徐曼曼 晁斌 崔翰明
[摘要] 小膠質細胞廣泛分布于中樞神經系統,是其固有的免疫細胞,其介導的神經炎癥是引發腦白質損傷的重要因素。越來越多證據表明,不同腦白質損傷疾病中小膠質細胞激活的路徑各有差異,這是其在中樞神經系統發揮復雜作用的基礎。腦白質損傷的典型表現就是脫髓鞘,脫髓鞘存在于包括多發性硬化癥、阿爾茨海默病、血管性認知障礙和癡呆等在內的多種疾病的共同病理階段中。本文探討了多種疾病類型及所在不同大腦區域下,小膠質細胞通過不同激活途徑發揮生物學作用的醫學機制。此外,小膠質細胞在腦白質損傷中可發揮促炎和免疫調節的雙相作用,對這些小膠質細胞亞型的進一步研究可能會衍生出新的治療方法,促進腦白質損傷的修復。
[關鍵詞] 小膠質細胞;神經炎癥;腦白質損傷;脫髓鞘
[中圖分類號] R742? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)10(b)-0037-04
[Abstract] Microglia is widely distributed in the central nervous system and is the inherent immune cells. The nerve inflammation mediated by microglia is an important factor that cause white matter damage. More and more evidences show that the activation pathways of microglia in different white matter damage diseases are different, which is the basis of their complex role in the central nervous system. The typical manifestation of white matter damage is demyelination, which is a common pathological stage in multiple diseases including multiple sclerosis, Alzheimer′s disease, vascular cognitive impairment and dementia. In this article, the medical mechanism for microglia playing biological role through different activation pathways under various disease types and different brain regions is discussed. In addition, microglia can play a biphasic role in brain white matter damage, such as proinflammatory and immunomodulatory effects, therefore further research on these microglial subtypes may lead to new treatments that promote the repair of white matter damage.
[Key words] Microglia; Nerve inflammation; White matter damage; Demyelination
小膠質細胞是中樞神經系統固有的免疫細胞和免疫監視細胞,占中樞神經系統細胞的10%~15%,相當于定居在腦和脊髓中的巨噬細胞。這些細胞通過檢查周圍微環境損傷[損傷相關分子模式(DAMPs)]或感染指標[病原體相關分子模式(PAMPs)]發揮作用,促進腦穩態[1]。當發現異常時,小膠質細胞的吞噬作用迅速被激活,清除細胞碎片和死亡的神經元。但是在此過程中,小膠質細胞釋放的促炎分子也對中樞神經系統其他成分(包括神經元和少突膠質細胞)產生細胞毒性作用,進而引發疾病[2]。然而相關研究報道了小膠質細胞的保護作用,與傳統有害作用不同,其可促進腦白質中髓磷脂的再生[3]。因此,人們認識到腦白質損傷時神經元疾病的病理狀態不同,小膠質細胞所發揮的功能也不同。
