs3764482與中國漢族人群的結直腸癌風險顯著相關,SMAD7能夠抑制R-SMAD的磷酸化并在該通路中發揮負調控作用,鑒于此功能而設計的體外實驗表明,該SNP通過影響R-SMAD磷酸化,改變TGFβ信號活性[33]。類似地,rs3750050 (, p.Thr573Ala)、rs149418249 (, p.Pro507Leu)通過破壞蛋白功能、蛋白與蛋白的相互作用,分別引起Ras/MEK/ERK通路和端粒功能異常,導致結直腸患病風險升高[34,35]。

編碼區SNP還可能影響基因或蛋白的修飾。如m6A修飾主要發生在RNA上,參與mRNA穩定性的維持、mRNA前體剪切、翻譯調控等過程,是近些年的研究熱點。通過分析m6A相關SNP與結直腸癌風險的關系,發現在m6A編輯器的參與下,發生在外顯子區的rs8100241[A]等位基因能夠增加的m6A修飾水平和轉錄效率,促進該潛在抑癌蛋白的表達[36]。

值得注意的是,編碼區SNP可能與其他SNP存在相互作用[23,37],發揮更強的功能效應。如:位于轉錄因子外顯子區的rs138649767[A]等位基因,能激活含有rs6983267[G]的增強子,促進的表達[38];發生在外顯子和內含子上的SNP可能存在調控與被調控的關系,也可能共同影響SMAD7的功能和TGFβ信號通路[33]。因此,在研究編碼區SNP時,可以考慮SNP之間的相互作用,以更好的解析其功能機制。

2.2.2 非編碼區SNP調控基因表達

結直腸癌風險SNP主要位于非編碼區[39],根據所處位置發揮不同的機制,其所在區域可以是近端(啟動子、增強子或超級增強子)或遠端(基因間或基因內)應答元件。非編碼SNP往往通過改變轉錄因子結合位點(transcription factor-binding site, TFBS)、表觀遺傳修飾和/或染色質結構,影響基因轉錄水平(表2,圖2)。SNP造成的序列變化可能會產生新的TFBS或破壞已存在的TFBS,影響與轉錄因子(如SP1, NF1, GATA3; MYC, NFATC2, YY1等[40~44])的結合,調控靶基因的轉錄,參與細胞增殖、凋亡、遷移侵襲等過程。

(1)影響啟動子活性。啟動子區上的SNP一般通過影響與轉錄因子的結合,發揮調控作用。如:rs13278062和rs2243828分別位于和啟動子區,體內體外實驗表明,這兩個SNP的[T]等位基因在結直腸癌發展中有著不同的作用,前者抑制克隆形成,后者促進細胞增殖,但它們的分子機制相似,都是通過增加與轉錄因子(Sp1/NF1、AP-2α)的結合親和力,使DR4和MPO表達增加[40,47]。

(2)影響增強子活性。內含子區的SNP常位于增強子元件,也會改變與轉錄因子的結合,主要發揮遠距離調控作用。發生在內含子區的rs7198799能夠靶向轉錄因子NFATC2,遠距離增強(距離致病位點超過200 kb)的表達,通過NFATC2- ZFP90-BMP4通路促進癌癥發生[43];類似地,rs174575可以在轉錄因子E2F1的參與下,作為和位點特異的遠距離增強子[50],有趣的是后者又能夠促進FADS2的表達,形成環路,影響結直腸癌發生[50]。

單個SNP的效應可能較小,但是多個致病SNP對TFBS產生的累積效應可能對靶基因表達的影響很大。例如,rs61926301和rs7959129是分別發生在啟動子區和內含子區上的SNP,這兩個SNP的[T]風險等位基因能夠分別增加與轉錄因子SP1和GATA3的結合能力,通過啟動子與增強子相互作用的方式促進潛在癌基因的轉錄,影響細胞增殖、抑制細胞凋亡;基因表達的調控與染色質的高級結構密切相關,分析發現這兩個SNP所在的區域富集活躍的組蛋白修飾峰和開放的染色質可及性[41]。

表2 后GWAS實驗性研究闡明的非編碼SNP作用機制

ChIP (chromatin immunoprecipitation):染色質免疫沉淀;3C (chromosome conformation capture):染色體構象捕獲;4C (circular chromosome conformation capture):環形染色體構象捕獲;UTR (untranslated region):非翻譯區。

(3)其他。miRNA能夠靶向基因3?非翻譯區(untranslated region, UTR),沉默基因表達。如,發生在3?UTR區的rs6504593突變位點減弱了與該區域的結合,使表達上調,引起結直腸癌發生[56]。發揮類似機制的還有位于、、等基因3?UTR區的SNP[38,53,54],此外,長鏈非編碼RNA上的一些SNP也能通過改變與miRNA的結合發揮作用,如rs1317082、rs664589、rs12982687[58~60]等。若SNP發生在miRNA上,同樣會影響其與靶基因的結合親和力[61]。

圖2 致病SNP潛在功能機制總結

A:啟動子區SNP的潛在功能機制。通過影響與轉錄因子的結合,調控靶基因的表達,影響結直腸癌發生;B:內含子區SNP的潛在功能機制。常在轉錄因子的參與下,通過遠距離啟動子增強子相互作用,影響靶基因表達;C:3?UTR區SNP的潛在功能機制。往往通過改變與miRNA的結合,影響靶基因轉錄后水平;D:外顯子區SNP的潛在功能機制。可能通過改變氨基酸序列,影響蛋白與蛋白之間的相互作用。

