李芬蘭
[摘 ?要] 課堂練習是初中數學教學中的重要組成部分,在教學中起到了溝通理論知識和知識操作的橋梁. 教師需深度把握教材的高度,為學生設計出科學而合適的課堂練習,以促進學生學習積極性的有效提升,最終保證課堂教學的有效性. 文章結合多個案例,闡述了課堂練習的針對性、典型性、趣味性、多樣性和層次性等原則,以期初中數學教師在教學過程中引起重視.
[關鍵詞] 初中數學;課堂練習;有效性
課堂練習是課堂教學中必不可少的重要環節,是落實課堂知識的基本途徑,是促進思維訓練的有效載體,同時也是基本的課堂教學形式之一,承載著幫助學生理解數學知識、掌握數學技能和發展智力的重任. 而相關調查顯示,不少數學教師常常把目光集中于教材知識的發掘,而忽視課堂練習的設計,認為找些數學題目讓學生自主練習就是課堂練習,以致數學練習枯燥、雜亂和低效. 長此以往,不但抑制學生數學思維的發展,而且導致教學效果低下. 因此,數學教師應充分認識到課堂練習的重要作用,只有在設計練習時落實課堂練習的針對性、典型性、趣味性、多樣性和層次性原則,才能保證提高課堂教學的有效性[1] .
妙趣橫生——生活味與趣味性相融合
新課程標準指出,需以學生的現實世界為依托,以學生身邊的、感興趣的事物為載體,引發學生的學習動機……“興趣是最好的老師”,教師可以從這一點著手,細致分析學生的年齡特征,有針對地設計一些妙趣橫生的課堂練習,促發他們的興趣,調動他們的數學胃口,讓枯燥的數學練習變為美味的“營養大餐”. 眾所周知,習題是靜態的,若是能賦予它一個動態化的情境,使學習具有意義,使解題過程趣味化,讓學生的情感、認知等投入學習活動中來,則會讓解題的過程更有效.
當然,課堂練習的訓練方法多種多樣,如可以分為自主練習和合作練習,自主練習能培養學生的思考能力和解決問題的能力,而合作練習能培養學生的合作、辯論、交流等終身發展需要的必備品質;還可以分為書面練習和口答練習,書面練習可以訓練學生的規范書寫、邏輯思維能力,而口答練習可以訓練學生思維的敏捷性、語言的連貫性和邏輯性. 此外,課堂練習還可以設計成尋寶、解難等趣味性較強的活動方式,讓學生感興趣、愿意學、主動思,從而達到提高學生數學素養的目的.
案例1 ?在教學“一次函數”時,可以安排以下課堂練習:
家中突然停電,媽媽急忙找出一支蠟燭并點燃,小明仔細觀察發現:其燃燒后剩余長度和燃燒的時間呈現一次函數關系,這支蠟燭原長度為21厘米,燃燒6分鐘后,蠟燭的長度為17.4厘米. 若設燃燒時間是x分鐘,燃燒后剩余長度是y厘米. (1)請寫出y與x之間的函數關系式;(2)請畫出該函數圖像;(3)觀察圖像并思考這支蠟燭可燃燒的時間.
解決這一與學生的生活緊密相關的問題,對于學生來說既新鮮又富有挑戰性,充分激發了他們的學習欲望,喚醒了他們的思維,讓他們在思考、探究、探討、交流等過程中完成了知識的內化和吸收,促進了思維的生長,感悟了數學的本質.
精益求精——針對性與典型性相結合
教師在進行習題的選擇時要做到“精”“準”,有針對性地設計練習內容,并有意識地避免機械重復,讓練習恰到好處且行之有效,這樣一來不僅削減了學生的學習負擔,還讓學生能在愉快中學習,在輕松中成長,從而更具實效性. 所以,教師在進行課堂練習的設計時,要深度了解學生的認知水平,并根據不同教學內容的特點設計練習,做到整體把握教學目標,有效凸顯重難點,機動處理數量和質量,從而達到深化知識、提升技能等“多重功效”.
案例2 ?在復習“四邊形”時,筆者借助一組練習,讓學生正確區分運用對角線判定特殊四邊形的方法:
(1)對角線__________的四邊形是平行四邊形;
(2)對角線__________的四邊形是矩形;
(3)對角線__________的四邊形是菱形;
(4)對角線__________的四邊形是正方形;
(5)對角線__________的平行四邊形是矩形;
(6)對角線__________的平行四邊形是菱形;
(7)對角線__________的平行四邊形是正方形;
(8)對角線__________的矩形是正方形;
(9)對角線__________的菱形是正方形.