腦白質主要包括有髓神經的軸突,其連接大腦各個區域的神經元,在人類大腦的近一半區域,腦白質的髓鞘形成是認知、記憶、運動和復雜技能發展所必需的[4]。因此,腦白質的損害或異常會導致多種神經元疾病,如多發性硬化癥(MS)[5]、阿爾茨海默?。ˋD)[6]、創傷性腦損傷(TBI)[7]、血管性認知障礙和癡呆(VCID)[8]等。另外,腦白質的結構變化或髓磷脂基因的異常也是精神疾病的危險因素[9],如抑郁癥、精神分裂癥和強迫癥。因此,腦白質中的髓鞘形成對于腦功能的正常發育和維持至關重要。本文探討了腦白質損傷期間小膠質細胞的變化,重點了解這些變化如何影響疾病的進展及針對于此的潛在療法,以便更好指導臨床。
1 小膠質細胞在腦白質損傷中的激活途徑
1.1 經典激活途徑
當小膠質細胞以經典途徑在各種與腦白質有關的疾病中被“激活”時,可高表達促炎細胞因子,主要有組織相容性復合物Ⅱ(MHCⅡ)及其共刺激因子CD40和CD86(也稱為B7-2),也是MS和AD中小膠質細胞激活的經典標志物[10]。在自身免疫性腦脊髓炎(EAE)的動物實驗中也觀察到了這一點,隨著小膠質細胞的增殖,CD45、MHCⅡ、CD40和CD86的表達也相應增加[11]。同樣在缺血性癡呆模型中也觀察到類似現象,結果顯示腦白質中的小膠質細胞和巨噬細胞在灌注不足3 d時MHC-Ⅰ/Ⅱ或基質金屬蛋白酶2(MMP-2)的表達升高,提示腦灌注不足后小膠質細胞可被提前激活[12]。而肌肽(β-丙氨酰-L-組氨酸,一種在中樞神經系統中高度表達的天然二肽)的治療可導致小鼠的小膠質細胞失活,改善患者的認知障礙和腦白質病變[13]。以上研究觀察到小膠質細胞的增殖及其激活主要發生在疾病早期,特別是在脫髓鞘的活性部位,而在疾病恢復后期未觀察到這些變化[14]。
1.2 其他激活途徑
小膠質細胞的極化不是表型的單一變化,而是涉及空間和轉錄上不同亞群的動態反應,可以根據疾病病理狀態和腦白質區域的不同而發生改變。Locatelli等[15]利用EAE小鼠進行實時體內成像,觀察到小膠質細胞和單核巨噬細胞的時空演化。他們的分子表達模式從誘導型一氧化氮合酶(NOS)等促炎標志物轉變為包括精氨酸酶在內的免疫調節標志物,提示小膠質細胞亞型可以根據EAE病變的病理狀態進行自我調節。此外,Simpson等[16]研究了老年患者腦白質病變的小膠質細胞,發現腦室周圍病變中表達MHCⅡ、CD40和B7-2的小膠質細胞明顯多于對照組或深部皮層下病變,但腦室周圍病變中存在的小膠質細胞形態呈分枝狀和活化狀,而皮層下病變中存在較多的變形蟲和吞噬表型,反映小膠質細胞亞群激活途徑依據病變部位的不同發生改變[17]。
總而言之,根據疾病類型及所在大腦區域,存在多種激活的小膠質細胞亞群,他們有助于判斷與腦白質有關的疾病處于何種階段。
2 小膠質細胞在腦白質損傷中的雙相作用
2.1 促炎作用
經典激活途徑中,活化的小膠質細胞會分泌參與炎癥級聯反應的促炎因子,促進神經系統疾病的脫髓鞘。脂多糖(LPS)激活的小膠質細胞,極化至促炎狀態,分泌腫瘤壞死因子α(TNF-α)和白細胞介素1β(IL-1β),均對少突膠質細胞具有細胞毒性[18]。在大鼠原代少突膠質細胞培養物中,TNF-α和雙環己酮草酰雙腙(cuprizone)的共同處理可導致其細胞生存能力顯著下降[19]。當給予cuprizone的小鼠中通過米諾環素對小膠質細胞的激活進行阻斷時,脫髓鞘被阻止,反向證明小膠質細胞衍生因子對少突膠質細胞的毒性作用。此外,在大鼠細胞中觀察到小膠質細胞產生的一氧化氮(NO)與少突膠質細胞死亡之間存在正相關,提示NO誘導的損傷是少突膠質細胞的毒性機制[20]。以上均提示小膠質細胞釋放相關促炎介質可加重腦白質損傷。
2.2 免疫保護作用
另一方面,小膠質細胞在髓鞘再生階段具有保護作用。MS模型中髓磷脂受損后,在髓鞘再生期間對胼胝體中的小膠質細胞進行了全基因組基因表達分析,發現其表達了一系列細胞因子和趨化因子,比如趨化因子(CXCL10)、轉化生長因子b1(Tgfb1)和血小板衍生生長因子(Pdgfa、Pdgfb),這些因子可使少突膠質前體細胞(OPC)聚集到病變部位并分化,促進髓鞘再生[21]。還有研究發現缺血性損傷后小膠質細胞分泌轉化生長因子α(TGF-α),體外實驗證明對OPC和少突膠質細胞有保護作用,可能在體內有助于腦白質的修復[22]。然而,先前發現小膠質細胞分泌的TNF-α和IL-1β與其他促炎因子(例如CXCL13和內皮素2)一起在髓鞘再生中可發揮有益的作用[23],產生這種矛盾現象的原因是由于他們不同受體亞型的時間依賴性表達變化,或者在疾病后期次級髓鞘分泌因子導致,提示小膠質細胞在調節腦穩態中的復雜作用。