3 結直腸癌GWAS的應用

GWAS和后GWAS研究不僅可以幫助人們更好地在遺傳水平上理解結直腸癌的發病機制,也有助于篩查預防、風險分層和臨床治療等。

3.1 風險預測

通過組合已發現的結直腸癌風險位點計算遺傳風險評分(genetic risk score, GRS)是GWAS-SNP重要的公共衛生價值之一[62],該方法對每個SNP的微弱效應進行疊加,大大提高了對疾病風險的預測能力,有潛力成為藥物治療、行為矯正的基礎。基于37個已知CRC風險變異的GRS表明,與人群中位數相比,得分排在前1%的個體患CRC的風險增加了2.9倍[63];在中國南方漢族人群中,GRS結合傳統風險因素構建的風險模型預測能力優于傳統風險因素模型[64]。隨著風險位點的數量不斷增加,基于此建立的GRS風險模型的預測效能也將不斷提高,有望實現腫瘤精準預防。

3.2 預后分析

rs5030740、rs9939049、rs11196172等結直腸癌風險SNP與患者的生存期顯著相關,有可能發展成為可靠的預后標志物[55,65~67]。其中,rs5030740能夠調控的表達,而低表達增加了結直腸癌細胞對奧沙利鉑的敏感性,抑制了奧沙利鉑治療后的細胞增殖[55];另外,在接受貝伐單抗一線化療的結直腸癌患者中開展的試驗表明,攜帶rs699947-AA()和rs1799969-GA ()基因型的患者總生存期比其他患者更長[68]。上述研究表明風險SNP可用于分析預后、指導用藥,實現個體化治療。

4 結語與展望

盡管GWAS研究已經發現了大量結直腸癌風險相關位點,但大部分SNP的功能效應較小,更多高效力的位點有待發掘。相信隨著測序技術的進步、人群研究規模的擴大、分析水平的提高,新的結直腸癌易感位點(包括一些低頻、稀有變異)將會不斷被發現[15,69~71]。目前,對結直腸癌潛在功能變異的篩選稍顯不足,對其進行機制探索的實驗更是屈指可數。各種組學、基因組結構等數據的涌現,以及孟德爾隨機化的應用,為篩選潛在致病變異提供了可靠信息[72,73];實驗技術的發展為闡明致病變異的生物學功能提供更可靠的證據,如:CRISPR/Cas9使單堿基編輯成為可能,染色體構象捕獲及其衍生技術可探究SNP的遠距離調控機制等等,相信未來將會有更多致病變異的分子機制被闡明。此外,已有研究表明幾個不同區域的SNP同時突變時,結直腸癌的患病風險大大增加[38,49];SNP還與多種因素(如阿司匹林的服用、吸煙等)存在交互作用,影響結直腸癌風險[74,75]。可見癌癥作為復雜疾病,遺傳與遺傳、遺傳與環境之間的相互作用不可忽視[76]。因此在研究風險SNP的功能時,需要更多的關注SNP與SNP以及SNP與環境之間的作用。相信隨著后GWAS研究的開展和深入,將會幫助我們更好地認識變異與結直腸癌發生發展之間的關系,推動個體化預防和精準治療的發展。

[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries., 2018, 68(6): 394–424.

[2] Wu CX, Gu K, Gong YM, Zheng RS, Wang SM, Chen R, Zhang SW, Shi Y, Wei WQ, Fu C, He J. Analysis of incidence and mortality of colorectal cancer in China, 2015,, 2020, 30(4): 241–245.吳春曉, 顧凱, 龔楊明, 鄭榮壽, 王少明, 陳茹, 張思維, 施燕, 魏文強, 付晨, 赫捷. 2015年中國結直腸癌發病和死亡情況分析. 中國癌癥雜志, 2020, 30(4): 241–245.

[3] Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer., 2019, 394(10207): 1467–1480.

[4] Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland., 2000, 343(2): 78–85.

[5] Farashi S, Kryza T, Clements J, Batra J. Post-GWAS in prostate cancer: from genetic association to biological contribution., 2019, 19(1): 46–59.

[6] Liang WQ, Hou Y, Zhao CY. Schizophrenia-associated single nucleotide polymorphisms affecting microRNA function., 2019, 41(8): 677–685.梁文權, 侯豫, 趙存友. 精神分裂癥相關單核苷酸多態性調控microRNA功能研究進展. 遺傳, 2019, 41(8): 677–685.

[7] Cao L, Li ZQ, Shi YY, Liu Y. Telomere length and type 2 diabetes: Mendelian randomization study and polygenic risk score analysis., 2020, 42(9): 882–888.曹嵐, 李志強, 師詠勇, 劉赟. 端粒長度與2型糖尿病:孟德爾隨機化研究與多基因風險評分分析. 遺傳, 2020, 42(9): 882–888.

[8] Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, Penegar S, Chandler I, Gorman M, Wood W, Barclay E, Lubbe S, Martin L, Sellick G, Jaeger E, Hubner R, Wild R, Rowan A, Fielding S, Howarth K, Consortium C, Silver A, Atkin W, Muir K, Logan R, Kerr D, Johnstone E, Sieber O, Gray R, Thomas H, Peto J, Cazier JB, Houlston R. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21., 2007, 39(8): 984–988.

