999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

DIFFERENCE HARNACK ESTIMATES FOR WEIGHTED NONLINEAR REACTION-DIFFUSION EQUATIONS ON WEIGHTED RIEMANNIAN MANIFOLDS

2020-11-26 13:50:40WANGYuzhaoWANGXueming
數學雜志 2020年6期

WANG Yu-zhao,WANG Xue-ming

(School of Mathematical Sciences,Shanxi University,Taiyuan 030006 China)

Abstract:In this paper,we study the problem of difference Harnack estimate on Riemannian manifolds.By using maximum principle and weighted p-Bochner formula,we derive the Li-Yau type difference Harnack estimate and Hamilton type estimate for the positive solutions to weighted nonlinear reaction-diffusion equation on compact weighted Riemannian manifold with curvature dimension condition CD(0,N),which generalizes the non-weighted case under the condition of nonnegative Ricci curvature.

Keywords: weighted nonlinear reaction diffusion equation;Li-yau type difference Harnack estimate;hamilton type difference Harnack estimate;curvature dimension condition;weighted p-Bochner formula

1 Introduction

LetMbe ann-dimensional compact Riemannian manifold with curvature dimension conditionCD(0,N).In this paper,we consider a weighted nonlinear reaction-diffusion equation(WNRDE)

onM,whereγ>0,p>1,q>0,?p,fu=efdiv(e?f|?u|p?2?u)is the weightedp-Laplacian ofu,andfis a smooth function.

Gradient estimate or differential Harnack estimate is an important tool in geometric analysis.In 1986,Li and Yau[1] first proved the sharp gradient estimate for positive solutions to heat equation on Riemannian manifolds.Since then,gradient estimate has been studied extensively by many scholars.Particularly in the last decade,more attention has been paid to the study of nonlinear equations.Kotschwar and Ni[2]established gradient estimates forp-harmonic functions and parabolicp-Lapalacian equation on Riemannian manifolds.In[3,4],the first author and coauthor improved Li-Yau type gradient estimates for the positive solutions to the weighted nonlinearp-heat equation on Riemannian manifolds withCD(?K,m)condition.In[5],the authors proved the Li-Yau type estimate for the porous medium equation and fast diffusion equation.In[6],the first author and coauthor got sharp global Li-Yau type gradient estimates for positive solutions to doubly nonlinear diffusion equation on compact Riemannian manifolds with nonnegative Ricci curvature.

In[7],we derived the global Li-Yau type and Hamilton type gradient estimate for positive solutions to the nonlinear reaction-diffusion equation.The purpose of this paper is to extend the work in[7],that is to prove the gradient estimates for weighted nonlinear reaction-diffusion equation(1.1)on Riemannian manifolds.

To show our results,we recall some necessary notations.Let(M,g,dμ)(dμ=e?fdV)be ann-dimensional compact weighted Riemannian manifold,dVbe the Riemannian volume measure,f∈C∞(M).Define a diffusion operatorL?f= ???f·?,andN-Bakry-mery Ricci curvature tensor

IfN=∞,then Bakry-mery Ricci curvaturewhich firstly studied by Bakry andmery[8].IfLsatisfies the curvature dimension conditionCD(K,N)if

Now we give the global Li-Yau type difference Harnack estimate for WNRDE(1.1)and its applications in Harnack inequalities.

Theorem 1.1LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition.Assume thatuis a smooth nonnegetive solution to(1.1),andsatisfy equation(2.1)onM.Then for anyb>0,aˉ>0 andc(q?1)(q?1+b)≥0,we have

Remark 1.2Whenc=0 andf=const.,the estimate(1.2)reduces the Li-Yau type estimate of weighted doubly nonlinear diffusion equation in[6].

On the other hand,Hamilton[10]improved the elliptic type gradient estimate on a compact manifold.Yan and Wang[11]established elliptic type gradient estimates for positive solutions to the doubly nonlinear diffusion equation on Riemannian manifolds.Recently,the authors[7]derived Hamilton type gradient estimates for nonlinear reaction-diffusion equation on compact Riemanian manifold with nonnegative Ricci curvature.In this paper,we can prove Hamilton type estimate for WNRDE(1.1)onn-dimensional compact weighted Riemannian manifold withCD(0,N)condition.

Theorem 1.3LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition.Suppose thatuis a smooth positive solution to(1.1)andvsatisfy equation(2.1)onM.Then for anyp>1,andκ(p(m+1)?1)>0,

wherevMaxmaxMvm.