3 治療方法
目前,尚未有批準的改善髓鞘再生的療法,特別是沒有針對小膠質細胞的療法[24]。但是,已經有報道相關藥物可降低小膠質細胞的神經炎癥活性[25],達到緩解疾病的目的。在一項缺血性中風模型誘導的小鼠中,與對照組比較,體溫過低降低了小膠質細胞的炎癥表型并增加其免疫調節類型,促進了腦白質的自身修復[26]。Li等[27]通過運用VK-28{5-[4-(2-羥乙基)哌嗪-1-基甲基]-喹啉-8-ol,一種腦可滲透性鐵螯合劑}治療小鼠腦出血模型,通過對小膠質細胞極化,可使之變成免疫調節亞型并減少腦白質損傷。同樣運用富馬酸二甲酯(一種已知可抑制小膠質細胞炎癥的藥物)對100對患有嚴重腦灌注不足的小鼠治療后,發現炎癥性小膠質細胞和巨噬細胞數量均適度減少,而且腦白質的功能損害也得到了相應改善[28]??傮w而言,這些研究提示通過直接靶向作用或者轉化小膠質細胞亞型的方法可能是一種針對腦白質疾病新穎有效的療法。因此通過調節小膠質細胞表型促進腦白質修復意義重大,如果有相關的潛在療法,臨床將大受裨益。
4 結語
在中樞神經系統疾病急性階段,有害的小膠質細胞會促進炎癥性微環境,涉及抗原呈遞和促炎分子地分泌,從而觸發脫髓鞘和神經元損傷。然而,在隨后的恢復期,小膠質細胞的過度激活被減弱,其吞噬活性有助于清除髓磷脂碎片和死細胞。免疫調節小膠質細胞還分泌促進OPC遷移及其發育成少突膠質細胞的因子,從而促進髓鞘再生。盡管已經積累了多重有害與有益作用的證據,但這些相反現象所涉及的機制仍有待充分理解,針對于此的潛在療法仍有待進一步挖掘。
[參考文獻]
[1]? Wake H,Moorhouse AJ,Miyamoto A,et al. Microglia:actively surveying and shaping neuronal circuit structure and function [J]. Trends Neurosci,2013,36(4):209-217.
[2]? Arcuri C,Mecca C,Bianchi R,et al. The Pathophysiological Role of Microglia in Dynamic Surveillance,Phagocytosis and Structural Remodeling of the Developing CNS [J]. Front Mol Neurosci,2017,10:191.
[3]? Prinz M,Priller J,Sisodia SS,et al. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration [J]. Nat Neurosci,2011,14(10):1227-1235.
[4]? Sampaio-Baptista C,Johansen-Berg H. White Matter Plasticity in the Adult Brain [J]. Neuron,2017,96(6):1239-1251.
[5]? Wu GF,Alvarez E. The Immunopathophysiology of Multiple Sclerosis [J]. Neurol Clin,2011,29(2):257-278.
[6]? Jang H,Kwon H,Yang JJ,et al. Correlations between Gray Matter and White Matter Degeneration in Pure Alzheimer′s Disease,Pure Subcortical Vascular Dementia,and Mixed Dementia [J]. Sci Rep,2017,7(1):9541.
[7]? Haber M,James J,Kim J,et al. Minocycline plus N-acteylcysteine induces remyelination,synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury [J]. J Cereb Blood Flow Metab,2018,38(8):1312-1326.