[9] Zanke BW, Greenwood CMT, Rangrej J, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy E, Ferretti V, Laflamme P, Sundararajan S, Roumy S, Olivier JF, Robidoux F, Sladek R, Montpetit A, Campbell P, Bezieau S, O'Shea AM, Zogopoulos G, Cotterchio M, Newcomb P, McLaughlin J, Younghusband B, Green R, Green J, Porteous MEM, Campbell H, Blanche H, Sahbatou M, Tubacher E, Bonaiti-Pellie C, Buecher B, Riboli E, Kury S, Chanock SJ, Potter J, Thomas G, Gallinger S, Hudson TJ, Dunlop MG. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24., 2007, 39(8): 989–994.

[10] Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S, Jaeger E, Vijayakrishnan J, Kemp Z, Gorman M, Chandler I, Papaemmanuil E, Penegar S, Wood W, Sellick G, Qureshi M, Teixeira A, Domingo E, Barclay E, Martin L, Sieber O, CORGI Consortium, Kerr D, Gray R, Peto J, Cazier JB, Tomlinson I, Houlston RS. A genome-wide association study shows that common alleles ofinfluence colorectal cancer risk., 2007, 39(11): 1315–1317.

[11] Freedman ML, Monteiro ANA, Gayther SA, Coetzee GA, Risch A, Plass C, Casey G, De Biasi M, Carlson C, Duggan D, James M, Liu PY, Tichelaar JW, Vikis HG, You M, Mills IG. Principles for the post-GWAS functional characterization of cancer risk loci., 2011, 43(6): 513–518.

[12] Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function., 2013, 93(5): 779–797.

[13] Liu JY, Zhang LN, Zheng H. Research strategy of the case-control post-genome-wide association study., 2015, (7): 810–812,813.劉佳宇, 張麗娜, 鄭紅. 后全基因組病例對照研究時代的功能研究策略. 天津醫藥, 2015, (7): 810–812,813.

[14] Lu YC, Kweon SS, Cai QY, Tanikawa C, Shu XO, Jia WH, Xiang YB, Huyghe JR, Harrison TA, Kim J, Shin A, Kim DH, Matsuo K, Jee SH, Guo XY, Wen WQ, Shi JJ, Li BS, Wang N, Shin MH, Li HL, Ren ZF, Oh JH, Oze I, Ahn YO, Jung KJ, Gao J, Gao YT, Pan ZZ, Kamatani Y, Chan AT, Gsur A, Hampe J, Le Marchand L, Li L, Lindblom A, Moreno V, Newcomb PA, Offit K, Pharoah PDP, van Duijnhoven FJB, Van Guelpen B, Vodicka P, Weinstein SJ, Wolk A, Wu AH, Hsu L, Zeng YX, Long JR, Peters U, Matsuda K, Zheng W. Identification of novel loci and new risk variant in known loci for colorectal cancer risk in east Asians., 2020, 29(2): 477–486.

[15] Lu YC, Kweon SS, Tanikawa C, Jia WH, Xiang YB, Cai QY, Zeng CJ, Schmit SL, Shin A, Matsuo K, Jee SH, Kim DH, Kim J, Wen WQ, Shi JJ, Guo XY, Li BS, Wang N, Zhang B, Li XX, Shin MH, Li HL, Ren ZF, Oh JH, Oze I, Ahn YO, Jung KJ, Conti DV, Schumacher FR, Rennert G, Jenkins MA, Campbell PT, Hoffmeister M, Casey G, Gruber SB, Gao J, Gao YT, Pan ZZ, Kamatani Y, Zeng YX, Shu XO, Long JR, Matsuda K, Zheng W. Large-scale genome-wide association study of East Asians identifies loci associated with risk for colorectal cancer., 2019, 156(5): 1455–1466.

[16] Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, Conti DV, Qu CH, Jeon J, Edlund CK, Greenside P, Wainberg M, Schumacher FR, Smith JD, Levine DM, Nelson SC, Sinnott-Armstrong NA, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Bamia C, Banbury BL, Baron JA, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Chirlaque MD, Cho SH, Connolly CM, Cross AJ, Cuk K, Curtis KR, de la Chapelle A, Doheny KF, Duggan D, Easton DF, Elias SG, Elliott F, English DR, Feskens EJM, Figueiredo JC, Fischer R, FitzGerald LM, Forman D, Gala M, Gallinger S, Gauderman WJ, Giles GG, Gillanders E, Gong J, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hampel H, Harlid S, Hayes RB, Hofer P, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Hunter DJ, Iba?ez-Sanz G, Idos GE, Ingersoll R, Jackson RD, Jacobs EJ, Jenkins MA, Joshi AD, Joshu CE, Keku TO, Key TJ, Kim HR, Kobayashi E, Kolonel LN, Kooperberg C, Kühn T, Küry S, Kweon SS, Larsson SC, Laurie CA, Le Marchand L, Leal SM, Lee SC, Lejbkowicz F, Lemire M, Li CI, Li L, Lieb W, Lin Y, Lindblom A, Lindor NM, Ling H, Louie TL, M?nnist? S, Markowitz SD, Martín V, Masala G, McNeil CE, Melas M, Milne RL, Moreno L, Murphy N, Myte R, Naccarati A, Newcomb PA, Offit K, Ogino S, Onland-Moret NC, Pardini B, Parfrey PS, Pearlman R, Perduca V, Pharoah PDP, Pinchev M, Platz EA, Prentice RL, Pugh E, Raskin L, Rennert G, Rennert HS, Riboli E, Rodríguez-Barranco M, Romm J, Sakoda LC, Schafmayer C, Schoen RE, Seminara D, Shah M, Shelford T, Shin MH, Shulman K, Sieri S, Slattery ML, Southey MC, Stadler ZK, Stegmaier C, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Thomas SS, Toland AE, Trichopoulou A, Ulrich CM, Van Den Berg DJ, van Duijnhoven FJB, Van Guelpen B, van Kranen H, Vijai J, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Weigl K, Weinstein SJ, White E, Win AK, Wolf CR, Wolk A, Woods MO, Wu AH, Zaidi SH, Zanke BW, Zhang Q, Zheng W, Scacheri PC, Potter JD, Bassik MC, Kundaje A, Casey G, Moreno V, Abecasis GR, Nickerson DA, Gruber SB, Hsu L, Peters U. Discovery of common and rare genetic risk variants for colorectal cancer., 2019, 51(1): 76–87.