As applications of two estimates in Theorem 1.1 and 1.3,by integrating along minimizing geodesic paths,we can derive the corresponding Harnack inequalities.

Corollary 1.4LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition,ube a positive solution to(1.1)andvsatisfy the equation(2.1).Given anyx1,x2∈M,0≤t10,we have:

Corollary 1.5LetMbe ann-dimensional compact weighted Riemannian manifold with theCD(0,N)condition,ube a positive solution to(1.1)andvsatisfy the equation(2.1).Given anyx1,x2∈M,we have:

The organization of this paper is as follows.In Section 2,using the weightedp-Bochner formula,we will give the proof of Li-Yau type difference Harnack estimate(1.2).In section 3,we will prove Hamilton type estimate(1.3).In Section 4,two Harnack inequalities are derived as applications of two type estimates.

2 Global Li-Yau Type difference Harnack Estimate

In this paper,let?and div be the gradient operator and divergence operator onM.Assume thatuis a positive solution to(1.1),the pressure transform introduced by the first author in[6],

The WNRDE can be rewritten as

and corresponding pressure equation forvsatisfies

and its parabolic operator iswherew=|?v|2>0,and

Lemma 2.6Let

Then

ProofFor a constantβ,combining the equation(2.1)and the definition ofLin(2.2),we have

3 Global Hamilton Type difference Harnack Estimate

In this section,we establish a Hamilton type difference Harnack estimate for positive solutions to WNRDE(1.1)on weighted Riemannian manifolds.

4 Applications of difference Harnack Estimates

主站蜘蛛池模板: 97在线国产视频| 亚洲第一天堂无码专区| 午夜性刺激在线观看免费| 中文字幕日韩视频欧美一区| 久久久波多野结衣av一区二区| 中文字幕久久亚洲一区| 亚洲动漫h| 国产人碰人摸人爱免费视频| 国产综合网站| 亚洲综合在线网| 国内视频精品| 在线无码私拍| 久久久精品无码一区二区三区| 婷婷五月在线| 无码'专区第一页| 色综合a怡红院怡红院首页| 亚洲久悠悠色悠在线播放| 欧美成人精品一级在线观看| 一本大道无码高清| 国产网站黄| 日韩一级毛一欧美一国产| 久久精品人人做人人爽电影蜜月| 日韩人妻无码制服丝袜视频| 国产网站免费| 国产成人在线小视频| 香蕉伊思人视频| 国产黄色爱视频| 国产在线高清一级毛片| 一本视频精品中文字幕| 欧亚日韩Av| 欧美一区二区三区香蕉视| 国产成人在线无码免费视频| 欧美精品黑人粗大| 91www在线观看| 中文字幕在线日本| 色综合天天综合中文网| 67194亚洲无码| 亚洲AV无码久久天堂| 国产一级片网址| 综合亚洲网| 国产丝袜丝视频在线观看| 69视频国产| 亚洲成综合人影院在院播放| 国产成人你懂的在线观看| 欧美日韩在线成人| 直接黄91麻豆网站| 国产欧美日韩精品第二区| 亚洲欧美日韩中文字幕在线| 亚洲福利片无码最新在线播放 | 国产精品女主播| 99精品这里只有精品高清视频| 日韩福利在线视频| 亚洲欧美日韩精品专区| a毛片在线免费观看| 九九热精品在线视频| 试看120秒男女啪啪免费| 亚洲精品手机在线| 国产美女视频黄a视频全免费网站| 搞黄网站免费观看| 青青草一区二区免费精品| 国产成人亚洲精品无码电影| 无码一区二区三区视频在线播放| 午夜三级在线| 91久久性奴调教国产免费| 亚洲精品午夜无码电影网| 婷婷中文在线| 夜夜操天天摸| www欧美在线观看| 久久精品亚洲专区| 国产色婷婷视频在线观看| 国产激情无码一区二区APP| 激情六月丁香婷婷| 久久综合激情网| 亚洲最黄视频| 成人无码区免费视频网站蜜臀| 亚洲欧州色色免费AV| 亚洲天堂网在线播放| 国产亚洲精品自在久久不卡| 亚亚洲乱码一二三四区| 99精品视频九九精品| 亚洲欧美精品在线| 免费国产不卡午夜福在线观看|