[8]? Rosenberg GA,Prestopnik J,Knoefel J,et al. A Multimodal Approach to Stratification of Patients with Dementia:Selection of Mixed Dementia Patients Prior to Autopsy [J]. Brain Sci,2019,9(8):187.
[9]? Bellani M,Boschello F,Delvecchio G,et al. DTI and myelin plasticity in bipolar disorder:integrating neuroimaging and neuropathological findings [J]. Front Psychiatry,2016,7:21.
[10]? Lee J,Hamanaka G,Lo EH,et al. Heterogeneity of microglia and their differential roles in white matter pathology [J]. CNS Neurosci Ther,2019,25(12):1290-1298.
[11]? Ponomarev ED,Shriver LP,Maresz K,et al. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity [J]. J Neurosci Res,2005,81(3):374-389.
[12]? Ihara M,Tomimoto H,Kinoshita M,et al. Chronic Cerebral Hypoperfusion Induces MMP-2 but not MMP-9 Expression in the Microglia and Vascular Endothelium of White Matter [J]. J Cereb Blood Flow Metab,2001,21(7):828-834.
[13]? Ma J,Bo SH,Lu XT,et al. Protective effects of carnosine on white matter damage induced by chronic cerebral hypoperfusion [J]. Neural Regen Res,2016,11(9):1438.
[14]? Sch?觟nrock LM,Kuhlmann T,Adler S,et al. Identification of glial cell proliferation in early multiple sclerosis lesions [J]. Neuropathol Appl Neurobiol,1998,24(4):320-330.
[15]? Locatelli G,Theodorou D,Kendirli A,et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model [J]. Nat Neurosci,2018,21(9):1196.
[16]? Simpson J,Fernando M,Clark L,et al. White matter lesions in an unselected cohort of the elderly:astrocytic,microglial and oligodendrocyte precursor cell responses [J]. Neuropathol Appl Neurobiol,2007,33(4):410-419.
[17]? Hammond TR,Dufort C,Dissing-Olesen L,et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes [J]. Immunity,2019,50(1):253-271.e6.
[18]? Leitner DF,Todorich B,Zhang X,et al. Semaphorin4A is cytotoxic to oligodendrocytes and is elevated in microglia and multiple sclerosis [J]. ASN Neuro,2015,7(3):1759091415587502.
[19]? Pasquini L,Calatayud C,Una AB,et al. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia [J]. Neurochem Res,2007,32(2):279-292.
[20]? Merrill JE,Ignarro LJ,Sherman MP,et al. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide [J]. J Immunol,1993,151(4):2132-2141.
[21]? Olah M,Amor S,Brouwer N,et al. Identification of a microglia phenotype supportive of remyelination [J]. Glia,2012,60(2):306-321.
[22]? Dai X,Chen J,Xu F,et al. TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia [J]. J Cereb Blood Flow Metab,2020,40(3):639-655.
[23]? Yuen TJ,Johnson KR,Miron VE,et al. Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination [J]. Brain,2013, 136(4):1035-1047.
[24]? Lloyd AF,Miron VE. The pro-remyelination properties of microglia in the central nervous system [J]. Nat Rev Neurol,2019,15(8):447-458.
[25]? Samanani S,Mishra M,Silva C,et al. Screening for inhibitors of microglia to reduce neuroinflammation [J]. CNS Neurol Disord Drug Targets,2013,12(6):741-749.
[26]? Liu LQ,Liu XR,Zhao JY,et al. Brain-selective mild hypothermia promotes long-term white matter integrity after ischemic stroke in mice [J]. CNS Neurosci Ther,2018,24(12):1275-1285.
[27]? Li Q,Wan J,Lan X,et al. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice [J]. J Cereb Blood Flow Metab,2017,37(9):3110-3123.
[28]? Fowler JH,Mcqueen J,Holland PR,et al. Dimethyl fumarate improves white matter function following severe hypoperfusion:Involvement of microglia/macrophages and inflammatory mediators [J]. J Cereb Blood Flow Metab,2018,38(8):1354-1370.
(收稿日期:2020-01-09)