[17] Qu XF, Wang MY, Cai SJ, Wei QY. Research progress and prospect of genome-wide association analysis of colorectal cancer., 2019, 11(1): 5–12.屈曉飛, 王夢筠, 蔡三軍, 魏慶義. 結直腸癌全基因組關聯分析研究進展及展望. 中國癌癥防治雜志, 2019, 11(1): 5–12.

[18] Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, Fernandez-Tajes J, Farrington S, Svinti V, Palles C, Orlando G, Sud A, Holroyd A, Penegar S, Theodoratou E, Vaughan-Shaw P, Campbell H, Zgaga L, Hayward C, Campbell A, Harris S, Deary IJ, Starr J, Gatcombe L, Pinna M, Briggs S, Martin L, Jaeger E, Sharma-Oates A, East J, Leedham S, Arnold R, Johnstone E, Wang HT, Kerr D, Kerr R, Maughan T, Kaplan R, Al-Tassan N, Palin K, H?nninen UA, Cajuso T, Tanskanen T, Kondelin J, Kaasinen E, Sarin AP, Eriksson JG, Rissanen H, Knekt P, Pukkala E, Jousilahti P, Salomaa V, Ripatti S, Palotie A, Renkonen-Sinisalo L, Lepist? A, B?hm J, Mecklin JP, Buchanan DD, Win AK, Hopper J, Jenkins ME, Lindor NM, Newcomb PA, Gallinger S, Duggan D, Casey G, Hoffmann P, N?then MM, J?ckel KH, Easton DF, Pharoah PDP, Peto J, Canzian F, Swerdlow A, Eeles RA, Kote-Jarai Z, Muir K, Pashayan N, consortium P, Harkin A, Allan K, McQueen J, Paul J, Iveson T, Saunders M, Butterbach K, Chang-Claude J, Hoffmeister M, Brenner H, Kirac I, Matosevic P, Hofer P, Brezina S, Gsur A, Cheadle JP, Aaltonen LA, Tomlinson I, Houlston RS, Dunlop MG. Association analyses identify 31 new risk loci for colorectal cancer susceptibility., 2019, 10(1): 2154.

[19] George Priya Doss C, Rajasekaran R, Arjun P, Sethumadhavan R. Prioritization of candidate SNPs in colon cancer using bioinformatics tools: an alternative approach for a cancer biologist., 2010, 2(4): 320–346.

[20] Steck SE, Butler LM, Keku T, Antwi S, Galanko J, Sandler RS, Hu JJ. Nucleotide excision repair gene polymorphisms, meat intake and colon cancer risk., 2014, 762: 24–31.

[21] Theodoratou E, Farrington SM, Timofeeva M, Din FV, Svinti V, Tenesa A, Liu T, Lindblom A, Gallinger S, Campbell H, Dunlop MG. Genome-wide scan of the effect of common nsSNPs on colorectal cancer survival outcome., 2018, 119(8): 988–993.

[22] Zhang MZ, Huang C, Wang ZY, Lv HB, Li XM. In silico analysis of non-synonymous single nucleotide poly-morphisms (nsSNPs) in the humangene associated with congenital cataract., 2020, 21(1): 12.

[23] Timofeeva MN, Kinnersley B, Farrington SM, Whiffin N, Palles C, Svinti V, Lloyd A, Gorman M, Ooi LY, Hosking F, Barclay E, Zgaga L, Dobbins S, Martin L, Theodoratou E, Broderick P, Tenesa A, Smillie C, Grimes G, Hayward C, Campbell A, Porteous D, Deary IJ, Harris SE, Northwood EL, Barrett JH, Smith G, Wolf R, Forman D, Morreau H, Ruano D, Tops C, Wijnen J, Schrumpf M, Boot A, Vasen HFA, Hes FJ, van Wezel T, Franke A, Lieb W, Schafmayer C, Hampe J, Buch S, Propping P, Hemminki K, F?rsti A, Westers H, Hofstra R, Pinheiro M, Pinto C, Teixeira M, Ruiz-Ponte C, Fernández-Rozadilla C, Carracedo A, Castells A, Castellví-Bel S, Campbell H, Bishop DT, Tomlinson IPM, Dunlop MG, Houlston RS. Recurrent coding sequence variation explains only a small fraction of the genetic architecture of colorectal cancer., 2015, 5: 16286.

[24] Huang QT, Li Q, Zhang YB. Linking chromatin conformation to gene function., 2020, 42(1): 1–17.黃其通, 李清, 張玉波. 染色質構象與基因功能. 遺傳, 2020, 42(1): 1–17.

[25] Gorkin DU, Qiu YJ, Hu M, Fletez-Brant K, Liu T, Schmitt AD, Noor A, Chiou J, Gaulton KJ, Sebat J, Li Y, Hansen KD, Ren B. Common DNA sequence variation influences 3-dimensional conformation of the human genome., 2019, 20(1): 255.