通過以上這組練習,針對學生的認知“盲區”和解題中的“易犯病癥”,達到“藥到病除”之功效.
同時,練習的設計也需注意典型性,讓學生在解決問題的過程中展現知識掌握的程度. 不少教師為了優分率讓學生不斷進行刷題,殊不知,這樣過度的訓練會讓學生心生厭惡,更易導致思維定式. 因此,課堂練習的設計不但需兼顧知識的廣度,還需通過典型性習題達到“以一敵十”的效果.
案例3 ?在教學“平方差公式”時,可以出示以下習題:
運用平方差公式計算:(-4x+3y)·(-4x-3y).
分析 ?此習題具有典型性,僅需將-4x和3y視為一個整體,整體代入公式中的a和b,則有(-4x+3y)(-4x-3y)=(4x)2-(3y)2=16x2-9y2.
靈活巧妙——多樣性生智慧
我們傳統觀念中的課堂練習呈現單一化特征,僅是一種無差度的重復訓練,不利于學生興趣的培養和數學思維能力的發展. 隨著新課程改革的不斷深化,教材呈現方式愈加豐富多彩. 因此在課堂練習中,教師需充分發揮主觀能動性,使之呈現多樣化和多元化特征,讓大腦“動”起來,讓思維“活”起來,讓視野“廣”起來,讓學生在興趣中生成智慧和精彩,讓學生在練習中培養能力.
案例4 ?教師可以充分利用教材中的“讀一讀”“想一想”“做一做”“試一試”等課堂練習,增強學習的趣味性. “讀一讀”可以增強學生對數學史的了解,進一步拓展學生的知識面;“想一想”可以提升學生的想象力,想象與創造有利于創造力的逐漸形成;“做一做”可以培養學生思維的多樣性和嚴密性;“試一試”可以鼓勵學生積極創新,培養學生打破常規的思維習慣.
別具匠心——層次性促思維
學習的過程并不是被動接受的過程,而是根據自身的經驗背景自主選擇外部信息進行加工和處理,進一步建立知識體系的過程. 教師指定練習題型,學生接受指示進行書面練習,易造成學生知識面狹窄、情緒低落和思維僵化等問題. 因此,教師在設計課堂練習時,需努力改變傳統作業的千篇一律,設計出從易到難、由淺入深、循序漸進的練習,滿足不同層次學生的要求,充分展現知識的過渡性和層次性,讓每一個學生都能在練習中獲得成功體驗,讓思維自然邁向更高層次,從而發展學生的創造性[2].
案例5 ?在教學“絕對值”時,筆者設計了如下練習:
基礎性練習:
(1)請求出以下各數的絕對值:2,-5,0,-3.2, ;
(2)若一個數位于原點的右側,且到原點的距離是3個單位長度,那么這個數是______.
提高性練習:
(3)若a>0,則a=______;若a=0,則a=______;若a<0,則a=______.
應用性練習:
(4)若x=4,y=6,且有x>y,請求出 的值;
(5)如果x-3+(y+1)2=0,那么x=______;y=______.
以上課堂練習有效把握了訓練的“坡度”,將學生的已學知識作為階梯,引導學生逐步將知識轉化為技能. 對于基礎薄弱的學困生只需完成練習(1)(2),這類練習難度較小,幫助學生在獨立完成的過程中促進新知的消化;對于基礎一般的中等生需完成練習(1)(2)(3),這類練習主要是為了達到強化“雙基”的目的;而對于學有余力的學優生則需完成練習(4)(5),此類練習的難度較大,有利于學優生智力的發展.
總之,我們數學教師在備課中需仔細鉆研教材,分析編者意圖,本著“以生為本”的宗旨,把握學生知識水平的差異,在課堂練習的選擇和安排上下足功夫,讓每一次練習都能使學生感受到思維火花的綻放,從而切實提高課堂練習的有效性.
參考文獻:
[1]王建花,楊德志. 數學課堂練習設計的幾點思考[J]. 中小學電教(下半月),2011(9).
[2]張新戰. 高中數學“分層次教學”中應注意“六性”[J]. 魅力中國,2009(17).