[26] Lv HQ, Hao LL, Liu EH, Wu ZF, Han JQ, Liu Y. Current status and future perspectives in bioinformatical analysis of Hi-C data., 2020, 42(1): 87–99.呂紅強, 郝樂樂, 劉二虎, 吳志芳, 韓九強, 劉源. 基于生物信息學的Hi-C研究現狀與發展趨勢. 遺傳, 2020, 42(1): 87–99.

[27] Kang BW, Jeon HS, Chae YS, Lee SJ, Park JS, Choi GS, Kim JG. Impact of genetic variation in microRNA-binding site on susceptibility to colorectal cancer., 2016, 36(7): 3353–3361.

[28] Yang ML, Huang Z, Wu LN, Wu R, Ding HX, Wang BG.rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility., 2019, 39(7): BSR20190708.

[29] Jia WR, Zeng LY, Luo SQ, Bai F, Zhong R, Wu L, Huang GL, Pu XX. Association ofrs6505162 C>A polymorphism with susceptibility and metastasis of colorectal carcinoma., 2018, 97(6): e9846.

[30] Chen YT, Du ML, Chen W, Zhu LJ, Wu CY, Zhang ZD, Wang ML, Chu HY, Gu D, Chen JF. Polymorphism rs2682818 inis associated with colorectal cancer susceptibility in a Han Chinese population., 2018, 7(4): 1194–1200.

[31] He HJ, Lei L, Chen EF, Xu XN, Wang LL, Pan JQ, Yang FF, Wang M, Dong J, Yang J. The screening of the functional microRNA binding site SNPs in sporadic colorectal cancer genes., 2017, 18(6): 407–413.

[32] Qiu QC, Liu J, Shao JF, Lou XY, Chen C, Lin BY. Target-resequencing to identify microRNA-associated SNP and predict the effect of SNP on microRNA function in colorectal cancer patients., 2015, 37(10): 759–763.

[33] Li JY, Zou L, Zhou Y, Li L, Zhu Y, Yang Y, Gong YJ, Lou J, Ke JT, Zhang Y, Tian JB, Zou DY, Peng XT, Chang J, Gong J, Zhong R, Zhou XB, Miao XP. A low-frequency variant inmodulates TGF-β signaling and confers risk for colorectal cancer in Chinese population., 2017, 56(7): 1798–807.

[34] Shen N, Li L, Xu W, Tian JB, Yang Y, Zhu Y, Gong YJ, Ke JT, Gong J, Chang J, Zhong R, Miao XP. A missense variant inassociated with the risk of colorectal cancer by modifying Ras/MEK/ERK signaling., 2019, 59: 109–114.

[35] Li JY, Chang J, Tian JB, Ke JT, Zhu Y, Yang Y, Gong YJ, Zou DY, Peng XT, Yang N, Mei SF, Wang XY, Cheng LM, Hu WG, Gong J, Zhong R, Miao XP. A rare variant P507L ininterrupts TPP1-TIN2 interaction, influences telomere length, and confers colorectal cancer risk in Chinese population., 2018, 27(9): 1029–1035.

[36] Tian JB, Ying PT, Ke JT, Zhu Y, Yang Y, Gong YJ, Zou DY, Peng XT, Yang N, Wang XY, Mei SF, Zhang YX, Wang CY, Zhong R, Chang J, Miao XP.N6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability., 2020, 146(12): 3281–3293.

[37] Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives., 2017, 17(11): 692–704.

[38] Chang J, Tian JB, Yang Y, Zhong R, Li JY, Zhai K, Ke JT, Lou J, Chen W, Zhu BB, Shen N, Zhang Y, Gong YJ, Zhu Y, Zou DY, Peng XT, Huang K, Miao XP. A rare missense variant inassociates with colorectal cancer risk by interacting with a GWAS-identified regulatory variant in theenhancer., 2018, 78(17): 5164– 5172.

[39] Moreno V, Alonso MH, Closa A, Vallés X, Diez- Villanueva A, Valle L, Castellví-Bel S, Sanz-Pamplona R, Lopez-Doriga A, Cordero D, Solé X. Colon-specific eQTL analysis to inform on functional SNPs., 2018, 119(8): 971–977.

[40] Wu SS, Meng QT, Zhang CC, Sun H, Lu RZ, Gao N, Yang HB, Li XB, Aschner M, Chen R.mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus., 2018, 143(2): 289–297.

[41] Tian JB, Chang J, Gong J, Lou J, Fu MP, Li JY, Ke JT, Zhu Y, Gong YJ, Yang Y, Zou DY, Peng XT, Yang N, Mei SF, Wang XY, Zhong R, Cai KL, Miao XP. Systematic functional interrogation of genes in GWAS loci identifiedas a key driver in colorectal cancer modulated by a promoter-enhancer interaction., 2019, 105(1): 29–47.

[42] Gong J, Tian J, Lou J, Wang X, Ke J, Li J, Yang Y, Gong Y, Zhu Y, Zou D, Peng X, Yang N, Mei S, Zhong R, Chang J, Miao X. A polymorphic MYC response element ininfluences colorectal cancer risk, especially in interaction with an MYC-regulated SNP rs6983267., 2018, 29(3): 632–639.

[43] Yu CY, Han JX, Zhang JF, Jiang PL, Shen CQ, Guo FF, Tang JY, Yan TT, Tian XL, Zhu XQ, Ma D, Hu Y, Xie YH, Du W, Zhong M, Chen JX, Liu Q, Sun DF, Chen YX, Zou WP, Hong J, Chen HY, Fang JY. A 16q22.1 variant confers susceptibility to colorectal cancer as a distal regulator of., 2020, 39(6): 1347–1360.

[44] Wang YJ, Wu SS, Yang X, Li XB, Chen R. Association between polymorphism in the promoter region of lncRNAand the risk of colorectal cancer., 2019, 39(4): BSR20190091.

[45] Wang ML, Gu DY, Du ML, Xu Z, Zhang SZ, Zhu LJ, Lu JC, Zhang R, Xing JL, Miao XP, Chu HY, Hu ZB, Yang L, Tang CJ, Pan L, Du HN, Zhao J, Du J, Tong N, Sun J, Shen H, Xu J, Zhang Z, Chen J. Common genetic variation inis associated with colorectal cancer susceptibility., 2016, 7: 11478.

[46] Zou DY, Lou J, Ke JT, Mei SF, Li JY, Gong YJ, Yang Y, Zhu Y, Tian JB, Chang J, Zhong R, Gong J, Miao XP. Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulatingexpression., 2018, 93: 1–9.

[47] Meng QT, Wu SS, Wang YJ, Xu J, Sun H, Lu RZ, Gao N, Yang HB, Li XB, Tang BP, Aschner M, Chen R.promoter polymorphism rs2333227 enhances malignant phenotypes of colorectal cancer by altering the binding affinity of AP-2α., 2018, 78(10): 2760–2769.

[48] Ren AJ, Sun SW, Li SW, Chen T, Shu YQ, Du ML, Zhu LJ. Genetic variants incontribute to the susceptibility to colorectal cancer., 2019, 145(1): 154–163.

[49] Zou DY, Zhang HL, Ke JT, Li JY, Zhu Y, Gong YJ, Yang Y, Tian JB, Zhang Y, Peng XT, Cai KL, Zhong R, Chang J, Miao XP. Three functional variants were identified to affectexpression and significantly associated with risk of colorectal cancer., 2020, 94(1): 295– 303.

[50] Tian JB, Lou J, Cai YM, Rao ML, Lu ZQ, Zhu Y, Zou DY, Peng XT, Wang HX, Zhang M, Niu SY, Li Y, Zhong R, Chang J, Miao XP. Risk SNP-mediated enhancer-promoter interaction drives colorectal cancer through bothand., 2020, 80(9): 1804–1818.

[51] Statkiewicz M, Maryan N, Kulecka M, Kuklinska U, Ostrowski J, Mikula M. Functional analyses of a low-penetrance risk variant rs6702619/1p21.2 associating with colorectal cancer in Polish population., 2019, 66(3): 329–336.

[52] Ni HZ, Su BF, Pan LM, Li XY, Zhu XX, Chen XJ. Functional variants inare associated with colorectal cancer susceptibility in Chinese populations., 2015, 39(6): 972–977.

[53] Li JY, Liu H, Zou L, Ke JT, Zhang Y, Zhu Y, Yang Y, Gong YJ, Tian JB, Zou DY, Peng XT, Gong J, Zhong R, Huang K, Chang J, Miao XP. A functional variant inconfers risk for colorectal cancer by disrupting abinding site., 2017, 8(37): 61318–61326.

[54] Ke JT, Tian JB, Li JY, Gong YJ, Yang Y, Zhu Y, Zhang Y, Zhong R, Chang J, Gong J. Identification of a functional polymorphism affecting microRNA binding in the susceptibility locus 1q25.3 for colorectal cancer., 2017, 56(9): 2014–2021.

[55] Li SW, Xu KL, Gu DY, He L, Xie LS, Chen ZX, Fan ZM, Zhu LJ, Du ML, Chu HY, Zhang ZD, Wu Y, Ni M, Wang ML. Genetic variants inassociated with the response to oxaliplatin-based chemotherapy in colorectal cancer., 2019, 54(11): 939–949.

[56] Xie LS, Li SW, Jin J, He L, Xu KL, Zhu LJ, Du ML, Liu YQ, Chu HY, Zhang ZD, Wang ML, Shi DN, Gu DY, Ni M. Genetic variant inbinding sites is associated with colorectal cancer risk., 2019, 23(3): 2012–2019.

[57] Gu DY, Li SW, Du ML, Tang CJ, Chu HY, Tong N, Zhang ZD, Wang ML, Chen JF. A genetic variant located in the-binding site ofis associated with the colorectal cancer risk., 2019, 54(2): 141– 148.

[58] Shen CQ, Yan TT, Wang ZH, Su HC, Zhu XQ, Tian XL, Fang JY, Chen HY, Hong J. Variant of SNP rs1317082 at() creates a binding site forand diminishes the susceptibility to CRC., 2018, 9(12): 1177.

[59] Wu S, Sun H, Wang Y, Yang X, Meng Q, Yang H, Zhu H, Tang W, Li X, Aschner M, Chen R.rs664589 polymorphism inhibits binding to, contributing to colorectal cancer risk, growth, and metastasis., 2019, 79(20): 5432–41.

[60] Fu Y, Zhang YZ, Cui JY, Yang G, Peng SF, Mi WN, Yin XY, Yu Y, Jiang JW, Liu Q, Qin YY, Xu W. SNP rs12982687 affects binding capacity of lncRNAwith: involvement in smoking-triggered colorectal cancer progression., 2020, 18(1): 37.

[61] Jiang HQ, Ge FY, Hu BN, Wu LM, Yang HJ, Wang HY. rs35301225 polymorphism inpromotes development of human colon cancer by deregulation of 3'UTR inin Chinese population., 2017, 17: 39.

[62] Jin GF, Shen HB. Cancer risk prediction in post-genome- wide association study era., 2015, 36(10): 1045–1046.靳光付, 沈洪兵. 后全基因組關聯研究時代的腫瘤風險預測. 中華流行病學雜志, 2015, 36(10): 1045–1046.

[63] Frampton MJE, Law P, Litchfield K, Morris EJ, Kerr D, Turnbull C, Tomlinson IP, Houlston RS. Implications of polygenic risk for personalised colorectal cancer screening., 2016, 27(3): 429–434.

[64] Li JY, Chang J, Zhu Y, Yang Y, Gong YJ, Ke JT, Lou J, Zhong R, Gong J. Risk prediction of colorectal cancer with common genetic variants and conventional non— genetic factors in a Chinese Han population., 2015, 36(10): 1053–1057.李嬌元, 常江, 朱穎, 楊洋, 龔雅潔, 柯俊濤, 婁嬌, 鐘榮, 龔靜. 基于常見遺傳變異和傳統風險因素的中國南方漢族人群結直腸癌風險預測模型研究. 中華流行病學雜志, 2015, 36(10): 1053–1057.

[65] Summers MG, Maughan TS, Kaplan R, Law PJ, Houlston RS, Escott-Price V, Cheadle JP. Comprehensive analysis of colorectal cancer-risk loci and survival outcome: A prognostic role forvariants., 2020, 124: 56–63.

[66] Penney KL, Banbury BL, Bien S, Harrison TA, Hua XW, Phipps AI, Sun W, Song MY, Joshi AD, Alberts SR, Allegra CJ, Atkins J, Colangelo LH, George TJ, Goldberg RM, Lucas PC, Nair SG, Shi Q, Sinicrope FA, Wolmark N, Yothers G, Peters U, Newcomb PA, Chan AT. Genetic variant associated with survival of patients with stage II-III colon cancer., 2020, 18(12): 2717–2723.e3.

[67] Song N, Kim K, Shin A, Park JW, Chang HJ, Shi JJ, Cai QY, Kim DY, Zheng W, Oh JH. Colorectal cancer susceptibility loci and influence on survival., 2018, 57(12): 630–637.

[68] Papachristos A, Kemos P, Katsila T, Panoilia E, Patrinos GP, Kalofonos H, Sivolapenko GB.andgene polymorphisms as predictors of clinical outcome to first-line bevacizumab-based treatment in metastatic colorectal cancer., 2019, 20(22): 5791

[69] Wang HS, Haiman CA, Burnett T, Fortini BK, Kolonel LN, Henderson BE, Signorello LB, Blot WJ, Keku TO, Berndt SI, Newcomb PA, Pande M, Amos CI, West DW, Casey G, Sandler RS, Haile R, Stram DO, Le Marchand L. Fine- mapping of genome-wide association study-identified risk loci for colorectal cancer in African Americans., 2013, 22(24): 5048–5055.

[70] Schmit SL, Schumacher FR, Edlund CK, Conti DV, Ihenacho U, Wan P, Van Den Berg D, Casey G, Fortini BK, Lenz HJ, Tusié-Luna T, Aguilar-Salinas CA, Moreno- Macías H, Huerta-Chagoya A, Ordó?ez-Sánchez ML, Rodríguez-Guillén R, Cruz-Bautista I, Rodríguez-Torres M, Mu?óz-Hernández LL, Arellano-Campos O, Gómez D, Alvirde U, González-Villalpando C, González-Villalpando ME, Le Marchand L, Haiman CA, Figueiredo JC. Genome-wide association study of colorectal cancer in Hispanics., 2016, 37(6): 547–556.

[71] Wang HS, Schmit SL, Haiman CA, Keku TO, Kato I, Palmer JR, van den Berg D, Wilkens LR, Burnett T, Conti DV, Schumacher FR, Signorello LB, Blot WJ, Zanetti KA, Harris C, Pande M, Berndt SI, Newcomb PA, West DW, Haile R, Stram DO, Figueiredo JC, Hispanic Colorectal Cancer Study, Le Marchand L. Novel colon cancer susceptibility variants identified from a genome-wide association study in African Americans., 2017, 140(12): 2728–2733.

[72] Collins RL, Brand H, Karczewski KJ, Zhao XF, Alf?ldi J, Francioli LC, Khera AV, Lowther C, Gauthier LD, Wang H, Watts NA, Solomonson M, O'Donnell-Luria A, Baumann A, Munshi R, Walker M, Whelan CW, Huang YQ, Brookings T, Sharpe T, Stone MR, Valkanas E, Fu J, Tiao G, Laricchia KM, Ruano-Rubio V, Stevens C, Gupta N, Cusick C, Margolin L, Genome Aggregation Database Production Team, Genome Aggregation Database Consortium, Taylor KD, Lin HJ, Rich SS, Post WS, Chen YDI, Rotter JI, Nusbaum C, Philippakis A, Lander E, Gabriel S, Neale BM, Kathiresan S, Daly MJ, Banks E, MacArthur DG, Talkowski ME. A structural variation reference for medical and population genetics., 2020, 581(7809): 444–451.

[73] Zhou D, Jiang Y, Zhong X, Cox NJ, Liu CY, Gamazon ER. A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis., 2020, 52(11): 1239–1246.

[74] Song N, Lee J, Cho S, Kim J, Oh JH, Shin A. Evaluation of gene-environment interactions for colorectal cancer susceptibility loci using case-only and case-control designs., 2019, 19(1): 1231.

[75] Zhang K, Li SW, Gu DY, Xu KL, Zheng R, Xin JY, Meng YX, Ben S, Chu HY, Zhang ZD, Shu YQ, Du ML, Liu LX, Wang ML. Genetic variants ininteracting with smoking can enhance colorectal cancer risk., 2020, 94(1): 325–333.

[76] Jung SY, Papp JC, Sobel EM, Zhang ZF. Post Genome- wide gene-environment interaction study using random survival forest: insulin resistance, lifestyle factors, and colorectal cancer risk., 2019, 12(12): 877–890.

Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS

Yige Li1,2,3, Dandan Zhang1,2,3

Colorectal cancer (CRC) is caused by genetic and environmental factors, and the genetic component plays a significant role in CRC development. Currently, genome-wide association studies (GWAS) have identified a large number of genetic loci associated with CRC risk. In the post-GWAS era, more and more efforts focus on deciphering the biological mechanisms behind these potential causal variants by using multi-omics data and functional experiments. Many analyses have revealed that most risk single nucleotide polymorphisms (SNPs) are located in non-coding regions and these variants may regulate the expression of target genes by altering the transcription factor-binding motif, epigenetic modification, chromatin accessibility or 3D genome conformation. Results obtained from post-GWAS era have highlighted the possibility of moving from association to function. In this review, we summarize the current status of CRC post-GWAS studies and discusses the clinical application as well as future directions of CRC GWAS, in order to better gain insight into the molecular basis of CRC and provide evidence for prevention.

colorectal cancer; post-GWAS; SNP; casual variant

2020-12-01;

2021-01-11

國家自然科學基金項目(編號:81773027,81101640),浙江省自然科學基金項目(編號:LY21H160027),中央高校基本科研業務費專項資金資助[Supported by the National Natural Science Foundation of China (Nos. 81773027, 81101640), Natural Science Foundation of Zhejiang Province of China (No. LY21H160027) , and Fundamental Research Funds for the Central Universities]

李以格,在讀碩士研究生,專業方向:病理學與病理生理學。E-mail: yigelee@zju.edu.cn

張丹丹,博士,副教授,研究方向:復雜疾病遺傳學及分子機制。E-mail: dandanz@zju.edu.cn

10.16288/j.yczz.20-320

2021/1/22 11:06:54

URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210122.1052.005.html

(責任編委: 周鋼橋)

猜你喜歡
機制功能研究
也談詩的“功能”
中華詩詞(2022年6期)2022-12-31 06:41:24
FMS與YBT相關性的實證研究
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
自制力是一種很好的篩選機制
文苑(2018年21期)2018-11-09 01:23:06
關于非首都功能疏解的幾點思考
破除舊機制要分步推進
中國衛生(2015年9期)2015-11-10 03:11:12
注重機制的相互配合
中國衛生(2014年3期)2014-11-12 13:18:12
打基礎 抓機制 顯成效
中國火炬(2014年4期)2014-07-24 14:22:19
主站蜘蛛池模板: 亚洲a免费| 国产丝袜91| 精品中文字幕一区在线| 亚洲VA中文字幕| 亚洲另类国产欧美一区二区| 久久久久久久久18禁秘| 免费看一级毛片波多结衣| 久久久久亚洲精品成人网 | 日韩欧美国产三级| 无码aⅴ精品一区二区三区| 19国产精品麻豆免费观看| 欧美精品色视频| 午夜日本永久乱码免费播放片| 亚洲精品成人片在线观看| AV熟女乱| 免费不卡视频| 久久免费视频6| 国产精品视频导航| 亚洲综合第一区| 在线观看国产小视频| 国产一区成人| 成人精品区| 狠狠亚洲五月天| 国产成人超碰无码| 特级毛片8级毛片免费观看| 精品一区二区三区水蜜桃| 欧美色视频在线| 男女男精品视频| 一本色道久久88| 婷婷综合色| 在线日韩一区二区| 性欧美在线| 久久一本精品久久久ー99| 色婷婷国产精品视频| 久久久噜噜噜| 国产激情国语对白普通话| 99re在线免费视频| 亚洲色图欧美视频| 亚洲二三区| 日本道中文字幕久久一区| 日本五区在线不卡精品| 中文字幕乱码二三区免费| 欧美日韩一区二区在线免费观看 | 国产香蕉在线| 亚洲午夜18| 亚洲欧洲日韩国产综合在线二区| 亚洲综合在线网| 天天综合网站| 欧美成人午夜视频| 亚洲不卡影院| 亚洲AV无码一区二区三区牲色| 丰满人妻久久中文字幕| 无码人中文字幕| 亚洲人成人无码www| av在线无码浏览| 无码日韩视频| 国产99视频精品免费观看9e| 无码国内精品人妻少妇蜜桃视频| 五月天久久综合| 欧美www在线观看| 亚洲一级毛片免费看| 亚洲久悠悠色悠在线播放| 日本午夜影院| 欧美色亚洲| 国产精品手机视频| 国产成人三级| 国产亚洲视频在线观看| 91毛片网| 国产精品网址在线观看你懂的| 色婷婷狠狠干| 91在线高清视频| 精品人妻无码中字系列| 亚洲系列中文字幕一区二区| 亚洲国产成熟视频在线多多| 久久婷婷国产综合尤物精品| 国产成人精品2021欧美日韩| 亚洲精品视频免费| 欧美有码在线| 国产欧美又粗又猛又爽老| a级高清毛片| 毛片在线区| 欧美亚洲国产日韩电影在线|